Heoo DIA control of magnetic suspension systems

=& eng

HhRE
~EH:2017-10-03
F—7—FK (Ja):
F—7— K (En):
YER

A—=ILT7 KL R:
=R

http://hdl.handle.net/2297/6742




H., DIA Control of Magnetic Suspension Systems

Toru Namerikawa and Masayuki Fujita

Abstract— This paper deals with the H., DIA control on the other hand, extended this result and obtained an
system design attenuating initial-state uncertainties and its 7{_, control with a free-parameter which considers a mixed
application to magnetic suspension systems. Here thélos  atenyation of disturbance and initial-state uncertafioty

DIA control means a mixed Disturbance and an Initial- i fi . iant ¢ in the infinite-hori 4
state uncertainty Attenuation(DIA) control for linear time- inear time-invariant systems in the infinite-horizon dage

invariant systems in the infinite-horizon case. TheH., DIA . . .
control problem supplies H. controls with good transients However, the problem discussed in [4] was limited to

and assuresH.., controls of robustness against initial-state time-invariant systems satisfying the orthogonality asgu
uncertainties. We derived a necessary and sufficient condition tions [5]. This is an immensely serious problem if we
of the generalized.. DIA problem. apply this problem setup to the real physical control system
In this paper, we apply this 7., DIA approach to magnetic  desjgn. The previous mixed attenuation of disturbance and
;gggee:t];'ogf tshftepr:(‘)sr; o Szgd asgﬁnlgithe V; g(';gﬂmggtesr?us\t/'gn initial-state uncertainty in the infinite-horizon case istn
investigate a role of the weighting matrix N for the initial  Sufficient in practice[6] because time-invariant systeats s
state uncertainty in the control system design. isfying the orthogonality assumptions restrict the degree
of freedom of the control system design, and the previ-
ous problem setup has a difficulty in regulating control

I. INTRODUCTION inputs(6], [7].

Mixed Disturbances andlnitial state uncertainties The authors here formulated an infinite horizon distur-

Attenuations are expected to suppl.. control prob- bance and initial state uncertainty attenuation controbpr
lem with some good transient properties. The linear timd€M Without the orthogonality assumptions[8]. The solutio

invariant .. control attenuates the effect of disturbancedS 9Ven as a natural extension of the previous results in [4]

on controlled outputs and is originally defined under thél- A necessary and sufficient condition for a solution to

assumption that the initial states of the system are zerBXiSt: together with an explicit formula of the solution, sva

Initial states are often uncertain where as it might be ze/@€"ved in [8]. Based on the given condition, a robustness
or non-zero. If the initial states are non-zero, the systeRY©OPerty Off.; controls against initial-state uncertainty was

adopting anH... control will present some transients asdiScussed.

the effect of the non-zero initial states, to which thg, In this paper, we apply this approach[8] to the real mag-
control is not intrinsically responsible. S_uch transiemtght  etic suspension systems and evaluate the effectiveness of
be unacceptable to themselves, or might cause the perfgiz proposed method via experiments. Magnetic suspension
mance level of disturbance attenuation of tHe, control systems can suspend a magnetic body by magnetic force
to deteriorate intolerably. These circumstances motatyithout any contact[9], which requires feedback control
us in this paper to be concerned witl,, controls that iy order to be workable. Recently, magnetic suspension
accomplish a mix_ed attenuation of disturbance ano_l_initial;ystems including active magnetic bearings and magnetic
state uncertainty in controlled outputs. Recently, sviligh control seem to be one of the hot topics in control applica-
control for hybr_id complex_ systems is factively studied injgn field[9], [10], [11], [12]. Nonlinear control approaek
control theory field and this method might be one of thge recently focused in this field[10], [11], [12], but our

most reasonable and practical approach to implement it. 3pproach taken here is a reliable linear robust control
In the finite-horizon case, a generalized type 78, methodology.

control problem was formulated and solved by Uchida

and Fuijita[1] and Khargonekar et al.[2]. The problem was Comparing in the several proposetl, DIA controllers,

extended to the infinite-horizon case, and a result wage show the property and effectiveness of the proposed

derived by Kojima et al.[3] and Khargonekar et al.[2]. HeregeneralizedH ., DIA control attenuating initial state un-

the same result was derived by the different approaches. TB@rtainties. Experimental results indicate that one of the

problem discussed by Kojima et al.[3] and Khargonekar elesign parametet() and the frequency responses of the

al.[2] is limited to the central control case. Uchida et4jl.] M DIA controllers and the weighiV for the initial state
uncertaintieszo(xg = z(0) # 0) in the H., DIA problem
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Il. PROBLEM STATEMENT (A1) There exists a solution/ > 0 to the Riccati equation

Consider the linear time-invariant system which is de- M (A — Bo(D,D12) DL, Ch)
fined on the time interval0, co) and described by +(A — By(DI,D12) ' DLC)NT M

—M(By(Di,D12)"'B; — Bi1B{ )M
+CTC, — CT Dy (DL, D) 'DL,Cr =0 (4)

T = Ax+ Byw+ Bou, x(0)=x
z = Cixz+ Disu s.t.A— BQ(DED12)71D¥501 — B2(D¥12D12)71331M +
y = Cox+ Daw (1) B;B{M is stable.

wherez ¢ R" is the state and is the initial state: (A2) There exists a solutio® > 0 to the Riccati equation

u € R" is the control input;y € R™ is the observed (A— B, DL, (Dyy D)1 Co) P

output; z € R? is the controlled output andy € RP is +P(A—B1D2Tl(D21D2Tl)*1CQ)T

the disturbance. Note that this system does not have the —P(CT(Dy DI tCy — CT O P
orthogonality assumptions[5]. +B1B} — B1D3 (DyDI) Doy Bl =0 (5)

Without loss of generality, we regard, as the initial- T — " .
state uncertainty, andy, = 0 as a known initial-state case. St %4 - .BlD21(D21D21) Cy = PCy (DnD3y)~ Cs +
The disturbancev(t) is a square integrable function defined?’C1 C1 is stable.

on [0, o). (A3) p(PM) <1,
A, By, By, C1, (3, D12 and Dy, are constant matrices where p (X)) denotes the spectral radius of matfx and
of appropriate dimensions and satisfies that p(X) =max|\; (X)].
o (A, By) is stabilizable and 4, C1) is detectable. Then we obtained the following results.
+ (4, By) is controllable and 4, C3) is observable. Theorem 1: [8] Suppose that the conditiof&1), (A2),
« D{,Di1> € R™" is nonsingular. and(A3) are satisfied. The following controller (6) is a DIA
« D21 D3; € R™ ™ is nonsingular. control if and only if the conditior(A4) is satisfied.
For system (1), every admissible output feedback control .
is given by a linear time-invariant system to the form tx = Axrx+ Bry
u = Cgrg+ Dgy (6)
¢ = Ag(+Bgy, ¢((0)=0 wherez  is the state of the DIA controller and
u = Ck(+ Dgy (2)
_ _ Ax = A4 PpPclo, — (PCY + ByDE)(Dyy DI 10O,
which makes the closed-loop system, given by (1) and —(By + PCT Dy,) (DY, Dyy)~t
(2) internally stable, wheré(¢) is the state of a controller x(BIM + DT,Ch)L
of a finite dimension, andix, Bk, Cx, Dk as constant p,. — (pCT + B, DL )(Dy DL) ™!
matrices of appropriate dimensions. Cxk = —(DL,Dy)"Y(BIM + DLCy)L.
For the system and the class of admissible controls dg5,. — o
scribed above, consider a mixed-attenuation problemdstate .
as below. with L := (I — PM) .
Problem 1. H., DIA Control Problem (AD) Q+N-'—P-1>0,

Find an admissible control attenuating disturbances ang,
initial state uncertainties in the way that, for givéh> 0,
~ satisfies Q(A = B1D3, (D31 D3,) "' Cy
+ (Bi1B] — Bi1D3,(D21D3,)"" Doy Bl )P™)
12113 < llwl3 + 2 N~ ®) +(A = B1D}, (D21 D1) 710y
+(Bi1B — Bi1D3,(D21D3,) "' Dot B ) P~1)TQ
~Q(BT — DI, (Dyy DL) " (CoP + Doy BY) )"

ere( is the maximal solution of the Riccati equation

for all w € L?[0,00) and allzg € R", s.t., (w,xq) # 0.
Such an admissible control is called tBesturbance and T o 1 T
Initial state uncertaintttenuation f., DIA) control. _ 0>< (Bi = D31(Da1D2y) ™ (CoP + Do By )L)Q(7)

The weighting matrix’V.on z( is a measure of relative
importance of the initial-state uncertainty attenuatiorhte IV. SYSTEM DESCRIPTION ANDMODELING
disturbance attenuation. A larger choice’din the sense of  The experimental setup of the magnetic suspension sys-
matrix inequality order means finding an admissible contrqbm is shown in Fig.1. An electromagnet is located at the top
which attenuates the initial-state uncertainty more. of the experimental system. The control problem is to levi-
tate the iron ball stably utilizing the electromagneticciar

Il. Hoo DIA CONTROL where the masd/ of the iron ball is238[g], and steady

In order to solve theH.,, DIA control problem, we state gapX is 3[mm]. Note that this simple electromagnetic

require the Riccati equation conditions: suspension system requires feedback control in order to be



workable. As a gap sensor, a standard optical displacement o = |1 1}T
sensor is placed on either side of the iron ball. . o o
where W, (s) is a frequency weighting whose gain is

I+i(t) relatively large in a low frequency range, and is a(1, 2)
E+e(t) element ofw . These values, as yet unspecified, can be
regarded as free design parameters. Note that we have not
R made explicit distinction in the notation between a time
L domain function and its Laplace transform in (9). Let us
Electromagnet consider the system disturbane for the output. The

disturbancewy, shows an uncertain influence caused via
unmodeled dynamics, and define

Gap sensor
M wo = Wyw (10)
Iron ball

Mg whereW,, is a weighting scalar, and is a(1,1) element
of w. Note thatiW,, is sometimes frequency dependent, but
Fig. 1. Magnetic Suspension System it is selected as a scalar for the sake of simplicity.

Next we consider the variables which we want to regulate.

In this case, since our main concern is in the stabilization

Under some assumptions around the steady stai¢ine iron ball, the gap and the corresponding velocity are
operation[9], we derived the 3rd-order linear state-spacg,gsen: i.e.

formulation for the system as

i, = Agzy+ Bgug + Dyug ®) zg = Fyzg, Fyg= { (1) (1) g ] (11)
yg = Cyag+wo
AT T Then, as the error vector, let us define as follows
wherez, == [z & i]", uy :=e, vo :=[vy, vL],
0o 1 0 21 = Ozy, © =diag [ 0, 0 ] (12)
Ag =1 2670 0 -233 where © is a weighting matrix on the regulated variables
L 00 _?;1‘6 zq, andz; is a(1,1) element ofz. This value© are also
Bg=[0 0 33], Cy=[10 0] free design parameters.
0 0 Furthermore the control input should be also regulated,
Dyg=1350 0 and we define
0 333

Zo=pu (13)
wherez(t) is a gap length between the electromagnet(EM) _ o _
and the iron ballj(¢) is a current of the electromagnet;) Wherep is a weighting scalar, and, is a(1,2) element of

is a control input and a voltage applied to the electromagnét

. . : T
andv,, (t) andwy(t) are exogenous disturbance inputs.  Finally, letz := [z a3,]", wherex,, denotes the state
Here (4,,B,) and (4,,D,) are controllable and of the frequency weighting¥, (s), andw := [wi w3,
(A,,C,) is observable. z = [z 2], then we can construct the generalized

plant as in the following;
V. CONTROL SYSTEM DESIGN

For the magnetic suspension system, our principal control © = Az + Biw+ Bau
objective is its stabilization. Further it should be stiaiti z = Ciz+ Diau
robustly against 1) unmodeled dynamics, 2) the neglected y = Cox+ Dyw (14)

nonlinearities, 3) the parametric uncertainties. To thid,e

we setup the control problem within the framework of thevhere A, By, B, €1, C, Di> and Dy, are constant
H.. DIA control. matrices of appropriate dimensions.

The block diagram of the generalized plant with an
A. Construction of the generalized plant and problem setup  unspecified controllerk is shown in Fig.2. Since the
First let us consider the system disturbange Since disturbancesw represent the various model uncertainties,
vo mainly acts on the plant in a low frequency range irfhe effects of these disturbances on the error vectsrould
practice, it is helpful to introduce a frequency weighting?€ reduced. Note that this generalized plant does not have
factor. Hence let, be of the form the orthogonality assumptions(5].
Next our control problem setup is: Finding an admissible
vo = Wy (s)ws (9  controllerx (s) that attenuates disturbances and initial state
W, (s) = ®W (s)=®C, (s] —Ay,) ' By uncertainties to achieve ti#é,, DIA condition in (3).



w, | I ! as follows;
1: Wy 2

5.0 x 10*
W, —_—
() s +0.010
W, = 0.40
o — 6 0| _ |110 0
0 6, 0 0.00010
p = 1.0x1077 (16)
T Direct calculations yield thé{,, DIA controller Kpya;
K - which has a four-order;
Fig. 2. Generalized Plant KDIAl(S) = CK(SI n AK)_lBK (17)
where
—126 1.00 0 0
: —5300 1.18-107* —23.3 6.99-10%
B. Design Procedure of the H.,, DIA Controller Ax = 400.107 809-10° —1040 5.84.10°
We designed thé{., DIA controllers for the generalized —2.24  5.62-1077 0 —0.01
plant derived in the previous subsection based on th@&x, = 157 9880 4320 2.78 ]T
following Six-Step procedure. Cx = [ 120107 243-10* —574 1.73-10° |

Iterative calculations concerning to design parametersThe frequency response of the controllér (s) is
W,(s), W, ©, p are done to obtain appropriate numerical h _ qF' 33/ b P id line. Th SDIALLS ue of
sets on MATLAB, then we obtain a numerical,, DIA shown in Fig. y a solid Tine. The maximum vaiue o
controller K (s) directly. the weighting matrix\V is given by
[Step 1] Select a weighting functionW,:  W,(s) is N = 5.256980 x 1073 x I4. (18)

a frequency weighting function whose gain is relatively
large in a low frequency range. This parameter is mutuaIIP/
related to a low gain of the controllgt and the controller "
performance.

[Step 2] Select a weighting function W,,:
is a frequency weighting function and this is related t
robustness. Bigger choice di,, could mean allowing
bigger uncertainties. Here we selectidd, as a scalar for p_ |nvestigation for Weight
simplicity, but it can be chosen as a frequency function.
[Step 3] Select a weighting matrix®: O is a weighting
matrix on the regulated variableg which means thad,
and6, regulatex(t) andi(t) in z,(t) respectively.

[Step 4] Select a weighting scalap: p is a weighting

Fig.3 shows thatKpr4; has a high gain at the low
equency and good roll-off property at high frequency
range. The comprehensive frequency response looks like
W (s) a modified PID controller. In the previod$,, DIA control
csiesign framework[4], [6], it was difficult to let controlier
get hold an integral property.

The weighting matrixV.on z( is a measure of relative
importance of the initial-state uncertainty attenuatiorte
disturbance attenuation. A larger choicedfn the sense of
matrix inequality order means finding an admissible control

. _ . which attenuates the initial-state uncertainty more[3], [
scalar on the input variableandy regulates the inpui(t). we treat hereV as just an x I, wheren is a positive scalar

[Step 5] ConSFruct a gengrallzed plant_ and arfto. DIA number and/ is a unit matrix of appropriate dimensions.
controller: With a specified set of design parameters fron}he mixed DIA suppliesH,, control with a good tran-
[Step 1] to [Step 4], a generalized plant is constructed. ThGot and assurei.., control of robustness against initial-
DIA controller (6) is designed for this plant. _ state uncertainty. Transient responses are expected to be
[Step 6] Calculate the maximum matrix N Calculating  jmnroved via regulating of initial state uncertainties[2]D
the maximum/' satisfies the conditiofA4). For the sake  pqr the evaluation of a feedback performance against the
of simplicity, the structure of the matri¥ is limited as weighting matrix N, we designed three othéf.. DIA
(15) controllers. Here we focus on a design parameétexhich
makes a key role for a regulation of the plant stage 6,
wheren is a positive scalar number arddis a unit matrix is especially important if®, because it is an weight for a
of appropriate dimensions. This limitation on the positivedisplacement:(t) of the iron ball, hence three controllers:

definite matrixV is for easy evaluation after tH&., DIA  Kpra2, Kpras andKpya4 have been designed based on a
analysis. m Variation of#,. Numerical values of the design parameters

W, (s), W, 62 andp except ford; are invariant throughout
the control system design and experiments. A set of design
C. Hoo DIA Controller results is shown in Table I.
After some iteration in MATLAB environment, these The frequency responses of the four controlléts;; 41,
parameters are chosen by the above 6-step design procediiig; 12, Kpras and Kpras are shown in Fig. 3 by a

N =nl



solid line, a dashed line, a dash-dot line and a dotted linargern. This meansK p; 4, is expected to have the best
respectively. From Fig.3 and Table I, it can be seen thattaansient performance among the four controllers.
larger 6, supplies a controller with a higher gain at high

frequency and gives a larger ) . .
Remark 1: A much larger choice ofd; (6, > 1.1) For evaluation of the above expectation for transient

supplies a controller with a much higher gain at higf€SPonses, a step reference signal is added to the §ystem
frequency and with a much larger. But a time response &round 1.0[s], where the magnitude of the step signal
of the resulting controller shows a vibration in experingent 1S 1.0[mm] and the steady state displacement from the
6, = 1.1 is almost upper limit for a stable suspension.  €léctromagnet to the iron ball &0[mm].

Remark 2: A much smaller choice of; (6; < 0.3) Experimental results Wit pa1, Kpraz, Kpraz and
provides a controller with a lower gain not only at highffpras are shown respectively in Fig.4. All four setting

frequency but at all frequency range in Fig.3 and its timdmes with these controllers are almost_ the same among the
response in experiments shows a different property ffgm four responses, but overshoots are different between each

A. Transient Response

is in 0.3 < 6, < 1.1 case. other apd they depend on the magnitudenovaershloot
comparison among fouk{,, DIA Controllers for transient
TABLE | responses are summarized in Table Rlp;4; shows the
Hoo DIA CONTROLLERS AND THEIR PROPERTIES best transient performance among all four controllers in
Controller | 6, n Line style Table II.
in Fig.3 B. Disturbance Response
Kprai | 1.10 [ 5.256980 x 10~ | solid line Our concerns are not only in the attenuation of the initial
Kpraz | 0.80 | 5.223575 x 10~* | dashed line state uncertainty and the transient response, but alsein th
Kpraz | 0.50 | 5.202185 x 10~° | dash-dot line basic control performance for external disturbances. Eenc
Kpras |0.30 [ 5193773 x 10~% | dotted line a vertical step disturbance signal is added to the system

downward around 1.0[s] to evaluate disturbance rejection
responses, where the magnitude of the step-type distugbanc
force is 0.7[N], which is abou®5[%] of the steady-state

140 T T

KDI AL force.
----KDI A2

The results Withi pra1, Kpras, Kpraz andKpra4 are
shown in Fig.5. Fig.5 has a similar feature with Fig.4.
Overshoot comparison among fohf,, DIA Controllers
for disturbence responses are also summarized in Table Il. A
larger choice of: shows a smaller and regulated overshoot.

VII. CONCLUSION

We had formulated and solved th&., DIA control
problem which considers a mixed attenuation of disturbance
and initial-state uncertainty in the infinite-horizon case
without the orthogonality assumptions[8].

In this paper, a robustness property?of, DIA controls
. ‘ ‘ ‘ ‘ against initial-state uncertainty was discussed. We atedtl
10 10 107 10 10 10 10 the effectiveness of the proposed approach via the magnetic

Frequency [ ] suspension system. The role of the weighting maWixXor
the initial statexy, was definitely shown via experiments.
N is a measure of relative importance of the initial-state
uncertainty attenuation to the disturbance attenuation. A
larger choice ofN in the sense of matrix inequality order
means finding an admissible control which attenuates the
We have conducted control experiments to evaluate projritial-state uncertainty more.

Magni t ude [ dB]

Fig. 3. Frequency Responseshf. DIA Controllers

VI. EVALUATION BY EXPERIMENTS

erties of all four controllersKpra1, Kpras, Kpras and Experimental results showed the design parantgtand
Kpras. The iron ball at a standstill has been suspendetthe frequency responses of the, DIA controllers and the
stably with all four controllers. weight V of theH ., DIA problem correlate closely to each

A larger choice of» means finding an admissible controlother. A larger choice of; (6, > 1.1) supplies a controller
which attenuates the initial-state uncertainty more. Thiwith a higher gain at high frequency and with a larger
means the controller has a better transient response[3], [4. A larger n shows a smaller and regulated overshoot.
Table I and Fig.3 show that a largér corresponds a higher- Effectiveness of the proposel., DIA control has been
gain controller at high frequency which is equivalent to ahown via these experimental results.
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TABLE I

(3]

Fig. 5. Disturbance Responses
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