Paley's inequality for the Jacobi expansions
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ABSTRACT

Let F(z) = Z:‘) _oanz" be an analytic function in the unit disc satisfying

2n
sup / |F(re'®)| df < oo.
0

O<r<1

1/2 A o . . . .
Then (Z;f:l |agk [2) ! < oo, which is familiar as Paley’s inequality. In this paper, an analogue of this
inequality with respect to the Jacobi expansions is established.

1. Introduction

The classical Paley inequality [4] says that if F(z) = Y o, a,z" belongs to H(D),
then

© 1/2
(Z |a2k|2> < CIFlm,
k=1

where H'(D) is the Hardy space on the unit disc ID which consists of the analytic
functions F(z) on ID satisfying

2n
IFlg = sup / \F(re)|d6 < oo,
0<r<1 JO

Let RH! be the real Hardy space consisting of the boundary functions f(f) =
lim,_,; RF(re®®) of F € HY(ID) and ||f||qg = || F|| with real F(0). Then, we restate
the Paley inequality: If f(6) = }.° __ c,e™ is in RH', then

© 1/2
{Z (lex + |c_2k|2)} < Cllf .

k=1

The aim of this paper is to establish an analogue of this inequality with respect to
the Jacobi expansions.
Let R%#)(6) be the Jacobi functions defined by

0 a+l/2 0 ﬂ+1/2
REP(9) = £*P p*P)(cos 0) <sin 5) (cos 5) ,

where P{*f)(x) is the Jacobi polynomial of degree n and of order o, > —1, and
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t@h) is the normalization coefficient; that is,
(wh) _ ((Zn +a+B+D)In+a+ B+ 1)I(n+1)\"?
n Tn+tat DI(n+pf+1) ‘

The system {R*#(0)}2, is complete and orthonormal in L2(0,7) with respect to
the ordinary Lebesgue measure df. For a function f(6) on (0, ), we have the Jacobi
expansion

[o o]

SO~ S dPREDO) o = [ 1ORE0)do
0

n=0

When (o, ) = (—1/2,—1/2) and (o, f) = (1/2,1/2), the Jacobi expansions are the
cosine and sine expansions, respectively:

1/2 1/2)
f(6) ~ \/>Zc( 172~ 1/z)cosn@

172-172) ﬁ Jo 1(6)48, n=0,
n \/%fo"f(o)cosnedo, n=12,... :
[e o]

£(0) ~ " M2 Dsin(n + 16, (1)

n=0

/212 — \/g / f(@)sin(n+1)0do, n=0,1,....
0

The Jacobi polynomials are explicitly represented in the form

=S (25 (7)) (5

Jj=0

where ( ) =a(a—1)...(a— j+1)/j!. Also, the polynomials are given by Rodrigues’
formula

(1= xy (1 +x) PP (x) = (2,,1)' ( ) {(1—x)™*(1 + x)"*+},

We refer to the work of Szegd [5] for the Jacobi polynomials.
Let H'(0,n) be the space defined by

H'(0,7) = {hlox : h € RH', even}.

We endow the space H!(0, ) with the norm |f|| 1oz = l|hllwyr, where f = hiqq).
Our theorem is as follows.

THEOREM 1. Let {m}>, be a Hadamard sequence; that is, nk+1 /nk =p > 1,
where k = 1,2,.... Let o, § = —1/2. Then, the Jacobi coefficients c(“ of a function

f € H(0,n) satzsfy 2
(Z |C(“B) ) < Clflarom- (2)

The proof of Paley’s inequality by the real method (see the book by Torchinsky
[6, Chapter XV, 4.3]) inspired us to obtain an inequality of Paley type for the Jacobi
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expansions. In our proof, the (H!, BMO)-duality identified by C. Fefferman will play
an essential role. The theorem will be proved in the next section. We add here, two
further remarks.

REMARK 1. The theorem with the space L!(0,7) instead of H!(0,7) does not
hold; that is, there exists a function f € L!(0,r) such that
o0
> " 1eeP)? = oo
k=1

We shall give its proof here only for the case a = f = 1/2; that is, the sine series
(1). Although a further argument is required, other cases can be proved similarly.
Suppose that ) >, |c§.}‘/ 21/2) | < oo for all f € L(0,n). Then, by the closed graph
theorem, we have Y Ich/>?2 < CIfII3,. Let £,(6) = jxao-1/oponti/n(®)
for j = 1,2,..., where x;(0) is the characteristic function of an interval I. Then,
IIfjllr =1 and the coefficients cf,ffz’” 2 of f ; satisfy cf:](z’l/ 2 5 @2/m) 2 sin(n + 1)8p
as j — oo. Therefore, we have

e8]
C > liminf )
7% k=0

On the other hand, there exists 6y € (0, n) such that the set of points {(n + 1)6p}«
is dense in (0,7) (see [2, Theorem 1.40] ), which leads to a contradiction.

2 22
1/2,1/2 .
ci,k{j /)‘ = - E 31n2(nk+ 1)6,.

k=0

REMARK 2. We note that H'(0,n) = {h € RH' : supph < [0, ]}, which follows
from the argument of [1, p. 608, the last line, to p. 609, line 9].

2. Proof of the theorem

We shall prove the theorem by using Lemmas 1 and 2, which will be stated
and proved in the next section. Since |c*)| = | Jo £(8)dO] < |If | 1o, it is enough
to show inequality (2) for a function f in H'(0,n) with Jacobi expansion f() ~
S c“PR®E)(9). Let {r}32, be a sequence such that 35, |r|> < co. Let gn(6),

where N = 1,2,..., be functions defined by

N
gn(0) =Y _nREP(0).
k=1

We extend the functions f(6) and gn(0), for N = 1,2,..., to the outside of (0, 7)
as 2n-periodic even functions. We may denote them by the same notations without
confusion. By the (H!, BM0)-duality, we have

T

3 f(0)gN(t9)d9‘ < Clign l+1If s,

where [|h|l. = sup;(1/|I|) f; |n(6) — h;| d6, the sup being taken over all intervals I of
the real line IR, where h; = (1/|I1) f, h(6) df, and where |I| is the length of I (see [3,
Chapter X] and [1]). Since

' i N
[ r0ax@ao=2 [ 1@gnerd0 =23 nce?,
- k=1
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if we show that

© 1/2
lgnlle < C (Z |rk|2) (3)
k=1

with a constant C independent of N and a sequence {ry}>,, then

N © 12
Zrkcﬁ,fﬁ) <C <E|rk|2> If et
po k=1

which implies that

N 1/2
(Z |c$::””12) < Clf .
k=1

Thus, letting N — oo, we get the desired inequality (2).
We now prove the inequality (3). Our task is to show that for every finite interval
I with |I| < &, there exists a constant ¢; such that

o 1/2
1 2
Wi /l|gN(0)—c1|do <cC (;ml ) , @)

where C is independent of I, N and a sequence {rc};>, (see [3, Chapter X, 1°]).
Further, we may assume that I < [0, 7] since gn(0) is even and 2n-periodic. Indeed,
let I =1, UI, =[—a,0] U[0,b] (0 < a< b < ), for example. Then

1 1 a b
L lgN(o)—c12|d0=—( [ tev@—cuiao+ | |g~(0)—cmde)
i J; i \Us A
2
<= [ len(®) —crldo.
2| J,

The other cases are similar.
We put I = [0y,0,] = [0,x]. If |I| > 1/ny, then

i i s 1/2
1 [tsv@nao < (1, [1enorao)

1 /[ 1/2 . P 1/2
s(m /0 |g~<e)|2d9) <nt/ (Zmz) :

k=1

Thus, it is enough to treat the case where there exists a positive integer M, such that
1/np41 < |I| < 1/np. We shall show inequality (4) with ¢; = gar(6p). We write

N
en(0) =gu®+ > nR&(®)
k=M+1

=gu(0) + Emun(0), say.
It follows that

1 1 1
m/IlgN(e)_gM(eo)|d9< m/xlgM(e)_gM(e°)|d0+m/,'EM’N(e)W- 5)

We consider the first term on the right-hand side. By Schwarz’s inequality and
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inequality (16) of Lemma 1 in Section 3, we have

M M
l2m(0) — gm(Bo)* < Y In* Y |R“A(6) — R&A)(9) |
k=1

k=1

<CY Iy (16— 6ol°)?,
k=1 k=1
where 6 = min{a+1/2,+1/2} if 0<a+1/2<lor0<pf+1/2<1,and d =1
otherwise. The second sum on the right-hand side is bounded by |2 "M r2 for
6 € I, which is dominated by C|I|*n3} since the sequence {n;} is a Hadamard
sequence with mgyy/me > p > 1, where C depends only on p. It follows from
[I|np < 1 that |gy(0) — gm(80))> < C Z,’:il |7¢|*. Thus, we have

M M

1 1 L\
m/1|gM(0)—gM(90)|d6 < (m/1|gM(g)_gM(90)| d0>

M 1/2
<C <z|rk|2) : (6)

k=1

We next evaluate the second term, (1/|I]) f, |Emn(6)] d0, on the right-hand side
of inequality (5). We have

1 2 1 N
(m/ 'EM’”‘G)"’") <7 / Evn©@PdO< Y Inilir Ui,
! ! kj=M+1

where
Ukj = ITII ‘ / REP(O)REP)(6) d@‘.
1
We shall show that there exist positive constants C and 0 < y < 1, such that
Uy, < Cy! (7)
for M+1<k< N and M + 1< j < N. Once this is done, we shall obtain

N
Y onelirUgy <€ Y In?,
k.j

k=M+1
and thus

. N 1/2
Wi /, |En,n(6)|d6 < C( > |rk|2> : ®)

k=M+1

We may assume, without loss of generality, that n; < ni. By inequality (20) of
Lemma 2 in Section 3, we have

é +
n; log™ (mk|11) 1
Uy <C —’) + + .
s {(nk mlll " ml]
The first term on the right-hand side is bounded by (1/p?)~/. For the second term,
we fix an arbitrary positive number v satisfying 0 < v < 1. Then

+ A k=
log™ melI| <C, <_Lﬂ) <C, (..1__)
IIlnk |I|n,~ ny p"
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since |I|n; > 1, for j = M+ 1,M +2,..., where C, depends only on v. The last
term 1/()I|n;) is bounded by (1/p)*~/. The inequality (7) is proved. Therefore, we
get inequality (8), which with inequality (6) completes the proof of the theorem.

3. Lemmas

In this section, we shall state the lemmas used in the proof of the theorem, and
give their proofs. We need some properties of the Jacobi polynomial:

th) = 0(n'’?), )
PP (—x) = (-1)"PF¥(x) (10)
for o, B > —1, and
|PiP(cos 0)| < O(n), (11)
|REA)(6)] < Cop (12)
for 0 < < m/2, a = —1/2. See [5, (7.32.6)]. The polynomial P{*#)(x) satisfies
dixP,fa’ﬂ)(x) = %(n +a+ g+ )Py, (13)

See [5, (4.21.7)]. We use the following estimate [5, (8.21.17), (8.21.18)]:

0\* 0\* I'n+a+1) / 6 172
in z (@B)(g) = N—*
(sm 2) (cos 2) P*@) =N = (sinO) J(NB)

1/2 () (n=3/2 il _
+{9 O(n=/%) ifen™ ! <0< n—e¢, (14)

6*+2 0(n%) if0<@<cn!,

212 p@h) 0 a+1/2 B+1/2 0(1)
a, in~ e = —
'/ nC P P(0) (sm 2) (cos 2) cos(NO +y) + et T (15)

ife/n<0<n—c/n of >—1, where
N=n+(a+p+1)/2, y=—an/2 —n/4,

and ¢ and e are fixed positive numbers.

The first lemma gives the order of the Lipschitz continuity of R%#(6) with respect
to n.

LEMMA 1. Let o, f = —1/2. Then there exists a constant C such that

IREP)(61) — REF)(62)] < Cn®|61 — 6, (16)

for 0 < 0; < 0, < m, where 6 = min{o + 1/2,+1/2} if 0 < a+1/2 < 1 or
0<pB+1/2<1, and 6 =1 otherwise, and C is independent of 0,0, and n.

Proof. Since P{*F)(—x) = (—1)"P#9(x), it follows that

R*P)(n — 0) = (—1)"R{F(©).

Using this, we have

REP(0:) — R#D(0:) = (~1)" (RP(m — 61) — RF(n — 62)) Y
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where n/2 < 0; < 6, < w), and
RiP(61) — Ri*)(6;)
= (R¥(0:) — Ri*P(n/2)) + (=1)" (RP9(n/2) - RFP(n — 62))  (18)
where 0< 0, <n/2< 6, <=
Thus it is enough to show inequality (16) for 0 < 6; < 0, < /2.
We first treat the case « +1/2 > 1 or « +1/2 = 0. It is enough to show that

|(d/d0)R¥9(6)| < Cn for 0 < 0 < m/2, where C is independent of 6 and n. We write
(d/d0)R“P)(9) = V| + V5 + V3, where

a+3/2 NG
Vi =—(n+a+ g+ )P pettithcos g) <sin 5) (cos —> ,

2
1 1 g\ %1/ 0\ A+3/2
P Z ) {aB) pap) in — el
Va 3 (oc + 2) tP PP (cos 0) (sm 2) <cos 2) ,

0\ *+3/2 NEL
Vy=—z (,B + = ) t@A) PP (cos 0) (sin 5) (cos 5) :

It follows from inequality (12) and 0 < 6 < =/2, that |V3| < C with C independent
of n and 6. For V;, we have

t(a9ﬁ)
Vi=—(m+a+p+ 1)—t(°":l’ﬂ+“ R,(,"‘_";l’ﬂ“)(cos 0),

and (n+a+ B+ 1)t /¢4 — O(n). Thus, by inequality (12), we have |V;] <

If a+1/2 =0, then the term V, does not appear. Thus we have inequality (16) in
this case. Let « + 1/2 > 1. For V,, we have |V;| < C6~1|R®P)(9)]. Since J,(z) ~ z*
(for z — 0) and J,(z) = 0(z~'/?) (for z — o) (see [5, (1.71.10), (1.71.11)]), it follows
from inequality (14) that

. { 0(n) + 0(n~2) ifnl <0< n/2,
2 —

O(ne+1205-112) 4 ge320(*+12)  if 0 < B .< n-. (19)

Thecase n ! << n/2isa precise estimate. For the case 0 < 8 < n~!, we have
O(n**1/29%-1/2) = O(n(nf)*~'/2) = O(n) since & — 1/2 > 0. The error term satisfies
6°H320(n*+1/2) = n=10((nf)*+1/2) = O(n~1). We get the desired estimate (16) for the
casea+1/2>1

Let 0 <a+1/2 < 1. We here put

0 a+1/2 0 B+1/2
R&A)(9) = ¢F) p(*P)(cos 0) (sin 5) <cos 5)
= tP(0)s(0)c(6) = R(0)
for simplicity. Let 0 < 0; < 6, < n/2, and write
R(61) — R(62) = t(P(01) — P(02))s(61)c(61)

+tP (62)(s(61) — 5(02))c(61) + tP(82)s(62)(c(61) — c(62))
=W+ W, + W;, say.

For W, and W3, the mean-value theorem allows us to follow the same proofs as for
V1 and V3, respectively. We deal with the term W,. By inequality (14) and the fact
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that (sin/2)**/2 € Lip,,,, the space of continuous functions with order o + 1/2
of Lipschitz continuity, we have

W, = {0 (n1205%(n0,)1/2) + O (/265201 *n=3/2) } |6y — 6,[*+1/2
2 {O (n1/202—¢(n02)°‘) +0 (n1/202—aeg+2na) }|01 _ 02|a+1/2

_ {0(02—(1—1/2) + 0((n02)—192—a—1/20%)}|01 _ 02|a+1/2 if n—! <6,<n/2
{O(na+l/2) +0 (n“+1/20§) }|01 . 02|a+1/2

if0< 6, <n
— O(na+l/2)|01 _ 62|a+l/2’

which completes the proof of Lemma 1.

LEMMA 2. Let o, = —1/2. Let I = [0, 04] be an interval with 0 < 6y < 0; < 7.
Then there exists a constant C independent of k, j and 1, such that

o, .\ 0 _
/ Rlﬁa,m(o)R;a,ﬁ)(g) dg‘ <C {(o1 — 6p) <,l€) + log*t k(8; — 6) + 1} (20)
[}

: k k
for j <k, where 6 =min{a+1/2,+1/2} if 0<a+1/2<lor0<p+1/2<1,

and 6 = 1 otherwise. The notation log* u’ means that log™ u = logu for 1 < u and
logtu=0foru<1.

Proof. We see that it is enough to show inequality (20) for the case I = [0, 7/2].
Let M be the greatest integer satisfying 2nM /K < 6;—8y, where K = k+(a++1)/2,
and let &, = 0o + 27m/K, for m=0,1,2,..., M, and &)1 = 0;. We have

0 M St
/ nga,ﬂ)(o)R;.a,ﬂ)(G) do = Z {/ (Rﬁa,ﬁ)(e) _ R;%ﬂ)(ém)) Rl(ca,ﬂ)(e) 46
[ Em

0 m=0

Em+1
+ R, /é R,(f"ﬂ)(e)de}

M
= Z (X1 +xD3,  say.

m=0

For X{V, applying Lemma 1 and inequality (12), we have

€m+l 2 i\
X0 < cﬁ/é 10— Enl® d < C (%) Emtt — Em),
which leads to

M 271:] é
Sui<c (%) -0 e

m=0

For X(()z) and X2, we apply inequality (12). It follows that
Em+1 277:
1X@| < c/ 49 < C3, forp=0,M. (22)
Em

For X {2),. ..,Xﬁ)_l, we use inequalities (12) and (15), together with the fact that
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ki:"“ cos(K 0 + y)dé = 0. We have

§m+l
|xP|<c l/ (cos(K@ +9)+ %;)) d0|
é”l

€m+l
< Ck-! /{ 548 = Ck™ (log & — log &),

which implies that
M—1
3 12| < Ck!(log &u — log &) < Ck~'log M
m=1

< Ck~!log* f—n(el —60) < Ck™"(log* k(8y — o) + 1). (23)

Therefore, by inequalities (21), (22) and (23), we have inequality (20), which completes
the proof of the lemma.
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