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Abstract  

The mechanical yielding behavior of the shape memory polyurethane (SMP) and its composite samples 

were investigated to verify the effect of addition of hindered phenol. The composite samples were 

prepared using SMP as matrix and hindered phenol (AO-80) as filler, and then tensile tests were carried 

out at a range of temperatures and with different fixed crosshead speeds. According to the tensile data at 

25°C, the yield stress was increased by adding AO-80. In terms of the Eyring theory, the activation 

volume of deformation units decreased with increase of the amount of AO-80 added. This is because the 

packing of the hard segments is enhanced by addition of AO-80. Consequently, it was suggested that the 

yield process is caused by the rotation of hard segment domains within the deformed plastic domains 

composed of glassy soft segments. 
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Introduction 

 Segmented polyurethane is a multi-block polymer consisting of hard segments and soft 

segments. The hard segments are made up of extended isocyanates associated in domains because of 

rigidity and hydrogen bonding, and act as thermally reversible crosslinks between soft segments of the 

matrix. Most segmented polyurethanes of which the soft segments have glass transition temperature Tg 

near room temperature have shape memory properties, which are shape fixing and shape recovery. Thus 

the elastic response of the soft segment phase is associated with shape memory effect, and the shape 

memory polyurethane (SMP) is in the glassy state in room temperature. 

 In general, reinforcement of polymer is achieved in composites by adding organic or inorganic 

fillers to the polymer matrix. Much research has been conducted on reinforcement of the mechanical 

properties of matrix polymers by adding fillers [1-4]. Tortora et al. [5] reported that incorporation of 

organically modified montmorillonites in polyurethane gave an improvement in the elastic modulus and 

yield stress: on the other hand, the stress and strain at break decreased with increase of the amount of clay 

added. Finnigan et al. [6] found that the loading organically-modified layered silicate leads to an increase 

in Tg of soft segments and to a high Young's modulus, but lowered the yield stress and the strain at break.  

 Our previous work [7] showed that the stress-strain behavior of SMP plastics differs from that 

of typical polyurethane elastomers. The stress-strain curves of the SMP showed a clear yield peak similar 
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to that of common ductile plastic materials at room temperature, because the soft segment phase is in the 

glassy state at room temperature. In addition, it was found that the mechanical properties of the SMP are 

improved by adding hindered phenol compounds and nano-size silica particles. Adding the hindered 

phenol compounds enhanced the yield stress because the hindered phenols were completely dissolved 

around the hard segment domains, leading to packing of hard segments and enhancing the cohesive force 

between hard segments. Conversely, the incorporation of silica particles into the SMP had little effect on 

the yield stress but increased Young's modulus. It was suggested that the bulkiness of the silica particles 

gives resistance to Poisson construction under tensile deformation, resulting in an increase in Young’s 

modulus.  

 Considering the yielding mechanism of glassy polymers, the Eyring rate theory [8-13] has been 

used as a theoretical basis for plastic deformation. According to the Eyring theory, the yielding process is 

assumed to be caused by stress-activated jumps of molecular segments, and the mechanical yield flow is 

characterized by the activation volume of deformation units and the activation energy for the flow process. 

Cook et al. [12] reported that the activation volume of epoxy resin is relatively insensitive to changes in 

crosslink density or composition, but increased as the temperature is raised. Furthermore, Nofal et al. [13] 

showed that for PAN-based carbon fiber/polycarbonate composites, addition of the filler reduced Tg of the 

composites, and the activation volume and activation energy are appreciably increased with increasing 

filler concentration. 
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In our previous work, it was found that the addition of AO-80 strongly enhances the yield stress, 

because the cohesion of hard segment domains was increased due to the packing of hard segments 

induced by adding AO-80. The present work gives a physical insight, using an Eyring rate process, into 

the effect of addition of hindered phenol compounds to SMP on the yield process. In addition, we present 

a deformation model for large-scale transformation of SMP under tensile yield deformation. 
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 Material 

 A polyurethane based shape memory polymer (DIARY, MM4450: DiAPLEX Co., Ltd) with 

weight average molecular weight (Mw) and molecular weight distribution (Mw/Mn) 200×103 g mol-1 and 

2.4, respectively, was as the matrix polymer. The hindered phenol compound 

3,9-bis[1,1-dimethyl-2{β-(3-tertbutyl-4-hydroxy-5-methylphenyl)propionyloxy}-ethyl]-2,4,8,10-tetraoxa

spiro[5,5]-undecane (AO-80) was used as filler for enhancement of the mechanical properties of SMP. 

AO-80 is a commercial antioxidant (ADK STAB AO-80; Asahi Denka Industries Co.). The glass 

transition temperature and melting temperature of AO-80 were 40 and 121C, respectively [14]. 

 

Sample Preparation 

 SMP pellets were kneaded by mixing rollers at 185C for 3 min and a fixed amount of AO-80 

powder from 0 to 10 wt% was subsequently added to the kneaded SMP, then the mixture was kneaded at 

185C for 7 min.  

The kneaded composite samples were compression-molded at 180C for 5 min, then pressed at 

180C under a pressure of 200 kg･cm-2 for 5 min using a laboratory hot press. The composites were then 

cooled slowly at room temperature (25C) to prepare sample sheets with thickness about 200 m for the 

measurements. The characteristics of the samples are given in Table 1. 
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Experimental 

Dynamic Mechanical Analysis 

 Dynamic viscoelastic spectra were determined using a DVE-V4 (Rheology Co.) instrument. 

The activation energy for the glass transition relaxation process was evaluated from the frequency 

dependence of the dynamic mechanical spectra around the glass transition temperature Tg. Rectangular 

specimens with length 20 mm, width 5 mm and thickness about 200 m were used for dynamic 

viscoelastic measurements. The measurements were carried out at constant frequencies in the range 1-200 

Hz with fixed amplitude of 2 m. The tensile storage modulus E', loss modulus E'', and loss tangent tan 

were recorded from 0C to 70C at heating rate 2C min-1 under a nitrogen atmosphere.  

 

Tensile tests 

 Uniaxial tensile behavior was investigated using a tensile instrument (INSTRON model 4466) 

with dumbbell shape specimens with gauge length 10 mm, ligament length 4 mm and overall length 30 

mm. The specimens were punched out from the compression molded sheets. Strain-stress curves were 

obtained at 25, 32 and 45C and humidity <50%, at constant cross-head speeds in the range 1-100 mm 

min-1. The tensile strain was calculated from the ratio of the increment of the length between the clamps 

to the initial gauge length. The tensile stress was determined by dividing the tensile load by the initial 

cross sectional area. 
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Results and Discussion 

The elastic storage modulus E', loss modulus E'' and loss tangent tan of all samples obtained 

from dynamic viscoelastic measurements are shown in Figure 1. Each sample showed a well defined 

glass relaxation at about 45C; the values of E' started to decrease, and the maxima in the E'' curves 

appeared at around that temperature. The values of Tg estimated from the maxima in the E'' curves 

measured at constant frequency of 10 Hz are summarized in Table 1. These glass relaxations are ascribed 

to release of micro-Brownian motions of soft segments. The Tg value was independent of the proportion 

of AO-80, implying that AO-80 has no ability to interact with the soft segments. In addition, for the 

purpose of quantitatively characterizing the molecular mobility of soft segments, the apparent activation 

energy for micro-Brownian motion of soft segments was determined from the frequency dependence of Tg 

on the assumption that the glass transition relaxation progresses in accordance with the Arrhenius 

equation (Figure 2).  










 
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g

Tg

RT

H
exp0                                                        (1) 

where  is the frequency factor, 0 is the pre-exponential factor and R is the gas constant. The 

experimental values of the energy barrier HTg estimated by using Eq.(1) are listed in Table 1. The 

activation energies of all samples were almost the same, independent of the AO-80 content; it follows that 

the addition of AO-80 had no effect on the mobility of soft segments but affected the hard segments. 

 The stress-strain curves of pure SMP and SMP/AO-80(90/10) measured at 25, 32, and 45C 
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and constant crosshead speed of 10 mm min-1are shown in Figure 3. The sharp yield peak that is typical of 

plastic materials was observed in the stress-strain curves of all samples at 25C, and the stress-strain 

curves in the post-yield region showed a neck propagation region (Figure 3(a)). The yield peak became 

broader at 32C and disappeared at 45C. After the neck expanded to the whole of the specimen, a strain 

hardening region appeared where the stress steeply increased again, then the specimen fractured, as 

shown in Figure 3(b). The yield stress values estimated from the maximum in the stress-strain curves in 

the strain region of Figure 3(a) are plotted against the AO-80 content in Figure 4. The yield stress values 

measured at 25C were found to increase with the proportion of AO-80 while the values at 32 and 45C 

were less sensitive to the AO-80 content. This is because the glass relaxation of AO-80 occurs at 40C. 

The thermal activation of molecular mobility due to the glass relaxation of AO-80 overcomes the 

interaction between the hard segments and AO-80, with the result that the addition of AO-80 had little 

effect on the yield stress values of SMP measured at 32 and 45C. 

 The strain rate and temperature dependences of the yield behavior of glassy polymers have 

been commonly found to conform to the model for thermally activated rate processes proposed by Eyring 

[15]. 

The fundamental flow process is the jump of a deformation unit from its original position to a 

more stable state under the action of a shear stress. We assume that this flow process takes place at the 

yield point of the tensile deformation, and that there is no contribution from the hydrostatic stress. In the 
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case of sufficiently large yield stress levels, we have 
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where   is strain rate, 0  is an arbitrary constant, H is the activation energy, y is the yield stress, 

and V* is the activation volume. Using Eq. (2), we can estimate the activation volume from the results of 

tensile tests performed with different crosshead speeds or strain rates at a fixed temperature. In addition, 

the activation energy can be obtained from tensile test data obtained at different crosshead speeds and 

different temperatures. 

 As shown in Figure 5, the plot of yield stress y versus ln  at different temperatures gives a 

set of straight lines which fit Eq. (2) well. The plots at 32 and 45C gives parallel lines, the slope of which 

is large than that of the line at 25C, indicating that the yield flow mechanism at 25C is different from 

that at 32 and 45C. This behavior was also seen for other SMP/AO-80 samples. The slope of the lines 

gives the activation volume of the deformation unit. Figure 6 shows that the activation volume decreased 

linearly with AO-80 content at 25°C. This suggests that the addition of AO-80 increased the resistance to 

flow of the deformation units in the yield region. By contrast, the activation volumes at 32 and 45C had 

almost the same value, and were independent of the AO-80 content. This is because the glass transition 

relaxation of AO-80 is around 40C and the AO-80 molecules are released from the hard segment 

domains. 

The activation energies of all samples (given in Table 2) were almost constant, indicating that 
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the energy required for flow of the deformation units without tension was independent of AO-80 content. 

It is interesting to note that the values of the activation energy were almost in accordance with the 

activation energy calculated from the dynamic mechanical data. This implies that the yielding process is 

closely related to the mechanical activation of soft segments. 

 Cooper et al. [16,17] studied the orientation behavior of polyurethane block copolymers, and 

showed that negative orientation of hard segments was obtained at low strains, and at the higher strains 

the orientation direction became the direction of stretching. In addition, according to the in-situ SAXS 

study by Blundell et al. [18], hard phase domains behaving as particles are affinely deformed under a 

tensile deformation. Considering that the hard segment domains were formed by hydrogen bonding 

between urethane groups of hard segments, the growth of the length L in the direction of the chain axis is 

restricted by the alternating hard and soft segments and the hard segment domains grow only in the 

stacking direction [16]. It follows that the ratio L/D between the length L and thickness D of the hard 

domains is extremely small. Here we extend the micro-morphology model for elastic SMP to that of 

plastic SMP where the hard segment domains are assumed to be encapsulated by a glassy soft segment 

phase. 

On the basis of the present experimental results, we present a deformation model for the 

present SMP plastics in Figure 7(a). The domain in which the hard segment domains are surrounded by 

glassy soft segments below Tg is termed the ''plastic domain'', and this plastic domain acts as the 
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deformation unit in the yielding process. In the initial tensile deformation (Figure 7(b)), the plastic 

domains undergo affine deformation in the tensile direction, i.e. the plastic domain is affinely compressed 

perpendicular to the tensile direction by Poisson construction. Accordingly, Young's modulus is 

determined by the resistance to construction of the plastic domains. As the specimen is subsequently 

extended beyond the initial strain region, the affine deformation of the plastic domains exerts a direct 

construction force on the stacked hard segment domains. When the mechanical energy stored in the 

deformed plastic domains exceeds a threshold level, the hard segment domain starts to rotate to the 

stretching direction (Figure 7(c)), with the results in that the hard segment orients to the direction 

perpendicular to the extension, as demonstrated by Cooper et al [16]. Furthermore, according to Yeh et al. 

[19], the hard segment lamellae and stacks are both tilted paralleled to the draw direction, and then the 

hard domains rotate to the stretching direction with the hard segments perpendicular to the draw axis. 

Consequently, the torque exerting hard segment domains are likely to be directly related to the yield stress, 

and the mechanical energy required for the rotation corresponds to the ''yield energy''. After rotation of the 

hard domains the stored energy is released, leading to a yield drop in the stress-strain curve. 

 Our previous study [7] showed an upward (higher wavenumber) shift of a hydrogen-bonded 

C=O stretching band at around 1710 cm-1 due to the addition of AO-80. Hence the addition of AO-80 

compresses the hard segment domains as illustrated in Figure 8. The deformation model of SMP and 

SMP/AO-80 in the yield region is schematically illustrated in Figure 9, where the arrow in the hard 
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segment domain denotes the stacking direction of the hard segments. Bearing in mind that the thickness 

of the hard segment domains is reduced by the addition of AO-80 and the size of the plastic domain is 

independent of the addition of AO-80, a higher strain is necessary to rotate the hard segment domains for 

SMP/AO-80 as compared with SMP. Consequently, the force required for rotating the hard segment 

domains of SMP/AO-80 becomes higher than for SMP, resulting in the yield stress increasing with 

addition of AO-80. In the model, the thickness of the stacked hard segment domains acts as the effort 

distance l, and the torque required for rotating the domains is given by lFN   where F is the moment 

from external loads. 

In view of the fact that the yield of SMP follows the activated mechanism of soft segments, the 

yield can be considered to be caused by the plastic flow of soft segments around the hard segment 

domains, brought about by the rotation of stacked hard segment domains to the stretching direction. It is 

likely, therefore, that the activation volume V* obtained from the application of Eyring's theory to the 

yielding behavior corresponds to the flow volume of the soft segments within plastic domains (see Figure 

9). Furthermore, the fact that the activation volume at 25C decreases with increasing amount of AO-80 

added as shown by Figure 6, is consistent with the reduction of the volume of the flowing soft segments 

brought about by the compression of the hard segment domains due to the addition of AO-80. We found a 

linear relationship, shown in Figure 10, between the activation volume and the positive shift of C=O 

bands in FTIR spectra, reflecting the aggregation of hard segments. This suggests that the thickness of 
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hard segment domains is decreased by adding AO-80. The details of the FTIR measurements can be 

found in our previous work [7]. According to Figure 10, an empirical relation is obtained as follows:  

 **
0 VV                                                           (3) 

where is the proportionality constant (2.35×103 mol/(cm m3)), and V0
* and V* are the activation 

volumes of pure SMP and SMP/AO-80 respectively (V*
0 was estimated from the intercept of the 

activation volume in Figure 6.). This is likely because the frequency shift  reflects the packing of hard 

segment domains from addition of AO-80. The torque N acting on the hard segment domains in the yield 

process can be considered to be the activated mechanical energy in the Eyring process: 

*VlFN y                                           (4) 

Assuming that the threshold level for the yielding process is the excited mechanical energy in Eyring's 

rate theory, the value of *Vy  corresponds to the ''yield energy''. Then Eq.(3) can be rewritten as 













y

yV



 0
0

* 1                                             (5) 

where 0y  is the yield stress of SMP and y  is the yield stress of SMP/AO-80. Our theoretical 

considerations lead us to the result that the peak shift  is proportional to (1-y0/y). As shown in 

Figure 11 the experimental values almost fall on the theoretical lines calculated from Eq. (5). Thus the 

addition of AO-80 reduces the activation volume, leading to increase of the yield stress y  required for 

plastic flow. After the yielding process, the plastic domains will be fragmented so that the external load is 

directly exerted on the hard segment domains surrounded by soft segments, and the hard segment 
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domains will orient to the stretching direction in the post-yield region as suggested by Cooper et al [16]. 

Here we consider the relationship between the thermal activation process of Arrhenius type 

(Eq.(1)) and the mechanical activation process estimated from the Eyring's rate theory. According to 

Eyring's theory, the energy barrier can be considered suppressed by the mechanical work V*/2 when the 

stress  was applied to the system. The rate for mechanical flow of the deformation units can be 

formulated by Eq.(2), where this flowing stress corresponds to the yield stress y. 

Actually, the values of each kinetic parameters for glass relaxation and mechanical yielding 

processes calculated from the experimental data in Tables 1 and 2 were found to be almost the same with 

each other (Table 3).  

RT

VH

RT

H y

g

Tg 2*



                                                   (6) 

The experimental fact that HTg and H is in good agreement as well as Eq.(6) is held indicates that the 

mechanical yielding is caused by supplying the mechanical work V*/2 to the thermal energy due to 

temperature reduction from Tg. This quantitative agreement in Table 3 also strongly suggests that the yield 

process is caused by the movement of hard segments within the plastic domains composed of glassy soft 

segments. 
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Conclusions 

Composite samples were prepared using SMP as a matrix and hindered phenol (AO-80) as filler 

with proportion 0-10 wt%. The dynamic viscoelastic measurements showed that the values of Tg and the 

activation energy corresponding to the glass relaxation of soft segments are almost constant despite the 

addition of AO-80. The results let us to conclude that AO-80 interacts not with soft segments but with 

hard segments. In addition, the tensile tests at different temperatures showed that the yield stress is 

increased by adding AO-80 at 25C, however the yield stress is independent of the addition of AO-80 at 

higher temperatures because the glass relaxation of AO-80 occurs at about 40C. According to Eyring’s 

rate theory, the activation volume of the deformation unit decreased linearly with increasing AO-80 

content at 25C, indicating that the addition of AO-80 inhibits the flow of deformation units. In addition, 

the activation energies for all samples were almost the same and correspond to the activation energy for 

mechanical relaxation of soft segments. This means that the addition of AO-80 has no effect on the energy 

required for flow of the units without tension, and the yielding process is related to the activation 

mechanism of soft segments. Considering these results and previous work [12,13], we suggest that the 

yield process is caused by the rotation of hard segment domains within the plastic domains composed of 

glassy soft segments encapsulating hard domains. 
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Figure Captions 

 

Fig.1 Dynamic mechanical spectra of SMP and SMP/AO-80 samples measured at constant frequency of 

10 Hz. 

 

Fig.2 Arrhenius plots of dynamic mechanical data in the glass relaxation region of soft segments. 

  

Fig.3 Stress-strain curves (a) in the yield region and (b) over the whole strain region of SMP and 

SMP/AO-80(90/10); measured at 10 mm min-1 and at 25, 32, and 45C. 

 

Fig.4 Yield stress normalized by that of pure SMP, as a function of AO-80 content at 25, 32, and 45C. 

 

Fig.5 Strain rate dependence of yield stress of pure SMP at different temperatures. 

 

Fig.6 AO-80 content dependence of the activation volume at different temperatures estimated from 

Eyring's theory. 

 

Fig.7 Yield deformation model of SMP below Tg of the soft segments. 
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Fig.8 Schematic illustrations of the effect of AO-80 addition on the aggregation state of hard segments: 

(a) pure SMP, and (b) SMP/AO-80. 

 

Fig.9 Deformation model for yielding process of pure SMP and SMP/AO-80. 

 

Fig.10 FTIR peak shift of the hydrogen-bonded C=O band (1710 cm-1) induced by the addition of AO-80, 

versus the activation volume from Eyring's theory. 

 

Fig.11 The dependence of (1-y0/y) on the peak shift of the hydrogen-bonded C=O band, where y0 and 

y are the yield stresses of SMP and SMP/AO-80, respectively. 

 

Table 1 Characteristics of glass transition of soft segments. 

 

Table 2 Results of Eyring analysis for mechanical yielding activation volume and activation energy. 

 

Table 3 Kinetic parameters for glass transition and mechanical yield processes. 
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Table 1 

Sample  Tg/°C HTg/kJ mol-1 

SMP 48 530 

SMP/AO-80(99/1) 48 530 

SMP/AO-80(97/3) 48 530 

SMP/AO-80(95/5) 47 510 

SMP/AO-80(92/8) 47 510 

SMP/AO-80(90/10) 48 510 

Tg: glass relaxation temperature; HTg: activation energy for glass relaxation 
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Table 2 

Sample  V*/10-3 m3 mol-1 

25C 32C 45C 
 

H/kJ mol-1 

SMP 1.61 0.847 0.981 520 

SMP/AO-80(99/1) 1.40 0.859 0.908 520 

SMP/AO-80(97/3) 1.36 0.987 0.970 520 

SMP/AO-80(95/5) 1.20 1.02 1.01 530 

SMP/AO-80(92/8) 1.13 1.01 1.02 460 

SMP/AO-80(90/10) 1.08 1.08 1.03 460 
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Table 3 

AO-80 content/wt% 

g

Tg

RT

H
 

RT

VH y 2*
 

0 184 180 

1 184 186 

3 184 187 

5 178 193 

8 178 166 

10 177 167 
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