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Abstract� Travel time of public transport such 
as railway and Light Rail Transit (LRT) is more 
reliable than road traffic. When assessing the 
effect of railway transits, the reliability should be 
considered. Otherwise, the effect may be 
underestimated. Then, we should not only treat 
both transit and road users simultaneously and 
consistently, but also travel time uncertainty of 
cars and the reliability (or punctuality) of railway 
for exact evaluation. A network equilibrium model 
with combined mode and route choice considering 
road travel time uncertainty does not necessarily 
have a unique solution, but may have many local 
solutions, because of the interaction between 
modes. The simulated annealing is one of the 
useful techniques to such a problem, to the 
calculation of the network equilibrium model with 
combined mode and route choice. In this paper, 
we apply the network equilibrium model proposed 
to the Kanazawa urban area using the simulated 
annealing technique. 
 

1. INTRODUCTION 

Travel time of public transport such as railway and 
Light Rail Transit (LRT) is more reliable than road 
traffic. When assessing the effect of railway transits, 
the reliability should be considered. Otherwise, the 
effect may be underestimated. Therefore, we should 
not only treat both transit and road users 
simultaneously and consistently, but also consider 
travel time uncertainty of cars and the reliability (or 
punctuality) of railway for exact evaluation. 

One of the main causes of uncertainty of road 

traffic is variation of travel demand. We proposed a 
stochastic network equilibrium model, where the 
travel demand is normal-distributed and route flows 
assigned are also normal-distributed [1]. The model 
enables us to assess network’s uncertainty or travel 
time reliability. Then, we proposed a network 
equilibrium model with combined mode and route 
choice considering road travel time uncertainty based 
on the stochastic network equilibrium model [2]. 

The network equilibrium model with combined 
mode and route choice considering road travel time 
uncertainty does not necessarily have a unique 
solution, but may have many local solutions, because 
of the interaction between modes. One of the problem 
is how we deal with this problem.  

The simulated annealing is one of the useful 
techniques to such a problem when calculating the 
network equilibrium model with combined mode and 
route choice. The simulated annealing is applied to 
solve the complicated network design problem in 
many studies, e.g. [3-9]. 

In this paper, we improve the network 
equilibrium model with combined mode and route 
choice considering road travel time uncertainty [2] to 
solve such a problem. We adopt a solution algorithm 
using the simulated annealing technique. Then, we 
apply the model to the Kanazawa urban area using 
the proposed algorithm. 
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2. STOCHASTIC TRAFFIC VOLUMES 

In this paper, the travel demand is normal-distributed 
and route flows assigned are also normal-distributed. 
Assume that each route flow follows an independent 
normal distribution and that the variance of the flow 
is proportional to its mean. 

Let Q 

rs denote the random variable of the 
demand between OD pair rs, E[Q 

rs] the expected 
demand ,and Var[Q 

rs] the variance of the demand. 
Here, we assume that Var[Q 

rs] is � E[Q 

rs].(� is a 
positive constant parameter.) 

The route flows are expressed as: 
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where Fk

rs is the random variable of the flow on 
Route k between OD pair rs, and N[�k

rs, �� k
rs] is the 

normal distribution which has the expected route 
flows �k

rs and the variance of route flows,�� k
rs. 

The flow conservation rule of the model is 
expressed as: 
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where (�k

rs)2 (=�� k
rs) denotes the variance of the 

flow on Route k between OD pair rs. 
Link flows are expressed as: 
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where Xa is the random variable of Link a, R and S 
are the sets of the origin and destination nodes 
respectively, Krs is the set of the routes between OD 
pair rs, and �a

rs
k is 1 if Link a is part of Route k; 

otherwise, 0. 
 
 

3. TRAVEL TIME AND GENERALIZED TRAVEL COST 

A. Travel Time of Road Traffic 

In this paper, we adopt a BPR-type performance 
function for calculating travel time, and link travel 
time can be expressed as � + � x�, where x is a link 
volume and �, �, and � are positive constant 
parameters. When � is an integer (usually 4.0 is used), 
the expected link travel time can be calculated using 
moment generating functions. A moment generating 
function, M(s), is defined as E[esX] . As a property of 
the moment generating function, E[x�] = 

0s)( �s
n

a
n dsMd . The expected link travel time is: 
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where 

ta0: Free-flow travel time 
Ca: Capacity 

 
The expected travel time for Route k between OD 

pair rs, E[Tk
rs] is �

�Aa
ak

rs
a T ][E	  where Ta denotes 

the random variable of the flow on Link a. The 
variance of Link a travel time ,Var[Ta], is 
E[(Ta)2]–E[Ta]2. The variance of travel time for Route 

k between OD pair rs, Var[Tk
rs] is �

�Aa
ak

rs
a T ][Var	 . 

B. Travel Time of Public Transport 

Travel time of buses is influenced of road traffic 
volumes. Assume for simplicity that the bus expected 
travel time on Link a, E[Ta

(bus)] and the variance of 
travel time for Link a, Var[Ta

(bus)] are: 
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where � is a positive constant parameter. 

The train travel time is constant, and is not 
influenced of road traffic volumes. Therefore, the 
variance of train travel time is 0.  
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C. Effective Travel Time 

In this paper, we adopt an effective travel time 
considering user’s risk attitude to the travel time 
uncertainty. The effective travel time contains “safety 
margin” to avoid lateness. 

The effective travel times are expressed as: 
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where 

Vk
rs,c: The effective travel time on Route k 

between OD pair rs of a car 
Vrs

tran: The effective travel time between OD pair 
rs of public transport 

E[Tk
rs,c]: The expected travel time for Route k 

between OD pair rs of a car 
E[Trs

tran]: The expected travel time for Route k 
between OD pair rs of a public 
transport 

Var[Tk
rs,c]: The variance of travel time for Route 

k between OD pair rs of a car 
Var[Trs

tran]: The variance of travel time for Route 
k between OD pair rs of a public 
transport 

� : A parameter on user’s risk attitude 
(� >0; risk averse, �=0; risk neutral, � <0; 
risk loving) 

D. Generalized Travel Cost 

Using the effective travel time, we define a 
generalized travel time for a network equilibrium 
model with combined mode. The generalized travel 
time includes the effective travel time, a fare of a 
public transport, etc. A user chooses a travel mode 
and a route based on generalized travel times.  

The generalized travel costs are expressed as: 
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where 

ck
rs,c: The generalized travel costs for Route k 

between OD pair rs of a car 
crs

tran: The generalized travel costs between OD 
pair rs of a public transport 

wrs: The waiting time between OD pair rs of a 
public transport 

�rs: The access and egress time  
mrs: The fare between OD pair rs of a public 

transport 
�: Value of time 
	: A parameter (a maintenance cost for car) 

 

4. FORMULATION  

A. Assumption on user’s attitude to choose a travel 
mode 

In order to determine the split rate of travel 
modes, a logit type model is adopted. 

The probability that a user chooses a car as 
traffic mode is given by: 
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where 

Prs
c: The probability that a (representative) user 

chooses between OD pair rs chooses a car 
�rs

c: The minimum of the generalized travel costs 
between OD pair rs of a car 


: A positive constant parameter 

B. Assumption on user’s attitude of route choice 

In this paper, we adopt on a generalized 
Wardrop’s equilibrium [10] for road traffic. 

The generalized Wardrop’s equilibrium model is 
formulated as follows:  
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where 

�k
rs,c: An average of the flow on Route k between 

OD pair rs 
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qrs
c: An average of the flow between OD pair rs 

of a car 

C. Formulation 

In this paper, we assume that the choice of travel 
modes is based on a logit type model and user 
chooses the route of minimum generalized cost for 
road traffic. The equilibrium model of this study is 
formulated as follows: 
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where 

qrs
tran: An average of the flow between OD pair 

rs of a public transport 
qrs: An average of the flow between OD pair rs 

 
The above equations can be formulated as a 

non-linear complementary problem: 
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5. A SOLUTION ALGORITHM USING THE SIMULATED 

ANNEALING TECHNIQUE 

The non-linear complimentary problem in this paper 
does not necessarily have a unique solution, but may 
have many local solutions, because of the interaction 
between modes. Therefore, in this paper, we 
introduce the simulated annealing. 

The simulated annealing [7] was introduced by 
Kirkpatrick et al.(1983). The procedure simulates the 
cooling of hot metals to produce a (cold) solid metal. 

The equilibrium model is formulated as a 
non-linear complimentary problem, Eq. (23-32). We 
reformulate an optimization problem to solve the 
non-linear complementary problem. Using the 
Fischer-Burmeister function [11], the optimization 
function, L(x), is given by: 
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The algorithm is as follows:  

 
Step 1�Set up an initial solution (qrs

c(1)�qrs
tran(1)�

�k
rs,c(1)). 

 
Step 2�Update the temporary solution 
(a) Calculate the minimum of the generalized travel 

costs between OD pair rs of a car, �rs
c(n). 

(b) Calculate the auxiliary variable about expected 
flows , �rs

(n)��rs
c(n), using the expression as follows. 
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(c) Calculate the auxiliary variable by finding the 

descent direction about expected link flows, ya
(n) 

by distributing {)rs
(n)} using all-or-nothing method. 

(d) Substitute �(n+1), qc(n +1), and qtran(n +1) as follows 
for Z(·) and obtain the temporary step size by 
minimizing Z(·). 

 
�(n+1)=�(n)+
’(n)(y(n)��(n)) 
qc(n +1)=qc(n)+
’(n)(�(n)�qc(n)) 

qtran(n +1)= qtran(n)+
’(n)(�(n)�qtran(n)) 
  
where 

�: The vector of expected route flows by a car 
qc: The vector of expected OD flows by a car 
qtran: The vector of expected OD flows by a 

public transport 

’�The temporary step size 

 
(e) Obtain the (formal) step size 
(n) by the expression 

as follows using the simulated annealing technique. 
 


(n) = 
’(n) + �(n)  
 
where 


�The (formal) step size 
�(n): The normal random number in the nth 

iteration.  
 
The mean of the normal random number is 0 and 

the variance decreases as the step goes by. In this 
study, �(n) is T0 / (1+n), where T0 is the initial variance. 
The solution is obtained after sufficient iteration. 
 
Step 3�After convergence, the best solution found 
throughout this process is the result of the algorithm. 
 

6. APPLYING TO THE KANAZAWA URBAN AREA 

In this section, we apply the network equilibrium 
model proposed to the Kanazawa urban area using 
the simulated annealing technique. 

Figure 1 shows the network. The network 
consists of 178 nodes and 489 links. As the value of 
the parameter about the variance of demand, � , 42.0 
is used. As BPR-type cost-flow performance function 
for calculating travel time, ta=ta0[1+0.15(x/Ca)4] is 
used. As value of time, �, 40(yen/mimute) is used. As 

 

 
�

�centroid� � �connection node with out of the network�

�bus stop�  �bus route�

 

Figure 1. The Kanazawa urban area network 
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the value of the parameter used in the simulated 
annealing, T0, 0.01 is used. As the convergence 
standard of relaxation problem, the maximum of the 
rate of change of the effective flows, �, is used.  

Table 1 shows the comparison the algorithm 
using the simulated annealing with not using. In this 
case, the algorithm using the simulated annealing is   
quicker at figures than not using. But, the correlation 
coefficient of a public transport is low value at both 
of the algorithms.  

7. CONCLUSIONS 

We propose a method for calculating the combined 
mode and route choice equilibrium model using the 
simulated annealing. In this paper, we apply the 
network equilibrium model proposed [2] to the 
Kanazawa urban area using the simulated annealing 
technique. As a result of this study, it is found that the 
simulated annealing is the useful techniques solving a 
network equilibrium model with combined mode. 
The future work is to improve the accuracy of the 
model, to inspect further the advantage of the 
simulated annealing applying the model to other 
networks and so on. 
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Table 1. Comparison of Algorithms (
=0.003�	=200��=1.0, �=0.01) 

Car Public transport All
Using the simulated annealing 30 0.9192 0.2831 0.8780

Not using the simulated annealing 123 0.8975 0.2812 0.8425

Correlation coefficientThe number of
calculation
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