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Abstract 

 
In this paper, we propose a fast codebook 

generation algorithm for entropy-constrained vector 
quantization (ECVQ). The algorithm uses the angular 
constraint and employs a suitable hyperplane to 
partition the codebook and image data in order to 
reduce the search area and accelerate the search 
process in the codebook design. This algorithm allows 
significant acceleration in codebook design process. 
Experimental results are presented on image block 
data. These results show that our new algorithm 
performs better than the previously known methods.  
 
1. Introduction 
 

Vector quantization (VQ) [1],[2] has played an 
important role in numerous data compression systems. 
The key aspect of VQ is to design a good codebook 

which contains the most 
representative codewords and will be used by the 
encoder and the decoder. The encoding phase is 
equivalent to find the vector  
minimizing the distortion  defined as the 
Euclidean distance between the vector  and . The 
decoding phase is simply a table look-up procedure 
that uses the received index i  to deduce the 
reproduction codeword , and then uses  to 
represent the input vector . 
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Entropy-constrained vector quantization (ECVQ) 
[3] employs a modified cost measure using both the 
effective distortion of the signal and the expected 
length of the transmitted code. We define the cost 
function for encoding the vector x by the codeword  
as the Lagrangian function, 
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where  is a constant called the Lagrange multiplier 
allowing to control the rate-distortion ratio and  
is the length of the codeword . 
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The computational cost of finding the best suitable 

codeword in the codebook design and encoding 

imposes practical limits on the codebook size N. When 
N becomes larger, the computational complexity 
problem occurs for full codebook search. This has 
motivated the development of many fast nearest 
neighbor search algorithms [4]-[7]. These algorithms to 
reduce search complexity concentrate on narrowing the 
area of the candidate codewords for which distortion 
must be calculated. The well known acceleration 
methods for nearest neighbor search for ECVQ are the 
double annulus method [5] and Cardinal method [6]. 

This paper introduces a new algorithm to reduce the 
time complexity of codeword search for ECVQ. The 
proposed algorithm employs the projection angles of 
input vectors and codewords to a reference line in the 
signal space. It also uses a hyperplane partitioning rule, 
which separates the codebook and the training vectors 
into two parts, and searches in only one part according 
to the vector feature. The searching in this method 
speeds up the codebook design process with a 
negligible small sacrifice of encoding quality.  
 
2. Previous works 
2.1. Double annulus method 

 
Johnson et al. [5] introduced an excellent method 

called the double annulus method for ECVQ using two 
annular constraints, and tried to search only those 
codewords lying in their overlapped area. The first 
annulus is centered at the origin that is the first 
reference point. For a given input vector  of distance 

 from the origin and a current best codeword  
with Lagrangian distortion , any closer 
codeword to than  in the sense of the Lagrangian 
cost measure will satisfy the following relationships: 
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where |||  is the Euclidean distance of  from the 
origin, and  is the length of the codeword . 
Thus, for any codeword  satisfying (2) and (3), the 
hypersphere centered at  with radius   must  
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              then  belongs to the upper half-space. 
By using (7) and (8), The hyperplane H separates the 
training vectors into  lower and upper sub-groups. 
Moreover, it divides the codebook into lower and 
upper sub-codebooks. Searching for the training 
vectors in the lower sub-group is carried out in the 
lower sub-codebook and for the training vectors in the 
upper sub-group in the upper sub-codebook. Hence, 
this technique accelerates the search process. 
 

 
 
 
 

3. The proposed method 
3.1. Angular constraint 
 

 
 
 

As we mentioned in the last section, the first annulus 
constrains the search region by two inequalities (2) and 
(3). For any codeword  satisfying (2) and (3), the 
hypersphere centered at  with radius  must 
be fully contained in the annulus region defined by 

 and || . Additional another 
constraint in our method is as follows. 

Let l be a reference line in the search space and it 
contains a unit vector  on it. For any 
vector z, we define the angle between z and the 
reference vector u as: 
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Because the values of all vector components are 
nonnegative, then the angle 4 . The angle  is 
called the projection angle to the reference line l. We 
define another angle between the input vector x and the 
tangent from the origin to the hypersphere centered at x 

 
 
 
 

 
Figure 1. Geometrical interpretation of double 

 annulus method in 2-dimensional case. 
 
be fully contained in the annulus defined by 

 and || . 
The second annulus is centered at the farthest 

codeword from the origin, which is the second 
reference point, . By using the distance to this 

eword, the following inequalities can be defined:         
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The inequalities (2), (3), (4) and (5) constrain the 
distortion calculation to the codeword whose 
hypersphere is completely contained in the search 
region shown in Figure 1. Using two annulus 
constraints reduces the search area than using  one 
annulus constraint, but the double annulus method 
requires additional calculation  in every 
iteration during the codebook design process. 
 

),( ryxd

2.2. Hyperplane decision rule 
 

Most nearest-neighbor search techniques employ 
searching the best codeword in the same search region 
for all training vectors. We introduced a technique 
using a hyperplane  to divide the signal space into 
two half-spaces according to the vector feature in [7]. 
The chosen hyperplane  is perpendicular to the 
central line, which contains a unit vector 

on it. H contains the centroid of the 
training vectors  and its 
projection point on the central line  

, where  is the mean value of . The 
hyperplane H can be expressed as: 
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This hyperplane  is used as a decision function that 
discriminates to which half-space a given vector  
belongs by the following conditions: 
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Figure 2. Geometrical interpretation of angular  
constraint method in 2-dimensional case. 
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with radius , where  is the current best 
codeword, as: 
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By the same way, we can define the angle between any 
codeword  and the tangent from the origin to the 
hypersphere centered at  with radius  as: 

y
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Figure 2 shows the geometrical interpretation of the 
angular constraint method in 2-dimensional case. For a 
given input vector x with its projection angle  to the 
reference line l and the closest codeword  with its 
projection angle , the following inequalities 
should be satisfied: 
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The inequalities (2), (3), (12) and (13) constrain the 
distortion calculation to the codeword whose 
hypersphere is completely contained in the search 
region shown in Figure 2.  

 
3.2. Angular constraint with hyperplane  
       decision rule 
 

In this section, we develop the angular constraint 
method by using the hyperplane decision rule defined 
in section 2. L. Guan and M. Kamel [4] studied the 
distribution of some images data and found that most 
images data vectors are located around the diagonal or 
the central line. Hence, only a small portion of vectors 
will be near to the chosen hyperplane . Then the 
possibility for the hypersphere centered at the input 
vector to cross over this hyperplane is small. As a 
result, failure in best codeword   searching   becomes   
to   be   less   even   if searching is performed in either 
half-space dependent on the input vector feature. 

Now we depict the proposed method that uses the 
hyperplane  to separate both the training vectors and 
the codewords. The proposed method divides the 
training vectors into two sub-groups T  and T , and 
each sub-group contains the vectors satisfying (7) or 
(8), respectively. Also, it divides the codebook into two 
sub-codebooks , and Y  by the same equations. 
Searching for the training vectors in the sub-group T  
is carried out in the sub-codebook Y  and for the 
training vectors in the sub-group T  in the sub-
codebook , by using the constraints in the 
inequalities (2), (3), (12) and (13). Hence, the proposed 
method can reduce the search area and speed up the 
search process. The  proposed  method  may  be  easily  
understood with the geometrical interpretation for 2-
dimensional  case  in  Figure 3. This figure includes the  
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Figure 3. Geometrical interpretation of angular  
constraint with hyperplane decision rule 
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method in 2-dimensional case. 
 
proposed hyperplane . The hyperplane  divides 
the signal space into two half-spaces, and each half-
space includes its own training vectors and codewords. 

H H

 
4. Experimental results 
 
Experiments were carried on vectors taken from the 
USC grayscale image set. We used Lena image with 
size 512×512 and 256 gray levels. The image was 
divided into 4×4 blocks, so the training set has 16384 
blocks. The tested methods are full search (FS), double 
annulus (DA), Cardinal (CARD) [6], which is the most 
acceleration method for ECVQ, and angular constraint 
with hyperplane decision rule (ANGHP). Figure 4  
shows  the PSNR comparison between the FS  method 
and the ANGHP method for codebook sizes (32, 256 
and 1024) at various values of (0.5, 2, 4 and 8) with 
Lena image. Although the ANGHP method is a lossy 
design method, it has almost the same performance as 
the FS method at larger codebook size. For example, 
the performance of the ANGHP method is only 0.073 
dB less than the FS method at codebook size 256, and 
this value decreases by increasing the codebook size. 
There is a small degradation for smaller codebook size; 
for example, the ANGHP method has 0.141 dB less 
than the FS method at codebook size 32.  This is 
because the best codeword happens to be in the other 
half-space and is missed to be searched out. However, 
there may be a small failure possibility in the case of 
large codebook size and smooth codebook distribution. 
Figure 5 presents a comparison of the execution time 
(in seconds)  with  different  codebook sizes at = 0.5.  
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The timings were made on Pentium III (866 MHZ). 
The ANGHP method reduces the time around to 51% 
of the DA method and 65% of the CARD method. It 
can be seen that as the codebook size increases, the 
efficiency of the ANGHP method increases. This is an 
important merit of the ANGHP method, because design 
of a larger codebook requires more intensive 
computation. Figure 6 shows the total number of 
distortion calculations, which is a dominant figure of 
the computational complexity, for Lena image at = 
0.5. The total number of distortion calculations of the 
ANGHP method is around to 48% of that of the DA 
method and 63% of that of the CARD method. From 
those results, only a small number of distortion 
calculations are carried out in the ANGHP method. 

λ

 
5. Conclusions 
 

In this paper, we have proposed a new algorithm of 
accelerating the codebook design for ECVQ. The 
proposed algorithm (ANGHP) uses a new constraint 
called  angular  constraint. This  constraint employs the  

 
 
projection angles of the vectors to a reference line in 
the signal space. Moreover, the ANGHP method 
utilizes a hyperplane decision technique for separating 
the training vectors and the codebook into two sub-
groups, and carries on searching within one sub-group 
according to the vector feature. The obtained results 
show that the ANGHP method is more efficiency than 
the DA method and the CARD method. Furthermore, 
the performance of the ANGHP method is quite close 
to that of the FS method.  
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