A training data selection in on-line training for
multilayer neural networks

S5 eng

HhRE

~FH: 2017-10-03
*F—7—NK (Ja):
*—7— K (En):
YRR

X—=ILT7 KL R:
FiT/:

http://hdl.handle.net/2297/6887

A Training Data Selection in On-Line Training for
Mult ilayer Neural Networks

Kazuyuki Hara, Gunma Polytechnic Coll., 918 Yamana-cho Takasaki, Gunma 370-12 Japan.
Kenji Nakayama, Fac. of Eng., Kanazawa Univ. 2-40-20 Kodatsuno Kanazawa 920 Japan.
Ashraf A. M. Kharaf, Grad. School of Nat. Sci. & Tech. Kanazawa University.

Abstract

In this paper, a training data selection method for
multilayer neural networks (MLNNs) in on-line train-
ing is proposed. Purpose of the reduction in training
data is reducing the computation complexity of the
training and saving the memory to store the data with-
out loosing generalization performance. This method
uses a pairing method, which selects the nearest neigh-
bor data by finding the nearest data in the different
classes. The network is trained by the selected data.
Since the selected data located along data class bound-
ary, the trained network can guarantee generalization
performance. Efficiency of this method for the on-line
training is evaluated by computer simulation.

1. Introduction

In pattern classification problems, a multilayer neu-
ral network (MLNN) trained by supervised learning al-
gorit hms [1] are capable of extracting common features
or rules of training data through a training process.
This is a benefit of using the MLNN for the classifica-
tion.

A huge amount of the training data may guaran-
tee generalization performance of the MLNN. On the
other hand, it will require a very long training time and
amount of computations. To avoid this difficulty, there
are many papers related to reducing the computations
for training. One of the solutions is simplify the net-
work structure. Battiti[2] used the mutual information
to evaluate the information content of input feature
to limit the input dimensionality. The training time
can be reduced by pruning the hidden units. Many
papers are presented related to this approach [3,5, 4].
Another approach is to reduce the number of training
data. Cachin[6] proposed the error-dependent repe-
tition (EDR). Presentation probability of a training
data is proportional to the MLNN output error. Li
[7] combined Fisher% linear discriminant analysis and
the maximal signal-to-noise-ratio discriminant analysis
to find the principle feature of the data. These ap-
proaches are performed in off-line training. For on-line

0-7803-4859-1/98 $10.0001998 IEEE 2247

training, above methods require to accumulate all the
given data, so they are not suit for the on-line training.

In this paper, we propose a training data selection
method for the on-line training. Purpose of the pro-
posed method is to find the important data to guaran-
tee the generalization performance. At the same time,
this allow to reduce the number of the data, then the
memories which store the data are reduced. The data
selection is done by a method called the pairing method
in this paper. This method selects the nearest neighbor
data in the different classes. The data which are not
selected will be eliminated, and will not be used in the
future training. If the training with selected data will
be converged, the generalization performance is guar-
anteed. At the same time, the number of selected data
is relatively small.

In the on-line training, a small number of the train-
ing data are given in successively, and the network
adjusts the connection weights to minimize the output
error for the data. Moreover, it is possible that the
class boundaries may continuously be changed. In this
case, if the class boundaries are not overlapped, the
network requires to keep the classification performance
to the past data and also to adapt to the new data.
The proposed method can solve these requirement by
combining the previously selected data into the present
training data.

Efficiency of the proposed method is investigated
through computer simulations.

2. Multilayer Neural Network

In this paper, a two-layer MLNN is used to classify
the data. N samples of a piece of data, that is the input
vector ® = {z;,i = 1 ~ N}, is applied to the input
layer. The ith input unit receives z;. The connection
weight from the ith input to the jth hidden unit is
denoted w;;. The input potential net; and the output
y; of the jth hidden unit are given by

N
net; = Zwijxi + 0; (1)

i=1

y;j = fu(net;) (2)

As the activation function, one of these sigmoid
functions can be used.

1— e—netj
fri(nety) = Ty 3)
1
f.2 (netj) = m (4)

where, fy® | is an activation function in the hidden
layer and 6; is a bias of the unit. Eq. (3) is called
Bipolar and Eq. (4) is called Unipolar in this paper.
The hidden unit output y; is transferred to the output
layer. The same process, as in the hidden layer, is
carried out in the output layer. The number of output
units is equal to that of the classes. The MLNN is
trained so that a single output unit responds to one of
the classes.

3. On-Line Training Method with Data
Selection

In the on-line training, a small number of training
data are given for one training process, and this pro-
cess is repeated many times. By train the network
with given training data, the network will classify the
training data well, however, there is no guarantee that
the network classify the data of the other training pro-
cesses correctly. To perform this kind of classification,
the network must have generalization performance to
the entire data. This can be solved by accumulates all
the data of all the training processes. In this case, a
huge memories to store a number of data are required,
and the training with a huge number of data becomes
difficult.

In the next subsections, we introduce a pairing
method to select the data near the class boundary.
The selected data will be used for training. Training
algorithm is explained in subsection 3.3.

In each training process except for the initial train-
ing process, previously selected data are combined to
new training data. In this case, only the selected data
are path to the next training process, then computation
will not be increased so much. By adding the neighbor
data in the previous process, the network will be keep
the performance both for the past data and for the new
data.

3. 1. Pairing Method for Data Selection

In this paper, two classes are taken into account.
However, this can be applied to more than two classes.

2248

The proposed method is called pairing method in
this paper. This method selects the nearest data of
different classes using the Euclidean dist ance. The data
selection is carried out through the following steps.

Step 1: Select some number of 1 (or @3) from X
(or X'3) randomly.

Step 2: Select ®4 (or &%) from X5 (or X 1), which has
the shortest distance to the =i (or :1:2), selected
in Step 1.

Step 3: Select w‘lol (or mgl) from X; (or X5), which
has the shortest distance to 5 (or &%), selected
in Step 2.

When all the data are selected in Step 1, this selection
is completed. Otherwise, return to Step 1, and repeat
the above process.

Finally, the data m’l’,wg,m’l’l and =2 selected based
on the Euclidean distance are included in the selected
data set X% and X7%.

In this paper, we assumed that the class distribu-
tions are not overlapped. Then, the data are classified
by the linear separator. The MLNN has a similar prop-
erty to the linear separator in the classification, so if
the class boundaries in the data space are based on
the distance and pairs of the shortest data between the
classes are selected, these data are located close to the
class boundaries.

3. 2. Selecting Activation Function for Training
Using Paired Data

The distance between the paired data is short. This
means the paired data are similar to each other. How-
ever, the output should be entirely different. This kind
of classification is a difficult problem for the MLNNs.
In this subsection, we will analyze convergence behav-
ior of the back propagation algorithm using the paired
data.

3. 2. 1. Amount of update of connection weight
and Hidden Unit Output

The connection weights are updated respect to the
output error of the network. The change of the con-
nection weight Apw;y is defined as follow.

JE,

Ow;ik

(5)

prjk = —-n

Here, |0E, /Ow;k| is the magnitude of the gradient for
the pth data in the weight space. w; is the connection
weight from the jth hidden unit to the kth output unit.
n is a learning rate. 0E,/0wjx of Unipolar is as,

°
5
Frzzs
7733
Leiics
ShabL o

Absoluto value of gradiant
°
H
T

0.4 0.6
Output Unk Output

Figure 1: Gradient value related to output unit output.

O,
Bwjk

= (tok — Ypk) (1 — Yk) Yok Ypj (6)

Where, tpr is the target of the pth data, and Ypk
is the output of the output layer. y,; is the output of
the ith hidden layer. In Fig. 1, by using Eq. (6), the
absolute value of the gradient, [0E,/0w;|, for several
hidden unit outputs are plotted along the output unit
outputs. In this figure, the target ¢, = 1.0 is used.
So, the output error becomes larger in the left side of
the output axis, and it becomes smaller in the right
side. h = 0 means the hidden unit output is zero. And
h=0.1 means the hidden unit output is 0.1, and so on.

From this figure, when the hidden unit output is
small, the gradient is almost equal for any output error.
When the hidden unit output is small, the connection
weights are not properly modified respect to the output
error.

3.2.2. Amount of update of connection weight
and activation function

We assumed that the initial connection weights are
given as small Gaussian random number with zero
mean. For example, the range of the random number
is [-0.2,0.2]. In this case, if the number of the inputs is
large enough, the input of the hidden units are almost
zero. If Unipolar is used as the activation function in
the hidden layer, the hidden unit outputs 0.5 for the
input of zero. So, the gradient is different with respect
to the output error. However, if Bipolar is used, the
hidden unit outputs zero for input of zero.

From Fig. 1, for h=0, the gradient is zero for any
output error, so the connection weights are not updated
respect to the output error. Therefore, at the beginning
of the training, the amount of update of the connection
weight is larger when using Unipolar than using Bipolar

in hidden layer. Another word, for faster convergence,
Unipolar is more suitable than Bipolar.

For randomly selected data, above discussion is not
always true. These data are located randomly, and the
distances between the data are not so small. In this
case, the connection weights are updated properly for
the sigmoid functions of Bipolar and Unipolar.

3.3. Training Data Selection in On-Line Training

In on-line training, training data are given in suc-
cessively. The proposed algorithm uses the network
trained in the previous training, which will be slightly
changed by trained using new data. This method com-
bines the data pairing method and the training as fol-
lows:

Step 1: Some number of the training data included in
X3 and X, are given. Let these data be X and
X3.X 1 and X are the entire data.

Step 2: Select the data] and «f from X and X3 by
using the pairing method. The set of the selected
data be X¥ and X¥, respectively.

Step 3: Train the MLNN by using X7} and X% until
Mean Squared Error (MSE) at the output layer
becomes less than desired value.

At the initial of the training, only new training data
are included into X7 and X73. After that, a set of new
training data X{and X3, and the selected data in the
previous training process X‘l’ and X‘z’ will be used as
the training data in Step 1. Until the last data are
processed, these steps will be repeated. From Step 1
through Step 3 is called training process in this paper.

The proposed method uses the network and the
selected data in the previous training process in the
new training process. This allows to achieve the high
classification performance for the previous data and the
new data.

For the off-line training, if the number of the new
data is large, some number of the data should be se-
lected, and are included in X{ and X3. After that,
return to Step 3.

4. Computer Simulation

Two-dimensional two-class classification is employed
for computer simulations. Figure 2 shows a concept of
the problems. One of the classes is shown as hatched
region, and the other is dotted region. Dark dotted
region between the classes shows a gap, so there is no
overlap. The gap is not shown in (b). Fig. 2 (a) is
called Problem 1, and Fig. 2 (b) is called Problem 2,
respectively.

2249

N

Figure 2: Concept of problem.(a)Circle in square(left),
(b)Spiral(right).

In the network, two input units and two output
units are used. Then, the data are X = {X1,X>} and
the input data is ® = {z,,n =1,2}.

For the training, learning-rate n is 0.1, and momen-
tum constant « is 0.8. These are decided by experience.
In Problem 1, two classes are defined as follows:

X, ={z|z11 + 212 < (r—9)%} (7)
Xy ={x|z1 + 222> (r+7)°} (8)

here, r is the radius of the circle and is 0.39. « is the
width of the gap, and is 0.02 for problem 1 and is 0.04
for problem 2.

4.1. Comparison of Convergence Speed

In subsection 3.2.2, it is claimed that the sigmoid
function of Unipolar converge faster than the one of
Bipolar. This analytical result is verified by the com-
puter simulation.

The convergence speed of two networks trained us-
ing the selected data by the pairing method are com-
pared. One network is using Bipolar as the activation
function in the hidden layer, and the other is using
Unipolar .

For both networks, six hidden units are used in the
hidden layer. Problem 1 is used. 130 training data are
selected by the pairing method. Training is stopped
when MSE is less than 0.01.

Table 1 shows the comparison result. In this table,
Bipolar uses Eq. (3) in hidden layer and Unipolar uses
Eg. (4). The network having Unipolar is converged
faster than the one of Bipolar. This result will support
the analytical results.

In Fig 3, the convergence curves of two sigmoid
functions are shown. From this figure, as we analyzed
in Sec. 3.2.2, Unipolar iterates more than Bipolar to
reduce the MSE at the beginning of the training.

2253

Table 1: Comparison of Convergence speed of Bipolar
and Unipolar sigmoid functions.

Kind of Sigmoid Function Iteration
Bipolar 22347
Unipolar 8783

0.3 T T T

Bipolar —
Unipolar -—

25000

Figure 3: Convergence curve of two sigmoid functions.

When the entire data are used, 176 iterations for
fH2, and 183 iterations for fg; are needed to converge
on the proper MSE. Therefore, for the training with
many data, the convergence speed of two sigmoid func-
tions is not remarkably different.

4.2. On-Line Training

In this simulation, 25 data for each class are given to
the network in one training process, and the training
process is repeated 14 times. Then totally, 25 x 14 =
350 data for each class are used. Training in Step 3
is stopped at the MSE of ¢<0.01. The classification
performance is evaluated for the entire data. Six hidden
units are used for Problem 1, and eight hidden units are
used for Problem 2. In the hidden layer and the output
layer, Unipolar is used.

4.2.1. Simulation results

Table 2 and 3 shows the results. For both problems,
training is converged properly, and the classification
rates are sufficiently high in every training process.
From this result, by using the proposed method, high
accuracy can be achieved in the on-line training.

Except for the initial training, the training is con-
verged with a small number of iterations. This result

shows that the connection weights are adjusted prop-
erly at the initial training process. Even if the data
class boundaries formed by the training data will be
slightly changed in each process, the network easily
adapts to the class boundary changing.

The number of selected data is increasing process by
process, however, it is saturated after the sixth or sev-
enth training processes. From this result, the efficient
data are selected in the on-line training. Figures 4 and
5 show the selected data in the initial and the 14th
training processes for Problem 1 and 2, respectively.
The regions formed by the network is shown in Fig. 6.
From these figures, the class boundaries are properly
formed by selected data.

Table 2: Simulation result for problem 1.

Chasat o
Class2 +

Classt o
Class2 +

02 N 02

04 + o4 +

a8 08
s 04 02 o 02 o4 os as 04 02 o 02

Figure 4:
14th(right) training process. Problem 1.

Selected data at the first (left) and the

Proc. No. No. data Iteration ClJass. rate
#1 #2 ave
1 18 8184 95.7 914 (93.6
2 27 1722 98.6 91.2 94.9
3 33 1466 99.0 96.9 96.5
4 33 252 98.6 96.7 97.7
5 36 453 99.7 96.7 98.2
6 40 3 99.9 95.7 97.8 ,
7 41 2684 99.8 99.1 99.5
8 42 1 99.8 99.1 99.5
9 44 72 99.9 99.8 99.9
10 44 4 99.9 99.8 99.9
11 45 40 99.9 99.8 99.9
12 45 40 99.8 99.8 99.8
13 45 7 100 99.8 99.9
14 48 13 100 99.7 99.9
Table 3: Simulation result for problem 2.
Proc. No. No. data Iteration ClJass. rate 1
#1 #2 ave
1 16 9248 86.1 93.5 89.8
2 23 5544 96.4 90.7 93.6
3 28 2101 98.7 91.2 95.0
4 33 485 98.8 93.9 96.4
5 30 697 98.2 91.2 94.7
6 36 82 95.3 95.3 95.3
7 40 650 95.3 97.5 96.4
8 38 164 94.1 98.7 96.4
9 37 56 93.8 98.3 96.1
10 42 18 92.9 99.1 96.0
11 46 22 93.9 99.0 96.5
12 44 58 92.9 98.0 95.5
13 41 32 92.4 98.8 95.6
14 43 123 98.7 98.0 98.4

2251

Figure 5: Selected data at the first(left) and the
14th(right) training process. Problem 2.

4.2.2. Amount of memory required in conven-
tional method and proposed method

The on-line training can be performed by accumu-
lating the training data of each training process. This
will be treated as a conventional on-line training in this
paper. In the conventional method, all the data given
in the past processes must be kept in the memory. Then
a huge memory is required to store all the data in every
training process.

In this simulation, Problem 2 is used. Table 4 shows
the number of training data and the classification rate
of the proposed method and the conventional method.
The number of the training process is 14. These two
methods achieved the same classification performance.

A 2 : Atx s &"fm‘
Cer g
" aPoeai s 3
g’%s;o‘*k"q T& 24 .4.3

‘0.6 0.4 02

Figure 6: Regions formed by the network. Problem
1(left) and Problem 2(right). 14th training process.

Table 4: Number of training data and classification rate
of proposed method and conventional method.

Method Number of training data | Classification rate
Proposed 43 98.4
Conventional 700 98.6

Table 5: Transition behavior to class boundary changes

Process No. | Iteration | Class. rate
XF | x4

14th - 99.9 | 86.8
15th 15 87.2 | 99.0
16th 1 86.3 | 98.6

This means that the class boundary is properly selected
by the proposed method with a small nhumber of train-
ing data.

4.3. Adaptability of Class Boundary Changes

In the on-line training, there is a possibility that
the class boundary changes during the training pro-
cesses. Therefore, the network is required to adapt to
the change in the class boundary. In this subsection,
the transition behavior of the proposal method to the
change in the class boundary is verified. Problem 1 is
used.

The change in the region assumes the center of the
circle is moved from (0,0)to (0.1,0). For convenient,
the entire data set before center is moved is denoted
X2 and the entire data data after center is moved is
denoted XA, respectively. The selected data at nth
training process is X5". The data X and X% in nth
training process is denoted X 2" and X“4™ . Verification
is done by the following procedure.

1. Train the network until 14th training processes.
This is shown in Table 2. At 14th process, XxXB14
is used.

2. At 15th training process, X2 and X4 are
combined, and X5'® are selected by the pairing
method. The network is trained with X515,

3. At 16th training process, X5 and new data
X41% are combined. X®® are selected by the
pairing method. The network is trained with
x516

The table 5 shows the classification rate for X and
X4, From the table, the proposed method is capable
of adapting the change of the region.

2252

5. Conclusion

The training data selection method used in the on-
line training have been proposed. The pairing method
has extracted the data locate along the class boundary.
To do this, the Euclidean dist ance has been employed.
For the training, only the selected data are used, and
the remained data are not used in the training.

Proposed method has been evaluated by the com-
puter simulation. The training has converged by us-
ing selected data. The proposed method achieved
the same classification performance as conventional
method. Therefore, the proposed method can select the
important training data to guarantee the generalization
performance in the on-line training. The number of
stored data can be drastically reduced.

In this paper, we have assumed the class data are
not overlapped. However, for real world applications,
this assumption will not be satisfied. To solve this
problem, the weighted decay of the learning parameters
along the training iteration for the previous data will
be required. This is our future work.

References

[1] D. E. Rumelhart and J. L. McCelland, Parallel
Distributed Processing. The MIT Press, 1993.

[2] R. Battiti, Using Mutual Information for Selecting
Features in Supervised Neural Net Learning, |IEEE
Trains. Neural Networks, 5, 4, 537-550, 1994.

[3] M. Hagiwara, Back-propagation with Artificial Se-
lection - Reduction of the Number of Learning times
and that of hidden units- (in Japanese), IEICE
Trans. J74-D-II, 6, 812-818, June, 1991.

[4] R. Reed, Pruning algorithms - A survey, IEEE
Trans. Neural Networks, 4, 740-747, 1993.

[6] N. Nakayama and Y. Kimura, Optimization of Ac-
tivation Functions in Multilayer Neural Network,
Proc. ICNN94, Orlando, Florida, 431-436, 1994,

[6] C.Cachin, Pedagogical pattern selection strategies.
Neural Networks 7, 1, 175-181, 1994.

[7] Qi Li and D. W. Tufts, Principal Feature Classifica-
tion. IEEE Trans. Neural Networks, 8, 1, 155-160,
1997.

[8] S. Haykin, Neural Networks - A comprehensive
foundation. IEEE Press 57-59 1994.

[9] G. J. Gibson, C. F. N. Cowan, On the decision
regions of multilayer perceptrons. |IEEE Proc. 78,
10, 1590-1594 1990.

[10] K. Hara and K. Nakayama, Selection of Min-
imum Training Data for Generalization and On-
line Training by Multilayer Neural Networks. Proc.
ICNN 796, Washington D.C., 436-441, July 1996.

