Superresolution of multi-frequency signals using
multilayer neural network supervised by
backpropagation algorithm
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ABSTRACT Multi-frequency signal classification is discussed using multilayer
neural networks supervised by the backpropagation algorithm. Several novel
properties of the neural network are provided. First, the neural network ¢an
detect the frequencies, which cannot be represented by the discrete Fourier
transform (DFT). Second, the neural network can be realized with real co-
efficients. DFT, however, requires the complex coefficients exp(+ j w nT/N).
Finally, the number of the inner products of the connection weights and the in-
put signal samples is sufficiently smaller than that of the output samples,
required in digital filters with real coefficients.

I INTRODUCTION

Advantage of multilayer neural networks supervised by the backpropagation
(BP) algorithm is to extract common properties, features or rules, which can be
used to classify data included in several groups [1]. Especially, when it is
difficult to analyze the common features using conventional methods, the
supervised learning, using the known input and output data, becomes very
useful. This application field includes, for instance, pronunciation of English
text, speech recognition, image compression, sonar target analysls, stuck mar-
ket prediction and so on [2]-[6].

In this paper, classification performance of the neural networks is discussed
based on frequency analysis. Multi-frequency signals are employed for this
purpose. Since the number of the input units in the neural network is finite,
sampled data are taken into account. In order to analyze frequency components
of the discrete signals, discrete Fourier transform (DFT) is usually used. In
this case, the sampling points on the frequency axis discretely locate.
Therefore, the representable frequencies are limited by the sampling frequency
and the number of samples.

I MULTI-FREQUENCY SIGNALS

Multi-frequency signals are defined by

R
Xpm(n) = = ‘AmrSIH(w prNT+d mr), N=1~N, ©pr=27fpr (1)
re

M samples of Xpm(n), m=1~M, are included in the pth group X, as follows:

Xp = {Xpm(n), m=1~M}, p=1~P (2)



P signal groups, X, p=1~P, are assumed.
T is a sampling period. The signals have N samples. In the same group, the
same frequencies are used.

FF = [fﬂlv fﬂz’ coey fPR] Hzo p=1~P (3)

Amplitude An, and phase ¢ n, are different for each frequency. They are
generated as random numbers, uniformly distributed in the following ranges.

0<Amrs1 (4a)

Il MULTILAYER NEURAL NETWORK

3.1 Network Structure

A two-layer neural network Is taken into account. N samples of the signal
Xem(n) are applied to the Input layer in parallel. The nth input unit receives
the sample at nT. Connection weight from the nth input unit to the jth hidden
unit is denoted by wn;. The input of the jth hidden unit is given by

N—1
nety = £ WnsXpm(n) (5)
n=0

The input net; is transferred through the following sigmoid function.

1 .
T(net;+6 1) (6)

ys = f(nety) =
1+e

Letting connection weight from the jth hidden unit to the kth output unit be
W;x, the input of the kth output unit is given by

J

nety = §' WinYs (7)

-J
Furthermore, the final output is obtained by
¥x = f(nety) (8)

The number of output units is equal to that of the signal groups P. The
neural network is trained so that a single output unit responds to one of the
signal groups.

3.2 Training and Classification
The set of signals is categorized into training and untraining data sets, X+p
and Xup, respectively. Their elements are expressed by X—tpm(n) and Xuem(n).

Xp = [Xre, XUp] (9)
Xrp = {XTpm(n), m=1~Mr} (10a)
Xue = {Xupm(n), m=1~My} (10b)

The neural network is trained by using X-pm(n), m=1~Ms, for the pth group.
After the training is completed, the untraining signals Xxuem(n) are applied to
the neural network, and the output is calculated following Egs.(5)-(8). For the
input signal Xupm(n), if the pth output y. has the maximum value, then the
signal is exactly classified. Otherwise, the network fails in classification.
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IV SIMULATION OF MULTI-FREQUENCY SIGNAL CLASSIFICATION

4.1 Two-Groups with Three Frequencies
(Case-1.1) Alternate Grouping of Frequencies
Two frequency sets are determined as follows:

Fi =11, 2, 3] Hz
Fz = [1.5, 2.5, 3.5] Hz

The sampling frequency 1 -
is chosen to be 10 Hz, that ost
is T=0.1 sec. The number of I
samples is N=10. Therefore, Tl l l [® 3
the signals are sampled in 05} 1
the range 0= nT<1 sec, 1 )
and n=0~ 9. The training 0 5 10
signal sets for each group 1
include 200 signals, that
is Xrem(n), m=1~ 200 for
p=1 and 2. 3600 signals are
used for the untrained

:

X11(n)

05¢

T ;ll

X12(n)

os}
signal sets, that is

Xupm(n), M=1~ 1800 for p=1 T s 10
and 2.

1

Figure 1 shows examples
of the signals. The o5t I
?

frequencies, Included in § | 11,
Xim(n) and Xzm(n), are X l ll
located alternately. The 05p

observation interval and A5 . S

the number of samples are
limited. Therefore, it is
very difficult to distin-
guish Xim(n) and Xam(n),
based on their waveform.

The training by BP algorithm can converge with a
single hidden unit, that is a single-layer network.
Figure 2 illustrates the connection weights from the
input units to the hidden unit.

" Since the training converged, 100% of the training
signals Xrpm(n) were successfully classified. For the
untraining signals, the classification rate is 99.5 %.
Thus, highly exact classification can be achieved.

(Case-1.2) Similar Frequencies
The following similar frequencies are employed.

Fl = [1- 20 3] HZ
F= =[1.1, 2.1, 3.1] Hz
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Fig.1l Examples of multi-frequency signals
Xim(n) and xzm(n) in Case-1.1.
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Since the frequencies In both sets are very close to each other, it is more
difficult to distinguish the signals based on their waveform. The BP algorithm
can converge, and the accuracy for the untraining signals is still 99.5%.

4.2 Two-Groups with Five Frequencies
(Case-2.1) Training Signals with 10 Samples
The frequencies are chosen to be

F, = (1, 1.5, 2, 2.5, 3] Hz
F= = [1.25, 1.75, 2.25, 2.75, 3.25] Hz

The number of samples is N=10, and the sampling period is T=0.1 sec. The
observation interval is 0<nT<1 sec, and n=0~ 9. The training did not
completely converge. Percentages of exact classification are 75.3% and 81.5%
for Xrim(n) and X+=m(n), respectively. For the untraining signals xuim(n) and
Xuam(n), the accuracie# are a little decreased to 71.8% and 79%, respectively.

(Case-2.2) Training Signals with 15 Samples
The frequencies are chosen to be

Fi =11, 2, 3, 4, 5] Hz
F= = [1.5, 2.5, 3.5, 4.5, 5.5] Hz

The number of samples is N=15, using T=1/15 sec. Therefore, the sampling
points locate in 0=nT< 1 sec, and n=0~ 14.

The training can converge using a single hidden unit. Thus, 100% classifica-
tion is possible for X+im(n) and X+z=m(n). Furthermore, 99.9% of the untraining
signals can be classified. Comparison between Cases-2.1 and 2.2 will be
discussed in Sec.V.

4.3 Three or Five Frequency Sets
(Case-3.1) Three Frequency Sets
The following frequency sets are used.

F, = [1, 2, 3] Hz
F= = [1.33, 2.33, 3.33] Hz
Fa = [1.67, 2.67, 3.67] Hz

The number of samples is N=10, and the sampling period is T=0.1 sec. X+ and
Xr= have 200 signals each. Totally, 5400 signals are used for the untraining
data sets Xui: and Xv=.

The number -of the hidden units is varied from 1 to 4. In any case, the
training did not completely converge. The classification accuracies are 91.2%,
98.0% and 99.5% for 1, 2 and 4 hidden units, respectively. For the untraining
data, the accuracies are 90.1%, 97.0% and 98.6%, respectively. More hidden units
did not improve the classification rates.

(Case-3.2) Five Frequency Sets with 10 Samples
The following frequency sets are chosen.

Fl = [10 2v 3] Hz
Fz =[1.2, 2.2, 3.2] Hz
Fa = [1.4, 2.4, 3.4] Hz



Fa = [1.6, 2.6, 3.6] Hz
Fs = [1.8, 2.8, 3.8] Hz

The sampling period is T=0.1 sec, and Table 1 Classification rates [%]
the number of samples is N=10. 200 In Cases-3.2 and 3.3.
training signals are used for each group, CASE Three hidden units | Eight hidden units
that is Xvpm(n), m=1~ 200 for p=1,2,3,4 Xrp | Xvp | Xrp [ Xu,
and 5. 1800 untraining signals are i) %80 | 67 | 980 | 963
examined for each group, that is Xupm(n), ? 7.0 T0.9 79.6 76.3

3 65.0 716 98.5 98.1

m=1~1800 for p=1,2,3,4 and 5. 32 1 k| 680 | 736 | so0 | sr2

The training did not completely R 77.0 73.7 98.0 97.8
converge. The number of hidden units was Mean | 76.2 7.3 92.6 90.9
varied from 1 to 8. Percentages of the R 99.5 98.0 99.5 98.4
exact classification, with 3 and 8 hidden 13 82.5 84.3 99.5 98.5 -
units, are 1listed in Table 1. By | ;. | B [ 95 [ 922 | 90 | 901

Fy 94.0 90.3 99.0 97.2
Fg 99.5 99.1 100.0 99.6
Mean 93.4 92.8 99.4 98.6

increasing hidden units, the
classification rates can be improved. 5~
8 hidden units are appropriate.

(Case-3.3) Five frequency Sets with 20 Samples
The following frequency sets are taken into account.

F, =11, 4, 7] Hz
Fz = [1.5, 4.5, 7.5] Hz
Fa =[2, 5, 8] Hz
Fa = [2.5, 5.5, 8.5] Hz
Fs = [3, 6, 9] Hz

The sampling period is 0.05 sec, and the number of samples is 20. Thus, the
sampling points locate in 0=nT<1 sec, and n=0~19.

The classification rates are also listed in Table 1, Table 2 Minimum Euclidean
which are Improved from Case-3.2. Comparison between distance in Case-1.1.
Cases-3.2 and 3.3 will be discussed in Sec.V. Signals | Minimum Distance
Xupm(n) | X1 X2
a1 | 0.167 0.184
a3 | 0127 | o0.182

4.4 Estimation Based on Euclidean Distance
Similarity between the training and untraining

signals is evaluated using Euclidean distance as aos | 0067 | 0184
follows:. xo. | %] 0148 | o110
o LN “los | 018 | 014
Dra(m,m') = {T T (XTem(D) - Xram (0)F} 72 (11) bl 014 | 0257

n=1 b | 0114 | 0.084

by | 0.130 0.190
e | 0123 0.078
¢ | 0130 0.089

‘Table 2 shows the above Euclidean distance. a; and ¢,
indicate some of Xuim(n) and Xuzm(n), exactly

classified, respectively. b; and d; correspond to some es | 0219 0.370
of Xuim(n) and Xu=m(n), not exactly classified, e | 0100 | 0130
respectively. The signals, having the minimum distance Xvs e | 0.118 0.123.
to the above signals, were searched for from X+, and dy | 0.167 0.138
X1=. As a result, Table 2 shows the minimum Euclidean dy | 0192 | 0.228

dy | 0.105 0.110

distance between a,;, by, c;, d; and some of Xrpm(n).
The Euclidean distance between Xuem(n) and Xrem(n) in the same group is not
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always smaller than that between Xupm(n) and Xrqm(n), P# q, in the different
groups. Furthermore, the minimum distances for a,, c; and b,, d, are almost the
same. These results indicate that the multi-frequency signals Xxim(n) and xzm(n)
cannot be distinguished based on the Euclidean distance.

V COMPARISONS BETWEEN NEURAL NETWORK AND DFT

5.1 Observable Frequencies by DFT

Generally speaking, multi-frequency signals can be analyzed by Fourier
analysis. For the sampled data, DFT is used [7].

As defined in Sec.2.1, the sampling frequency is given by fs = 1/T. The
sampling points on the frequency axis, that is representable frequency points,
are given by i1fs/N Hz, i=0,1,2,.., which satisfy 0<ifs/N< fs/2 lz.

5.2 Limitation of Frequency Detection by DFT
Table 3 summarized the

observable frequencies, Table 3 Classiflcation rates [%) for each case,
signal frequencies, the num- with the suitable number of hidden units.
Observabl i
ber of hidden units and A | Obervble Frequency Sets dec.len Accuracy|%)
percentages of exact Frequencies Units | Xrp | Xu,
classification for each case. F=[1,23 100 | 99.8
11} 01234 | b 115,25,3.5) 1
From this table, all F"‘ 1'2'3']' : 100 | 945
=
frequencies cannot be | 12 | 01,234 F; = :1’1 ‘a1.31) 1 m ::‘;
represented by DFT. This ' Rl 1'.5, 225 3 . TR
2.1 ’ ) Loy » .
means that the classification 01234 | b = 11.25,1.75,225,2.75,325) | ° | ses | 23
problems discussed in this ag | 01234 [A=1123,43 100 | 99.9
paper, cannot be inherently ) 56,7 | F» =1.5,2.5,3.5,4.5,5.5] 1 100 | 999
solved by DFT. Some examples F =(1,2,3 99.0 | 93.5
to demonstrates this fact | 31 | 01234 |F=[133,233,3.33] 4 |995] 988
are shown in the following. ?=l:";7'3"°7'3'67) 100 | 99.6
Figure 3 shows examples =123 98.0 | 963
" itud of Fy=[1.2,2.2,3.2) 79.5 | 75.3
or amplitude responses 32 | 01234 | F=[14,24,34) 8 |985]| 81
xTPm(n)v p=1(°)' 2(.)0 3(X). in }“:(1_5.2.6’3_6] 89.0 | 87.2
Case-3.1. XTim(n) can be F; =(1.8,2.8,3.8) 98.0 | 97.8
roughly recognized, because F =[1,4,7) 99.5 | 98.4
its frequencies are 01234 | P25 [1.5,4.5,7.5) 99.5 | 98.5
: 33 % I R =12,5,8) 8 |o9a0} 99.a
observable. On the contrary, 58789 | o s a5
X1zm(n) and' Xcam(n) cannot F:::a'c' o ) ’m’ :;'z
be distinguished due to lack — .

of their frequencies.
Furthermore, in Case-1.2, the signals Xxuim(n) are regenerated by setting
their amplitude for each frequency to 50% of that of Xuam(n), as follows:

R
Xuim(n) = 0-521A=msln(w 1eNT+ @ 1mr) (12a)
Pem
R
Xuzm(n) = I Azmrsin(w z2+nT+ ¢ 2mr) (12b)

re=1

Figure 4 shows the amplitude responses for both signals obtained by DFT. From
this result, Xu=m(n) may be classified into the first group X,, because its
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Fig.3 Amplitude responses for Xrpm(n), Fig.4 Amplitude responses for Xuem(n),
p=1, 2, 3, denoted with o, », x, p=1, 2, defined by Egs.(12a) and (12b),
respectively. ‘ denoted by x and o, respectively.

frequency components at 1, 2 and 3 Hz are greater than those of Xuim(n). On the
contrary, the neural network can distinguish these signals with 99.5% accuracy.

5.3 Performance of Neural Network

As discussed in the previous sections, the neural network can classify the
multi-frequency signals, whose frequencies are not completely represented by
DFT. The classification performance of the neural network is also depend on
what percentage of the frequencies can be observable as shown in Table 3.

In Case-2.1, 1.5, 2.5 Hz in F, and all frequencies in Fz cannot be represented
by DFT. As a result, the percentages of classification is not so high. On the
other hand, in Case-2.2, all frequencies in F, can be represented by DFT. There-
fore, the accuracies are drastically improved. In Case-3.2, F, is only
representable. On the other hand, in Case-3.3, F,, Faz and Fg can be
represented. Therefore, the classification rates are improved.

Although performance of the neural network still depends on the observable
frequencies, it is not necessary to represent all frequencies. About 30~50% of
the frequencies are sufficient to achieve high classification rates. This point
should be noted as essential difference between the neural network and DFT.

The number of hidden units, required to obtain high accuracy, is
proportional to the number of the signal groups. That could be expected
following the discussions in [8].

5.4 Design Problem of Real Coefficients

There is another typical difference between the neural network and DFT. The
latter needs complex coefficients exp(+ jw nT/N). On the other hand, the neural
network can be realized with real coefficients. One example is shown here.

In Case-1.1, the number of samples is increased to 20, while the same sampling
period T=0.1 sec is used. Therefore, the signals are sampled in the interval 0<
nT< 2 sec, at every 0.1 sec. The frequency points, which can be represented by
- DFT, become 0, 0.5, 1, ..., 4.5 Hz, which include all frequencies in F, and Fa.

After the neural network was trained, the amplitude and phase responses of
the connection weights were calculated through DFT. The frequency components
in the first group xim(n) can be emphasized, and those of the second group
X=m(n) are suppressed. This amplitude response could be expected based on DFT
analysis. However, there is no direction on the phase response. Different phase
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response was used to generate another connection weights. These weights,
however, did not work well. The classification accuracy Is about 63%. Because
the problem is a choice between two things, 63% is very low accuracy. Thus, the
phase response obtained by BP algorithm has significant meaning, which cannot
be designed by the conventional methods.

5.5 Filtering Method

Frequency component extraction with real coefficients is also possible using
digital filters [7]. The digital filters can continuously sweep the frequency
axis. The output signal is obtained through‘' the convolution sum of the input
signal and the impulse response of the digital filter. The amplitude response of
the transfer function can be designed so as to amplify one of Xpm(n) and to
suppress the other. However, in order to remove effects of the phase response,
the mean square of y(n) iIs required over N samples.

The neural network, trained with a single hidden unit, requires only one
inner products of the input signal and the connection weights. However, the
digital filters cannot detect the frequency components with one output sample.

VI CONCLUSIONS

The multi-frequency signal classification problems have been discussed using
the multilayer neural network supervised by BP algorithm. Several novel
properties have been provided. First, the neural network can classify the sets
of frequencies. Some of them cannot be represented by DFT. Second, the neural
network can be realized with real coefficients. DFT needs the complex
coefficients exp( * jJ w nT/N). Finally, the number of the Iinner products,
required in the neural network, is sufficiently smaller than that of the output
samples, required in the digital filters.
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