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[PAPER

Numerical Performances of Recursive Least Squares
and Predictor Based Least Squares: A Comparative

Study

SUMMARY The numerical properties of the recursive least
squares (RLS) algorithm and its fast versions have been exten-
sively studied. However, very few investigations are reported
concerning the numerical behavior of the predictor based least
squares (PLS) algorithms that provide the same least squares so-
lutions as the RLS algorithm. This paper presents a comparative
study on the numerical performances of the RLS and the back-
ward PLS (BPLS) algorithms. Theoretical analysis of three main
instability sources reported in the literature, including the over-
range of the conversion factor, the loss of symmetry and the loss
of positive definiteness of the inverse correlation matrix, has been
done under a finite-precision arithmetic. Simulation results have
confirmed the validity of our analysis. The results show that three
main instability sources encountered in the RLS algorithm do not
exist in the BPLS algorithm. Consequently, the BPLS algorithm
provides a much more stable and robust numerical performance
compared with the RLS algorithm.

key words: adaptive filter, RLS algorithm, fast RLS algorithm,
stability, finite-precision implementation.

1. Introduction

The recursive least squares (RLS) and the fast RLS al-
gorithms are two well known approaches for solving
the exact least squares solution in the transversal adap-
tive filters. Unfortunately, both algorithms suffer from
the numerical instability problem under finite-precision
implementations|[1]-[9]. In the RLS algorithm, a well
known example is the loss of symmetry and the loss
of positive definiteness of the inverse correlation ma-
trix[1]-[4]. This causes an explosive divergence. On
the other hand, the instability of the fast RLS algo-
rithms is mainly produced by a hyperbolic rotation
(causing the eigenvalues to go out of the unit circle)
that has to be operated on the backward predictor in
order to obtain the recursive equations for computing
the gain vector [5],[6].

In the fast RLS algorithms, however, if we assume
that the recursions involve both order- and time-update,
then the least squares solution can be obtained by us-
ing either forward or backward predictor. Therefore,
the stable structures of both forward and backward pre-
dictors are remained. This leads to the algorithms we
called the predictor based least squares (PLS) that in-
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clude the forward PLS (FPLS) and the backward PLS
(BPLS) algorithms.

Although the PLS algorithms can be easily derived
from the fast RLS algorithms, very few investigations
concerning their numerical properties are reported in
the literature. In Ref.[10], we have introduced the PLS
algorithms and investigated preliminarily their numer-
ical performances. It has been shown that the PLS al-
gorithms perform more stable than the RLS algorithm
when the order of the adaptive filter is large and the
forgetting factor is small. Furthermore, since the sym-
metric property of the input correlation matrix is ex-
ploited, the computational load of the PLS algorithms
is less than 50% of that of the RLS algorithm. Nev-
ertheless, the comparison of the numerical performance
of the PLS and the RLS algorithms presented there was
mainly based on the simulation results rather than the-
oretical analysis. Moreover, the simulations shown in
Ref. [10] were carried out by using a 32-bit floating-
point arithmetic, the numerical behavior of the PLS al-
gorithms under finite-precision implementation remains
unknown.

In this paper, we present a much refined compar-
ative study on both the RLS and the PLS algorithms.
Since the FPLS and the BPLS algorithms behave a very
similar numerical performance, only the BPLS algo-
rithm is dealt with in this paper. The results shown in
the paper are also valid in the FPLS algorithm. First,
the RLS and BPLS algorithms are given in Sect.2 for
convenience of analysis. Some parameters that have the
same meanings in both algorithms are explained. In
Sect. 3, a comparative study on the numerical perfor-
mances of the RLS and the BPLS algorithms is ad-
dressed. Three main instability sources encountered
in the RLS algorithm, including the overrange of the
conversion factor, the loss of symmetry and the loss of
positive definiteness of the inverse correlation matrix,
are taken into account. The effects of these instability
sources on both algorithms are analyzed under infinite
and finite precision implementations. The validity of
our study is confirmed through computer simulations
in Sect.4. A floating-point arithmetic with a variety of
word-length is used for simulations. Finite-precision
arithmetic error effects on both the RLS and the BPLS
algorithms are investigated. Finally, the conclusion is
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made in Sect. 5. The derivations of some results shown
in Sect. 3 under a finite-precision arithmetic are given in
Appendix.

2. Recursive Least Squares and Predictor Based
Least Squares Algorithms

Even though the RLS and the PLS algorithms provide
the same exact least square solutions, the basic principle
for these two algorithms is entirely different. The RLS
algorithm is derived from the so-called matrix inversion
lemma. The PLS algorithms, however, are based on the
relations between the predictors and the gain vector.
Nevertheless, these two algorithms share some common
features. For example, both algorithms require O(M?)
computations and have the same structure that is suited
for the transversal adaptive filters. This structure is fea-
tured by the tap-weight vector being updated by using
the gain vector. In this section, we write these two algo-
rithms and explain the common parameters shared by
them.

The difference between the RLS and the BPLS al-
gorithms is the method for computing the gain vector.
In the RLS algorithm, the time-update recursive equa-
tions for computing the gain vector is given by

A
Tm(n) = A+ ul (n)Prp(n— Dupy(n) ()
Kas(n) = 37 ()P — Dy (n) @
Pa(r) = 5 (I~ kne(m)uly(n) \Pastn — 1) (3)

where vps(n) is the conversion factor (or the angle vari-
able called in some references), kjs(n) is the gain vec-
tor, Pas(n) = &3/ (n) is the inverse correlation matrix,
upr(n) is the input vector, Ips is the M-by-M identity
matrix, A is the forgetting factor and M is the order of
the adaptive filter.

The BPLS algorithm for computing the gain vector
is given by the following time- and order-update recur-
sive equations:

Ym(n) = cﬁ(n — Duy(n) + u(n —m) 4)
Bn(n) = ABp(n — 1) + ym(n)¥2,(n) (5)
Ym1(n) = %%(n) (6)
cm(n) = cpn(n — 1) — Y (n)ky(n) )]

Knaa(n) = | F74"|

Ym(n)tPm(n) [cm(n) ]

T B 1

()
where 9,,(n) is the backward a priori prediction er-
ror, B,,(n) is the minimum power of the backward pre-
diction error, v, (n), kn,(n) and u,,(n) have the same
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meanings as those in the RLS algorithm but with a vari-
able order of m.

As soon as the gain vector kys(n) is available,
the adaptive filtering, which is common for both al-
gorithms, can be implemented by using the following
equations:

o(n) = d(n) — wis(n — Dup(n) ©)
wym(n) =wy(n—1) + kpy(n)a(n) 10)

where a(n) is the a priori estimation error, d(n) is the
desired signal, wys(n) is the tap-weight vector of the
adaptive filter.

To initialize the RLS algorithm, we set P/(0) =
6Is, 6 1s a small positive constant. The initial condi-
tions for the BPLS algorithm are as follows:

At time n = 0, set ¢,,(0) = 0, B,,(0) = 6§,
k,(0) =0,, and +,,(0) =1, where m = 1,2,--- M — 1.
At each iteration n = 1, generate the first-order variables
as follows:

k() = o (11)
n(n) = m;fl’(‘n_) 2 (12)

where ®;(n) is the first-order of the correlation matrix
that satisfies

®,(n) = A®y(n — 1) + u%(n) (13)

where ®,(0) = 6.

It is not difficult to see that the parameters, which
have the same meanings and are shared by both the
RLS and the BPLS algorithms, are the conversion fac-
tor yps(n) and the gain vector kps(n).

3. A Comparative Study

Extensive investigations have been made concerning the
numerical behaviors of various RLS algorithms [1]-[4].
These algorithms may be called differently but essen-
tially consist of the same recursive equations as shown
in Egs.(1)-(3). Verhaegen studied several conventional
RLS (CLS) algorithms and concluded that the numer-
ical instabilities of these algorithms are mainly due to
the loss of symmetry and the loss of positive definiteness
of the inverse correlation matrix[2],[3]. Another insta-
bility source is the overrange of the conversion factor as
reported in Ref.[4].

There are certainly other instability sources, such as
stalling phenomenon which means that the filter stops
adaptation, and the lack of consistent excitation of the
input. These instability sources, however, may not be-
long to the algorithms or can be overcome by adjusting
some parameters in the algorithms. For example, the
stalling phenomenon can be well solved by decreasing
the forgetting factor. Therefore, only three main insta-
bility sources as mentioned above are dealt with in this
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section. A comparative study of these instability sources
in the RLS and the BPLS algorithms is presented. Both
infinite and finite precision arithmetic are taken into
account for the analysis.

3.1 Conversion Factor
3.1.1 RLS Algorithm

In infinite-precision arithmetic, with the inverse correla-
tion matrix Ps(n — 1) assumed to be positive definite,
we have uZ (n)Py(n — Lup(n) > 0. According to
Eq. (1), the conversion factor yps(n) takes on the value
between 0 and 1.

Under finite-precision implementation, however,
some round-off error may be introduced in Pps(n — 1)
so that

Pl (n—1)=Pu(n—-1)+Ap(n—1). (14)

where (x)? denotes the quantized value of ().
Substituting Eq. (14) into Eq. (1) and using the re-
1 A 1 A

i (R B () RIS

lation
T

we get

1y () = var () (1700 ()l () A (1 = T)uans ()

+0(A%) (15)

If Ap(n — 1) loses its positive definiteness so that
ul; (n)Ap(n—1)up(n) < 0, then according to Eq. (15),
v3;(n) may take on the value larger in magnitude than
unity. On the other hand, if Ap(n —1) remains positive
definiteness but uZ;(n)Ap(n — L)up(n) is large com-
pared to A, it is possible now for v3,(n) to become a
negative value. When these two cases happen, the RLS
algorithm exhibits explosive divergence[4].

3.1.2 BPLS Algorithm

The conversion factor in the BPLS algorithm involves
only an order-update recursion as shown in Eq. (6). Ex-
panding this equation, we can write

Ty ABi(n—1)
7m+1(n) - 11 Bz (n) a1 (TL) (16)
From Eq.(5) and Eq.(12), 0 < 222 =1 1 114

B;(n)
0 £ v1(n) £ 1. So the following relation can be ob-
tained.

0< Ym41(n) S ym(n) £ <m(n) £1 a7

From the derivation shown in Appendix, Eq.(17)
is also valid in finite-precision implementation, Conse-
quently, the conversion factor in the BPLS algorithm
will never be negative or exceed unity.
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3.2 Symmetric Property
3.2.1 RLS Algorithm

Assuming the arithmetic precision to be infinite, we
have ul; (n)Py(n—1) = (Pp(n — l)uM(n))T. So the
computation of Eq. (3) can be simplified. Under finite-
precision implementation, however, taking advantage of
this simplification will destroy the symmetric property
of Pp(n) as analyzed in Ref.[3]. The error model,
which is obtained by propagating the single error shown
in Eq.(14) into Eq. (3), can be expressed as [3]
1

Ap(n)= X(IM - ky(n)ujy(n)Ap(n —1)

s = kg ()udy ()T + 3 (Ap(n — 1)
~AF(n = 1))u (WK (n) + 0(A3) (19)

The second term on the right side of Eq. (18) is called
the non-symmetric error. It was shown that this error
can be compensated by computing Py(n — Lup(n)
and uf; (n)Pys(n — 1) separately [3]. However, even so
doing, the symmetry of Py(n) is not guaranteed. The
reason is twofold. First, the analysis shown in Ref.[3]
considered only the propagation of the single error. Sec-
ond, overcoming the loss of symmetry does not mean
that the loss of positive definiteness can be prevented.
Experiments show that the symmetry of Pps(n) may not
be preserved if the loss of positive definiteness occurs.

3.2.2 BPLS Algorithm

P,.(n) in the BPLS algorithm is inherently symmetric.
This can be shown by

k(1) = Pr(n)um(n) = (kI (n))"
= (W% ()Pm(n)” (19)

m

Apparently, Eq.(19) is also true in finite-precision im-
plementation.

3.3 Positive Definiteness

The positive definiteness of Pys(n) can be defined as
ujy; (n)Par(n)up(n) > 0 (20)

where ups(n) + 0 is the input vector.
3.3.1 RLS Algorithm

According to the definition, we multiply both sides of
Pys(n) in Eq.(3) by ul,;(n) and up(n) and rearrange
terms, yielding

ufy (n)Py(n)un(n)

- in(n)qu\;{(n)PM(n ~ Duy(n) @1
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Equation (21) shows that if Pps(n—1) is symmetric and
preserve its positive definiteness, then the time-update of
P (n) by using Eq. (3) remains positive definite.

Under finite-precision implementation, however, as
analyzed above, yp(n) may take on a negative value,
leading to the negative definiteness of Pys(n). Gener-
ally speaking, as shown in Ref.[3] and Ref.[11], the
definiteness of Pps(n) is closely related to the charac-
teristics of the input signal. Assuming that an m-digit
arithmetic is used, then Pp(n) may lose its positive
definiteness if the eigenvalue spread of the inverse cor-
relation matrix

Amax
x(PM(n)) = —>2" (22)

)\min

Equation (22) gives a quite severe condition when a
narrow-band signal, such as speech signal, is used as the
input. The eigenvalue spread of such a signal is usually
very high, which may cause the explosive divergence of
the RLS algorithm.

3.3.2 BPLS Algorithm

Left multiplying Eq.(8) by ul,,,(n) and recognizing
that k,,,11(n) = Pyt (n)u,ny1(n), we get

U7 1 (WP i1 ()81 (n) = Uy, ()P (0) U (1)

+1@%f%<n> (up (n)em(n) +u(n —m)) (23)

From Ref.[11], the backward a posteriori prediction er-
ror b,,(n) is defined as

bin(n) = 0T, ()€ (n) + uln — M) = Y (M) m(n) (24)
Hence, Eq.(23) can be rewritten as

w1 (WP g1 ()01 (n) =g, ()P () (1)

b7, (n)
U 25
+ Bon(n) (25)
Since Bon(n) is always positive, we can conclude that if
m(n

P,.(n) preserves its positive definiteness, then the order-
update of P,,1(n) by using Eq.(8) remains positive
definite.

To analyze the positive definiteness of P, 1(n) un-
der finite-precision implementation, we expand Eq. (25)
as

w1 (WP ()41 (n) = u(n)Pr(n)u(n)

— bi(n)
Y hm

~—

In Appendix, we have proved that the terms on the right
side of Eq. (26) are always greater or equal to zero. So
the nonnegative definiteness of P, (n) is guaranteed
despite finite-precision implementation.
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4, Simulation Results

Computer simulations are done to confirm the validity
of our study presented in Sect.3. An adaptive equal-
izer is employed for the simulation. Its block diagram
is shown in Fig. 1. The blocks enclosed by the dashed
line are implemented by using a floating-point arith-
metic that consists of an 8-bit exponent and a vari-
able mantissa (including a sign bit). The blocks la-
beled Q quantize double-precision input data into finite-
precision ones that are used in the adaptive filter algo-
rithm. The impulse response of the channel is [12]

L4 27— 2 —1,2,3
h(n) = 5{ +cos(W(n— ))} n=123
0

otherwise

where W controls the eigenvalue spread x produced by
the channel. We choose W = 3.5(x = 47). A speech
signal shown in Fig.2 is used as the input u(n) to the
channel. The additive noise v(n) is a white noise with
zero mean. The variances of u(n) and v(n) are unity and
0.001, respectively. The desired signal d(n) is obtained
from u(n) after a delay of seven samples. The adaptive
equalizer has 11 taps. The RLS algorithm used for sim-
ulation is given in Sect.2, which has the same form as
CLS2 shown in Ref.[3]. The initial parameter § = 0.1
and the forgetting factor A = 0.95 are used in both the
RLS and the BPLS algorithms.

The simulation results of three main instability
sources effects on the RLS and the BPLS algorithms
are shown in Figs.3, 4 and 5. From these results, we
make the following observations:

Delay l do f
L= 1 =
SO
u(n) + Ua{) 1§ Adaptive Equalizer
Channel £+ Q Filtering part wa (n)

v(n)
additive noise

Gain Vector Calculator
Prediction Part  ku(n)

]
i
'
|
|
|
i
]
i (
i
]
i
)
|
i
|
|
|

Finite-Precision Implementation

Fig. 1 Block diagram of adaptive equalizer.

Speech Signal
4 T T v T T T T T T

Magnitude

. . L ) ) ) 1 . .
0 100 200 300 400 500 600 700 800 900 1000
Iterations

Fig. 2 Speech signal used for simulation.
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(a) 15-bit mantissa (RLS) (b} 14-bit mantissa (RLS)

Magnitude
Magnitude

200 400 600 800 1000
Iterations

(d) 4-bit mantissa (BPLS)

1W

200 400 600 800 1000
Iterations

(c) 14-bit mantissa (BPLS)

Magnitude
Magnitude

<
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{a) 15-bit mantissa (RLS) (b) 14-bit mantissa (RLS)

Magnitude
Magnitude

200 400 600 800 1000
Iterations

(c) 14-bit mantissa (BPLS)

200 400 600 800 1000
Iterations

(d) 4-bit mantissa (BPLS)

2 2
o (=]
O ©
=0 : 290

200 400 600 800 1000
Iterations
Fig. 3 Conversion factor v, (n). (a), (b) The RLS algorithm
computed by using 15-bit and 14-bit mantissa, respectively. (c),
(d) The BPLS algorithm computed by using 14-bit and 4-bit
mantissa, respectively.

200 400 600 800 1000
lterations

(a) 15-bit mantissa (RLS) (b) 14-bit mantissa (RLS)

8 05 3 05
2 2
2 I 2
o o
O ©
2 0 zZ 0
-05 -05
200 400 600 800 1000 200 400 600 800 1000
Iterations Iterations
(c) 14-bit mantissa (BPLS) (d) 4-bit mantissa (BPLS)
1 1
g 05 8 05
2 2
T €
f=3 1=
© ©
2 0 2 0
-05
200 400 600 800 1000 200 400 600 800 1000
Iterations lterations
Fig. 4 Symmetric property computed by using [|P%,(n)uar(n)

- (uﬂ(n)P‘I’w(n))Tu. (a), (b) The RLS algorithm computed
by using 15-bit and 14-bit mantissa, respectively. (c), (d) The
BPLS algorithm computed by using 14-bit and 4-bit mantissa,
respectively.

e The conversion factor in the RLS algorithm may
exceed the range between 0 and 1 under finite-
precision implementation. No such overrange in-
stability occurs in the BPLS algorithm.

o The symmetric property of Pps(n) in the RLS al-
gorithm can not be guaranteed if the conversion
factor exceeds its boundary or Pz (n) loses its pos-
itive definiteness. Pas(n) in the BPLS algorithm
remains symmetry.

-

200 400 600 800 1000 200 400 600 800 1000
lterations Iterations

Fig. 5 Positive definiteness u, (n)P%, (n)up(n). (a), (b) The
RLS algorithm computed by using 15-bit and 14-bit mantissa,
respectively. (c), (d) The BPLS algorithm computed by using
14-bit and 4-bit mantissa, respectively.

Table 1 MSE of BPLS and RLS algorithms.
Mantissa Bits BPLS Algorithm [ RLS Algorithm

(with a sign bit)
Double precision 0.001341 0.001341

16 0.001377 0.001904

15 0.001393 unstable

8 0.001853 unstable

6 0.013333 unstable

4 0.799498 unstable

e The loss of positive definiteness in the RLS algo-
rithm is caused by limited word-length precision,
the ill conditioned input as well as the overrange
of the conversion factor. No such problem has been
found in the BPLS algorithm.

These observations have confirmed the validity of
our analysis presented in Sect. 3.

Without the effects of three main instability
sources, the numerical performance of the BPLS algo-
rithm is expected to be much more robust to round-off
errors than that of the RLS algorithm. This is virtu-
ally true through computer simulations. Figures 6, 7
and Table 1 show the mean squared error (MSE) of
the adaptive equalizer computed by using a variety of
word-length mantissa bits. As expected, the numerical
performance of the BPLS algorithm is very robust to
round-off errors produced by finite-precision implemen-
tations. On the other hand, the RLS algorithm is seri-
ously affected by finite word-length as well as the char-
acteristic of the input signal. Simulation results show
that the numerical performance of the RLS algorithm
deteriorates very fast when the speech signal is used as
the input. This is consistent with the analysis shown
in Sect.3. No such a deterioration has been found in
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Mean-Squared Error of BPLS Algorithm
v T T v : T —
I A

1 ! B! it '\ ' I{

by il oty

oY |,'.],,|,‘ [1 T 2

,"!‘I.',In, ! !\;’” o

ety i Ml
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4-bit
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I

;;’ " |Ji||£' I3
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Magnitude

" 6-bit

8-bit
double

100 200 300 400 500 600 700 800 900 1000
Iterations

Fig. 6 Finite-precision MSE of BPLS algorithm. Double pre-

cision (solid line), 8-bit (dashed line), 6-bit (dotted line) and

4-bit (dashdot line) mantissa.

Mean-Squared Error of RLS Algorithm
10 T T T T T T T

Magnitude

15-bit
i1 16-bit
double

. 1 L L . s . L .
100 200 300 400 500 600 700 800 800 1000
lterations

Fig. 7 Finite-precision MSE of RLS algorithm. Double pre-
cision (solid line), 16-bit (dashed line) and 15-bit (dotted line)
mantissa.

the BPLS algorithm. Attention should be paid to the
difference between the numerical stability and the nu-
merical accuracy. As shown in Fig. 6, when the number
of mantissa bits used to implement the BPLS algorithm
is reduced, the accuracy of the algorithm is also reduced,
leading to some deviations of the MSE from the ideal
performance. Nevertheless, the numerical stability of
the BPLS algorithm is unaffected.

5. Conclusion

A comparative study on the numerical performances
of the RLS and the BPLS algorithms has been pre-
sented. Finite-precision analysis of three main instabil-
ity sources, including the overrange of the conversion
factor, the loss of symmetry and the loss of positive
definiteness of the inverse correlation matrix, has been
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carried out on both the RLS and the BPLS algorithms.
The validity of the analysis has been confirmed through
computer simulations. It has been shown that the three
main instability sources encountered in the RLS algo-
rithm do not exist in the BPLS algorithm. This leads to
a much more stable and robust numerical performance
of the BPLS algorithm compared with the RLS algo-
rithm, especially when a narrow-band signal such as the
speech signal is used as the input and a low word-length
finite-precision arithmetic is employed.
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Appendix

In finite-precision (including both floating-point and
fixed-point) arithmetic, let Q[z] denote the quantization
of z and assume that the dynamic range for computa-
tion is large enough so that no overflow error occurs,
then from Ref.[13], the following conclusions can be
obtained:

(1) If0<a<1andb20, then 0 < Q[ab] < b.

(2) If ¢ is a real variable, then Q[c?] = 0.

(3) Ifa2b20and a+0,then 0 < Q[2] < 1.

(4) Ifa >0 and b 2 0, then Q[Qla] + 4 = Q[a] = 0.

Based on the above conclusions, we prove some
results shown in Sect.3. Assume that we have the fol-
lowing recursive equation

a(n) = da(n — 1) + p(n)é?(n)

with 0 £ A £ 1 and «(0) = 6 > 0. The implementation
of Eq.(A- 1) under a finite-precision arithmetic is

a%(n) = Q[QPa(n - ] + Qlp(n)QIE*(n)]]
(A-2)

(A-1)

We want to prove that if p(n) = 0, then
ad(n) 2 Qhaf(n—1)] 2 0. (A-3)

Using the mathematical induction, we first write
the initial state as

a?(1)=Q[QN] + Q[p(1)Q[* (V)] 2 Q[A] 2 0.

(A-4)
Assume
a® (n—1) = Q[Qa?(n — 2)] + Qlp(n — 1)
-Q[@2 (n—-1)]] 2QMAa(n—-2)]20 (A-5)
then we get
a’(n) =Q[Q[a’(n — 1)] + Q[p(n)Q[6* (n)]]]

2 QM (n-1)]20 (A-6)

Now we prove that the conversion factor v,,(n)
computed under finite-precision arithmetic satisfies

0= 'an+1(”) < yh(n) £ (A-T)

First, to prove 0 < v{(n) < 1, we write the finite-
precision implementation of Eq. (13) as

®(n) = Q[QI®{(n — 1)] + Q[u*(n)]]

Apparently, Eq.(A- 8) is the special case of Eq.(A-2)
when p(n) = 1. Hence,

2i(n) 2 Q®I(n—1)] 20

<) L1

(A-8)

(A-9)
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or from Eq. (12)
_ o[Q2I(n—1)]
Ogvf(n)—Q[W] <1 (A 10)
Then, we use Eq. (5) and write
Bi(n) = Q[Q\B{(n — 1)] + QM (n)QL} (n)]]
(A-11)

Notice that Eq. (A- 11) has the same form as Eq. (A- 2).
So the following equation

_ ~QMBi(n —1)]
Ogﬂf(”)‘Q[_B}T] <1 (A-12)
1s true, resulting
0§7§( )= Q[/B1( )]S’Yl( )1 (A-13)

Following the same procedure, we can deduce that
B}(n) 2 Q[B}(n—1)] 2 0 and hence the final result of
Eq.(A- 7).

To prove the nonnegative definiteness of P, 1(n)
in finite-precision implementation, we write Eq. (26) as

Qlud 11 (WPt (1) U1 ()] = Q[ Qlu(n) Py (m)u(n)
= o [QEm)

For the first term on the right side of Eq. (A: 14), from
Eq.(11), we have

(A- 14)

Qu*(n)]
T} <1 (A-15)

0 < Qu(n)Pi(n)u(n)] = Q[ o7(n

For the rest terms on the right side of Eq.(A- 14), from
Egs. (24) and (5), we have

0 < Q[b} (n)] = Qlvi(n

From the above conclusions, we readily know that
Qb (n)]

g ?
02| T
niteness of P,,.1(n) is proved.

(n)] < Bjl(n)  (A-16)

] < 1, Therefore, the nonnegative defi-
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