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HARDY’S INEQUALITIES FOR HERMITE

AND LAGUERRE EXPANSIONS

Dedicated to Professor Satoru Igari on his 60th birthday

YUICHI KANJIN

A

The well-known inequality of Hardy for Fourier coefficients of functions f(t)C3¢
n=−¢ b

n
eint in the real

Hardy space is 3¢
n=−¢ rb

n
r}(rnr­1)!¢. We shall establish analogues of this inequality for the Hermite

function expansions and also for the Laguerre function expansions.

1. Introduction

Hardy’s inequality says that if f(t)C3¢

n=−¢ b
n
eint is in ReH ", then

3
¢

n=−¢

rb
n
r

rnr­1
!¢,

where ReH " is the real Hardy space consisting of the boundary values of the real

parts of functions in the Hardy space H " on the unit disk in the plane. The aim of this

paper is to establish analogues of this inequality for the Hermite function expansions

and also for the Laguerre function expansions.

Let (
n
(x) be the Hermite function defined by

(
n
(x)¯²π"/#2nΓ(n­1)´−"/#H

n
(x) e−x

#
/#,

where H
n
(x) is the Hermite polynomial of degree n given by

H
n
(x)¯ (®1)n exp (x#) (d}dx)n exp (®x#).

Then the system ²(
n
´¢

n=!
is complete orthonormal on the real line 2 with respect to

the ordinary Lebesgue measure dx (compare [6, 5.7]). This system leads to the formal

expansion of a function f(x) on 2 :

f(x)C 3
¢

n=!

c
n
( f )(

n
(x),

where c
n
( f )¯ !

¢

−¢
f(x)(

n
(x) dx is the nth Hermite–Fourier coefficient of f(x).
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Let ,α

n
(x), α"®1, be the Laguerre function defined by

,α

n
(x)¯ ( Γ(n­1)

Γ(n­α­1)*
"/#

Lα

n
(x) e−x/#xα/#,

where Lα

n
(x)¯ (n!)−"x−α ex(d}dx)n ²xn+α e−x´ is the Laguerre polynomial of degree n

and of order α. Then ²,α

n
´¢

n=!
is a complete orthonormal system on the interval

(0,¢) with respect to dx (compare [6, 5.7]). We have the formal expansion

g(x)C 3
¢

n=!

cα

n
(g),α

n
(x)

of a function g(x) on (0,¢), where cα

n
(g)¯ !

¢

!

g(x),α

n
(x) dx is the nth Laguerre–

Fourier coefficient.

Let H "(2) be the real Hardy space consisting of the boundary values of the real

parts of functions in the Hardy space H "(2#
+
) on the upper half plane 2#

+
. In H "(2),

we consider the norm induced by H "(2#
+
). For a function g(x) on (0,¢), we define the

extension gh (x) of g(x) to 2 by gh (x)¯ g(x) if 0!x, and gh (x)¯ 0 if x% 0. We define

H "(0,¢)¯²g(x) on (0,¢) ; gh (x) `H "(2)´,

sgs
H

"
(!,

¢)
¯ sgh s

H
"
(2)

.

Our main results of this paper are as follows.

T. (i) There exists a constant C such that

3
¢

n=!

rc
n
( f )r

(n­1)#*/$'
%Cs f s

H
"
(2)

(1)

for f(x)C3¢

n=!
c
n
( f )(

n
(x) in H "(2).

(ii) Let α& 0. Then there exists a constant C such that

3
¢

n=!

rcα

n
(g)r

n­1
%Csgs

H
"
(!,

¢)
(2)

for g(x)C3¢

n=!
cα

n
(g),α

n
(x) in H "(0,¢).

The proof of the Theorem will be given in the next section. The atomic

decomposition characterization of Hardy spaces will play an essential role in the

proof. Also, the transplantation theorem (see (9) below) of R. Askey [1, p. 401, line

14] for Laguerre coefficients will be of use in the proof of part (ii) of the Theorem. The

deduction of Paley’s theorem from the Theorem will be discussed in Section 3 with

a remark.

For a historical survey on Hardy’s inequality and Paley’s theorem, we may refer

to [2, p. 398, Comments]. The exposition of the role of the atomic decomposition

characterization in the classial harmonic analysis is in R. R. Coifman and G. Weiss

[3]. We shall also consult J. Garcia-Cuerva and J. L. Rubio de Francia [4] for the

Hardy space theory.

2. Proof of the Theorem

An H " atom is a function a(x), x `2, supported in an interval (b, b­h) satisfying

ra(x)r% h−" and ! a(x) dx¯ 0. The space H "(2) is characterized in terms of atoms

(compare [4, Chapter 3]) : f(x) belongs to H "(2) if and only if f(x)¯3¢

j=!
λ
j
a
j
(x),
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where every a
j
(x) is an H " atom and 3¢

j=!
rλ

j
r!¢. The H "(2) norm of f(x) is

equivalent to inf3¢

j=!
rλ

j
r, the infimum being taken over all decompositions. The

space H "(0,¢) is also characterized as follows [4, Lemma 7.40] : g(x) belongs to

H "(0,¢) if and only if g(x)¯3¢

j=!
λ
j
a
j
(x), where every a

j
(x) is an H " atom satisfying

supp a(x)Z (0,¢) and 3¢

j=!
rλ

j
r!¢.

We shall first give a lemma. Let ²φ
n
´¢

n=!
be an orthonormal system on an interval

(c, d). For a function f(x) on (c, d ), we consider the formal expansion

f(x)C 3
¢

n=!

b
n
( f )φ

n
(x),

where b
n
( f )¯ ! b

c

f(x)φ
n
(x) dx is the nth Fourier coefficient with respect to the system

²φ
n
´.

L. Suppose that

max
c!x!d

) d

dx
φ

n
(x) )%Knδ, δ"®"

#
,

with a constant K independent of n. Then there exist constants C
"
and C

#
satisfying the

following.

(i) For an H " atom a(x) with supp a(x)Z (c, d ),

rb
n
(a)r%C

"
nδsas−#

#
(3)

and

3
¢

n=!

rb
n
(a)r

(n­1)(δ+#)/$
%C

#
. (4)

(ii) Let f(x) be a function of the form f(x)¯3¢

j=!
λ
j
a
j
(x), where e�ery a

j
(x) is an H "

atom with supp a(x)Z (c, d ) and 3¢

j=!
rλ

j
r!¢. Then

3
¢

n=!

rb
n
( f )r

(n­1)(δ+#)/$
%C

#
3
¢

j=!

rλ
j
r. (5)

Proof. Let a(x) be an H " atom with support contained in (b, b­h)Z (c, d ) such

that ra(x)r% h−". Since

b
n
(a)¯&d

c

a(x)φ
n
(x) dx®φ

n
(b)&d

c

a(x) dx¯&b+h

b

a(x) ²φ
n
(x)®φ

n
(b)´ dx,

it follows from Schwarz’s inequality and the mean value theorem that

rb
n
(a)r% sas

# (&
b+h

b

(x®b)# dx*"/# max
c!x!d

) d

dx
φ

n
(x) )

%C
"
nδsas

#
h$/#,

where C
"
¯K}3"/#. By the fact h% sas−#

#
, we have the inequality (3).

For simplicity, we put γ¯ sas'/(#
δ+")

#
and σ¯ (δ­2)}3. It follows from (3) that

3
¢

n=!

rb
n
(a)r

(n­1)σ
¯ (3

n%γ

­3
n"γ
* rb

n
(a)r

(n­1)σ

%C
"
sas−#

#
3
n%γ

nδ

(n­1)σ
­sas

# (3
n"γ

1

(n­1)#σ*"/#
%C !

"
(sas−#

#
γ(#

δ+")/$­sas
#
γ−(#

δ+")/')%C
#
,

where C !

"
and C

#
are positive constants independent of a(x).
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Since sas
"
% 1, the series 3¢

j=!
λ
j
a
j
(x) converges in L"(c, d ). We see that (4) implies

(5).

We now come to the proof of the Theorem. By virtue of the Lemma and the

atomic decomposition characterization, it is enough to show, for part (i) of the

Theorem, that

) d

dx
(

n
(x) )%Cn&/"# (6)

for x `2. Here and below, C denotes a positive constant which may differ at each

different occurrence. It follows from the equations

H
n
(x)¯ 2xH

n−"
(x)®2(n®1)H

n−#
(x) and (d}dx)H

n
(x)¯ 2nH

n−"
(x)

(compare [6, (5.5.8), (5.5.10)]) that

(d}dx)(
n
(x)¯ (n}2)"/#(

n−"
(x)­((n­1)}2)"/#(

n+"
(x).

By the inequality
r(

n
(x)r%Cn−"/"# (7)

(compare [5, (2.23)]), we have (6), which completes the proof of part (i) of the

Theorem.

We turn to the proof of part (ii) of the Theorem. Similarly, it suffices to show that

) d

dx
,α

n
(x) )%Cn, x" 0. (8)

But we shall be able to prove this inequality only in the case that α& 2 or α¯ 0. The

case 0!α! 2 will be treated by the transplantation theorem for Laguerre coefficients

between α and α­2 [1, p. 401, line 14] :

rcα

n
( f )r%C 0rcα+#

n−"
( f )r­3

¢

j=n

rcα+#
j

( f )r 0nj1
α/#

j−"1 , n¯ 1, 2,… . (9)

To prove (8), we use the equation (d}dx)Lα

n
(x)¯®Lα+"

n−"
(x) (compare [6, (5.1.14)]).

It follows that

d

dx
,α

n
(x)¯ τα

n 0®Lα+"
n−"

(x) e−x/#xα/#­
α

2
Lα

n
(x) e−x/#xα/#−"­(®"

#
)Lα

n
(x) e−x/#xα/#1,

where τα

n
¯²Γ(n­1)}Γ(n­α­1)´"/#. By the inequality

r,α

n
(x)r%C, x" 0, α& 0 (10)

(compare [5, (2.9)]), we have

) d

dx
,α

n
(x) )%C 0τα

n
rLα+"

n−"
(x)r e−x/#xα/#­

α

2
τα

n
rLα

n
(x)r e−x/#xα/#x−"­11

%C(A­B­1), say.

We divide the matter into two cases, nx& 1 and 0! nx! 1. For nx& 1, we have, by

(10) and τα

n
%Cn−α/#,

A% τα

n
rLα+"

n−"
(x)r e−x/#x(α+")/#x−"/#%Cn(nx)−"/#%Cn,

B%
α

2
τα

n
rLα

n
(x)r e−x/#xα/#x−"%Cn(nx)−"%Cn.
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Thus we have (8) for nx& 1 when α& 0. For 0! nx! 1, we use the inequality

rLα

n
(x)r%Cnα, 0! nx! 1 [6, (7.6.8)]. It follows that A%Cn−α/#nα+"xα/#%Cn(nx)α/#

%Cn when α& 0, and that B%Cn−α/#nαxα/#x−"%Cn(nx)α/#−"%Cn when α& 2.

Note that the term B does not appear when α¯ 0. We conclude that (8) holds when

α& 2 or α¯ 0. Therefore we have the desired inequality (2) when α& 2 or α¯ 0.

We shall interpolate between α¯ 0 and α¯ 2 by using (9). Let 0!α! 2 and

g(x) `H "(0,¢). By (10), we note that rcα

!
(g)r%Csgs

L
"
(!,

¢)
%Csgs

H
"
(!,

¢)
. It follows

from (9) that

3
¢

n=!

rcα

n
(g)r

n­1
¯ rcα

!
(g)r­3

¢

n="

rcα

n
(g)r

n­1

%Csgs
H

"
(!,

¢)
­C 03

¢

n="

rcα+#
n−"

(g)r
n­1

­3
¢

n="

1

n­1
3
¢

j=n

rcα+#
j

(g)r 0nj1
α/#

j−"1 .
We treat the last sum. Since ²3j

n="
nα/#(n­1)−"´ j−α/#%C for α" 0, it follows that

3
¢

n="

1

n­1
3
¢

j=n

rcα+#
j

(g)r 0 n

j1
α/#

j−"¯3
¢

j="

(3j
n="

nα/#

n­1* j−α/#j−"rcα+#
j

(g)r

%C3
¢

j="

j−"rcα+#
j

(g)r.

Therefore we have

3
¢

n=!

rcα

n
(g)r

n­1
%C 0sgs

H
"
(!,

¢)
­3

¢

n=!

rcα+#
n

(g)r
n­1 1

for α" 0, which completes the proof of part (ii) of the Theorem since inequality (2)

with α& 2 or α¯ 0 has been proved.

3. Paley type theorem

The following inequalities, (11) and (12), with respect to the Laguerre function

system follow from Paley’s theorem (compare [7, Vol. II, Theorem (5.1)]) with

respect to general systems ²φ
n
´ of functions orthonormal and uniformly bounded,

rφ
n
(x)r%C.

Let α& 0. For g(x)C3¢

n=!
cα

n
(g),α

n
(x) `Lp(0,¢), 1! p% 2,

3
¢

n=!

rcα

n
(g)rp (n­1)p−#%Csgsp

L
p
(!,

¢)
. (11)

For ²b
n
´¢

n=!
with 3¢

n=!
rb

n
rq (n­1)q−#, 2% q!¢, there exists a function

g(x)C3¢

n=!
b
n
,α

n
(x) `Lq(0,¢)

such that

sgsq

L
q
(!,

¢)
%C 3

¢

n=!

rb
n
rq (n­1)q−#. (12)

Also, by applying Paley’s theorem to the Hermite function system, we have the same

inequalities as (11) and (12), where we substitute cα

n
(g), g(x) `Lp(0,¢), by c

n
( f ),

f(x) `Lp(2), respectively. But, for the Hermite function system, we can obtain

sharper inequalities by interpolating Hardy’s inequality (1) and Parseval’s equation.
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P. (i) Let 1! p% 2. Then there exists a constant C such that

3
¢

n=!

rc
n
( f )rp (n­1)#*(p−#)/$'%Cs f sp

L
p
(2)

(13)

for f(x)C3¢

n=!
c
n
( f )(

n
(x) `Lp(2).

(ii) Let 2% q!¢. Then there exists a constant C such that if ²b
n
´¢

n=!
satisfies

3¢

n=!
rb

n
rq (n­1)#*(q−#)/$'!¢, then

s f sq

L
q
(2)

%C 3
¢

n=!

rb
n
rq (n­1)#*(q−#)/$', (14)

where f(x)C3¢

n=!
b
n
(

n
(x) `Lq(2).

Proof. For κ" 0, we denote by lpκ , p& 1, the space of sequences ²b
n
´¢

n=!
such

that s²b
n
´s

p
¯²3¢

n=!
rb

n
rp (n­1)−#κ´"/p !¢. We define an operator Tκ of Lp(2) to lpκ

by Tκ f¯²c
n
( f ) (n­1)κ´¢

n=!
. We consider the case κ¯ 29}36. Then by (1), we see that

Tκ is a bounded linear operator of H "(2) to l "κ, which implies that Tκ is of weak type

(H "(2), l "κ). Parseval’s equation says that Tκ is an isometry of L#(2) to l #κ ; in particular,

Tκ is of weak type (L#(2), l #κ). We follow line by line the proof [4, pp. 308–310] of the

interpolation theorem between H " space and Lp space. We conclude that Tκ is a

bounded operator of Lp(2) to lpκ , 1! p% 2, which means (13).

The inequality (14) is obtained by a standard duality argument (compare [7,

Vol. II, proof of Theorem (5.1)]).

Lastly, we give a remark. Instead of the interpolation theorem between H " space

and L" space, we may use the interpolation theorem between weak-Lp spaces. But it

will become clear in the sequel that the inequality (15) below, obtained by this

method, is weaker than our inequality (13).

We now consider lpκ , Tκ with κ¯ 11}12. Parseval’s equation implies that Tκ is of

weak type (L#(2), l #κ). Moreover, we see that Tκ is of weak type (L"(2), l "κ). For, we

put /
t
¯²n ; rc

n
( f ) (n­1)κr" t´ for t" 0, where f(x) `L"(2). It follows from (7) that

t! rc
n
( f ) (n­1)κr!Cn−"/"#nκs f s

L
"
(2)

¯Cn"!/"#s f s
L
"
(2)

. Thus we have

²t}s f s
L
"
(2)

´"#/"!! n.

This gives 3
n`/

t

(n­1)−#κ %C²t}s f s
L
"
(2)

´"#(−#κ+")/"!¯Cs f s
L
"
(2)

}t, which means that

Tκ is of weak type (L"(2), l "κ). By the Marcinkiewicz interpolation theorem, we see that

Tκ is a bounded operator of Lp(2) to lpκ , 1! p! 2, that is,

3
¢

n=!

rc
n
( f )rp (n­1)""(p−#)/"#%Cs f sp

L
p
(2)

. (15)

I should like to thank the referee for informing me of Kwon and Littlejohn’s work

(Annals of Numerical Mathematics 2 (1995) 289–303) which might lead to a further

study.
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