Comparison of activation functions in multilayer
neural network for pattern classification
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I INTRODUCTION

Advantage of multilayer neural networks (NNs)
trained by the back-propagation (BP) algorithm is to
extract common properties, features or rules, which
can be used to classify data included in several
groups [1]. Especially, when it is difficult to ana-
lyze the common features using conventional meth-
ods, the supervised learning, using combinations of
the known input and output data, becomes very use-
ful.

We studied the multi-frequency signal classifica-
tion using multilayer neural network[5]-[7]. Since
the frequencies are assigned alternately to several
groups, it is very difficult to distinguish the wave-
forms within a short period, and the limited number
of samples by conventional methods. The follow-
ing advantages of the NN over conventional methods
were confirmed. The neural network can classify the
signals using a small number of samples and a short
observation period with which Fourier transform can
not classify. The number of calculation is sufficiently
smaller than the convolution calculation, required in
digital filters.

In the previous work, a sigmoid function was used.
However, it is not always optimum. Therefore, prop-
erties of activation functions are investigated in this
paper. For this purpose, some typical functions are
taken into account. They include a sigmoid function,
a radial basis function[2] and a periodic function.
They will be compared with each other in classifying
multi~frequency signals. Effects of noisy signals will
be also discussed in the training and classification
processes.

As a result, a rule of thumb for selecting the suit-
able functions and the combination of several kinds
of functions will be provided.

II MULTI-FREQUENCY SIGNALS
Multi-frequency sig‘uals are defined by

Z Amrsin(wp.nT + ¢ ) (1)

r=1

1~ N, wp =27fpr

Tpm(n) =

n =

T is a sampling period. M samples of z,m(n),m =
1~ M , are included in the group X, as follows.

X, = {zpm(n)ym=1~M}p=1~P (2)
In one group, the same frequencies are used.
Fp=[fply,fp‘?.w--rpr]szpz1~P (3)

Amplitude A,,, and phase ¢,,, are generated as
random numbers, uniformly distributed in following
ranges.

0 < Amr S 1) 0 S ¢mr < 2n (4)

IIT MULTILAYER NEURAL NETWORK

3.1 Network Structure and Equations

A single-layer neural network is taken into account.
N samples of the signal z,,(n) are applied to the
input layer in parallel. The nth input unit receives
Zpm(n). Connection weight from the nth input to
the jth hidden unit is denoted wy,j. The input and
output of the jth hidden unit are given by

N-1

net; = Z WajTpm(n) + 6; (5)
n=0
yi = fu(net;) (6)

Letting the connection weight from the jth hidden
unit to the kth output unit be wjg, the input and

output of the kth output unit are given by
J-1

nety = Z wiky; + Ok (7)
j=0
ye = fo(nety) (8)

The activation function of the output layer is the
sigmoid function.

The number of output units is equal to that of
the signal groups P. The neural network is trained
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so that a single output unit responds to one of the
signal groups.

3.2 Training and Classification

Signals are categorized into training and untrain-
ing sets, denoted X7, and Xyp, respectively. Their
elements are expressed by Trpm(n) and zypm(n), re-
spectively.

The neural network is trained by using zrpm(n),
m = 1 ~ Mr, for the pth group. Here, My is the
number of the training data. After the training is
completed, the untrained signals £y pm(n) are applied
to the NN, and the output is calculated. For the
input signal zypm(n), if the pth output y, has the
maximum value, then the signal is exactly classified.
Otherwise, the network fails in classification.

IV SELECTION OF ACTIVATION
FUNCTIONS

What kinds of activation functions should be se-
lected is very important. At the same time, it is a
very difficult problem. In this paper, the following
typical functions are selected for the hidden layer.

When binary target can be considered, then the
sigmoid function can be used in the output layer.

Sigmoid function:

1
Yj = fsig(net;) = Tt (9)
Sinusoidal function:
yj = fsin(net;) = sin(wnet;) (10)
Gaussian function: .
Yi = foau(net;) = e "4 (11)

The input vectors are distributed in a N-
dimensional space. Three functions divide the space
as follows:

>ay, netj > Tu

fn'y("etj) { <a_, net,' < Tsig (12)
) , > ay, |netj —(2nm + §)| < Tyin
f,.,.(net,){ <a-, |net; —(2nx + in)| < Tin (13)
[ >as Inet)| < Ty
foau(net;) { <a_, Inet;] > Tyau (14)

Here, n is integer.

These space division fundamental, and indepen-
dent to cach other. This is an idea behind selecting
the above three functions.

Next step of selecting activation functions is how
to combine them. It is also highly dependent on the
distribution of the input signals, and is very hard
to determine before hand. For this reason, both the

homogenecous function and the composite functions
are investigated.

V SIMULATION OF TRAINING AND
CLASSIFICATION WITHOUT NOISE

5.1 Multi-frequency Signals

The number of frequency components is R = 3,
and the signal groups is P = 2, respectively. The fre-
quency components are located alternately between
the groups as follows: F} = [1, 2, 3] Hz for Group 1
(#1) and F, = [1.5, 2.5, 3.5] Hz for Group 2 (#2).
The sampling frequency is 10 Hz, that is T = 0.1
sec. The number of samples N is 10. Therefore, the
observation interval is 1 sec.

5.2 Training and Classification

ZTrpm(n), m = 1 ~ 200 and Zypm(n), m =1 ~
1800 are used. Simulation results are shown in Table
1. The training converged using three hidden units
for all activation functions. In the case of the Gaus-
sian and the sinusoidal function, the training almost
converged with one hidden unit. Detailed discussion
will be provided in Sec. 7.

Table 1:Classification rates by three functions{%)]

Activation | Hidden || Training Untraining
Function Unit #1 #2 #1 #2
Sigmoid 1 44.5 | 100 | 47.9 | 100

3 100 | 100 | 97.4 | 100

Sinusoidal 1 86.0 | 99.0 | 79.8 | 99.0

3 100 | 100 | 92.6 | 100
Gaussian 1 99.5 | 100 98.1 | 100
3 100 | 100 | 99.1 [ 99.9

VI SIMULATION USING THREE
ACTIVATION FUNCTIONS

6.1 Additive Noise

White noise, denoted noise(n), is generated as ran-
dom number, and is added to the signal zpm(n).
Noisy signal a:;,m(n) is given by

Tpm(n) = Tpm(n) + noise(n) (15)
6.2 Training and Classification

The noisy multi-frequency signals are used for
training. N is 10 and M is 200 for each group. After
training, untraining signals with white noise are ap-
plied, and classification rates are evaluated. White
noise is uniformly distributed in the range £0.5. The
results are shown in Table 2. Columns with (A) and
(B) list the recognition rates using the training sig-
nals without and with white noise, respectively. The
NN trained without noise is also used for comparison.
From these results, it can be confirmed that training
using noisy signals is useful to achieve robustness.
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Table 2: Classification rates using training signals
(A) without and (B) with white noise [%]

Activation | Hidden (A) (B)
Function Unit #1 #2 #1 #2
Sigmoid 1 47.0 | 52.9 | 928 | 28,5

3 97.3 | 84 82.6 | 78.0

Sinusoidal 1 80.2 | 209 | 61.7 | 87.7

3 659 | 36.2 ] 79.9 | 82.7
Gaussian 1 98.2 | 4.8 71.7 | 65.9
3 85.3 1 463 [ 79.8 [ 70.2

6.3 Convergence Rates

Figure 1 shows learning curves obtained using the
three hidden units. The NN with the Gaussian func-
tion can converge faster than the other. However, the
error does not well decreased. The NN with the sinu-
soidal function can also converge faster. At the same
time, the error can be well decreased. A convergence
rate using the sigmoid function is slow. However,
the error can reach to the same level as in using the
sinusoidal function.
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Figure 1: Learning curves

VII Convergence Property Using Single
Hidden Unit

7.1 Pure Multi-frequency Signals

The NNs trained without noise are further inves-
tigated by hidden unit input and output distribu-
tion. Figure 2 illustrates this distribution, using the
sigmoid (al), the sinusoidal (b1) and the Gaussian
functions (c1).

In the case of the sigmoid function, the data #1
and the data #2 have to be located the right or left
side. This is a fundamental space division property
of the sigmoid function. Thus, the network have to
adjust the weights, with which the hidden unit in-
put data are completely separated into the right or
the left side. The data #2 is concentrated at the
edge of the a4 as shown in Eq.(12), but the data #1
is distributed widely. From this result, the distri-
bution of the hidden unit inputs generated by the
multi-frequency signals cannot satisfy the require-
ments given by Eq.(12).

In the case of the sinusoidal function, the hidden
unit inputs of the data #2 locate near one of the
peaks and the data #1 distributed widely. The sinu-
soidal function have large differential coefficient ex-
cept for the peak. Then the data #2 can be shifted
around one of the peaks fast. On the other hand, the
data #1 can locate in the region of fs;.(net;) < a_.
Therefore, the requirement of the fundamental di-
vision property given by Eq.(13) is satisfied by the
multi-frequency signals.

In the case of the Gaussian function, the data
#2 locate around the peak. Differential coefficients
around the peak are large, then, the data #2 can be
shifted toward this area very fast. Most of the data
#1 are distributed both sides.

From these results, the hidden unit inputs of the
multi-frequency signals can be concentrated on a nar-
row range for one group, and the other is distributed
widely for the other group.

Thus, the space division property of the Gaussian
function is best match with the distribution of the
multi-frequency signals. This function can provide
the best accuracy as shown in Table 1.

7.2 Noisy Multi-frequency Signals

In Figure 2 , (a2), (b2) and (c2) correspond to
the hidden unit inputs and output distributions, in
which random noise is added. The network is trained
by using the pure multi-frequency signals. After the
training, the untrained noisy signals are applied to
the NN. The distribution of the hidden unit inputs
are easily spread by adding the noise.

In the case of the sigmoid, the data #2 distributed
widely. However, the most of the data #2 still re-
main in its own region. Because it has wide stable
regions. This is a reason why it can provide better
accuracy than the others.

In the case of the Gaussian, the data #2 dis-
tributed over the other region. Because a single peak
is very narrow. Then these data easily move over the
other group’s region. Thus, the accuracy is decreased
by adding the noise.

The sinusoidal case, the data #2 also widely dis-
tributed. However, the sinusoidal function is a peri-
odic function, having several narrow stable regions.
Thus, it can provide higher accuracy than that of the
Gaussian function.

VIII Convergence Property Using Several
Hidden Units

8.1 Homogeneous Activation Funtions

Figures 3, 5 and 7 show distributions of the hidden
unit inputs and outputs. The NNs are trained by
using the signals without noise. The sigmoid, the
sinusoidal and the Gaussian functions are separately
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Figure 2: Hidden unit input and output distributions

used. For each figure, (a), (b) and (c) correspond to
one of the hidden unit. (al), (b1) and (cl) are the
response for the data #1, and (a2), (b2) and (c2) are
for the data #2.

From these figures, there are two type of distri-
butions, that is concentrated and dispersed distribu-
tions. One of two groups locates at near the peak
of the functions and the other is widely spread. The
overlap of the distributions between the two groups
cause miss classification.

In Fig.3, it is very interesting that the data #2
locate at the middle of the slope. Since this region is
net a stable region, it can be expected that accuracy
is easily degraded by adding the noise. As shown in
Table 2, it is true. The classification rates are 97.3%
for the data #1 and 8.4% for the data #2. Accuracy
for the data #2 is greatly reduced.

Figures 4, 6 and 8 show distribution of the inputs
of the two output units. In these figures, (a) and
(b) correspond to the data #1 and the data #2, re-
spectively. The region of overlap of the solid and
the doted lines will cause miss classification. We can
investigate from these figures, how the hidden units
separate the signals into two groups. In the case of
the data #2 is applied, there are no overlap. So,
the hidden unit input space is well separated. In the
case of the data #1 is applied, there are some over-
lap. These overlaps cause miss classification. These
results are consistent with the accuracies shown in

Table 1.

From the figures, the input space of the output
units are well separated by the sigmoid and sinu-
soidal function. So, it can be concluded that three
hidden units cooperate to make the distribution of
the inputs to the output unit to be linearly separa-
ble.

8.2 Composite Activation Functions

Three functions can be combined in the same hid-
den layer. This combination is called ’*Composite Ac-
tivation Function’ in this paper.

Table 3 shows classification rates using the multi-
frequency signals without noise. In this table, the
symbols D through J correspond to the combination
of the functions.

The combination C, having three Gaussian func-
tions, achieves the best accuracy. The conver-
gence rate is also the fastest among three functions.
The combination D, having all activation functions,
achieves better accuracy than the others except for
C. However, I and J, which include two Gaussian
functions, are worse than D.

K through M are compared with E through J. E
and F are better than K. Then adding both the sinu-
soidal and the Gaussian to the sigmoid can improve
the performance. H is better than L, but G is worse
than L. Then adding the Gaussian to the sinusoidal
can improve, while the sigmoid can not do.

In the most of the combinations, the Gaussian
achieves better accuracy. Then, property of cach
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function does not appear straightly in the combina-
tions.

Table 4 shows classification rates of the network
trained using the noisy signals. Training itself did
not converge in all cases. This means that the accu-
racy is not 100% for all combinations of the functions.
The network using the homogeneous activation func-
tion A and B has higher accuracy than the others.
However, C does not achieve better accuracy than
the others. Then the homogeneous activation func-
tion can not always achieve better accuracy than the
composite activation functions.

Table 3: Classification rates using signals without noise

Combination Training Untraining

Sig | Sin | Gauss F#1 #2 #1 Ave.
A 3 0 0 100 100 | 974 [ 100 | 98.7
B 0 3 0 100 | 100 | 926 | 100 | 96.3
cCl o 0 3 100 | 100 | 99.1 | 99.9 | 99.5
D 1 1 1 100 [ 100 100 [ 98.3 [ 99.1
E 2 1 0 99.5 | 100 | 96.6 | 984 | 97.5
F 2 0 1 100 100 | 974 | 100 | 98.7
G 1 2 0 93.5 ] 98.5 | 83.8 [ 97.3 [ 90.6
H 0 2 1 100 | 100 | 99.9 | 97.8 | 98.9
1 1 0 2 100 100 | 96.2 | 99.6 | 97.9
J 0 1 2 100 100 | 97.3 | 98.9 | 98.1
[N 2 0 0 99.0 | 100 | 94.0 | 100 | 97.2
L 0 2 0 860 | 955 | 86.8 | 97.3 | 92.1
M 0 0 2 99.5 [ 985 | 99.4 | 98.8 | 99.1

The network using the composite activation func-
tion J has higher accuracy, while C and I have worse
accuracy than the others. G and H also provide good
accuracy. E and F achieve worse accuracy while A
provides good one.

K through M are compared with E through J. G
and H are better than L. Then adding the sigmoid or
the Gaussian to the sinusoidal works well. K is better
than E and F. Then adding both the sinusoidal and
the Gaussian to the sigmoid does not work well.

The sinusoidal and sigmoid functions achieve good
accuracy in the most of the combinations. However,
the sinusoidal combination does not always achieve
better accuracy. Thus, property of each function is
not straight in the combination, as previously dis-
cussed in the no additive noise case.

Table 4: Classification rates using signals with noise

Combination Training Untraining

Sig | Sin [ Gauss #1 #2 F1 2 Ave.
A 3 0 0 83.5 [ 86.0 | 826 | 78.9 | 80.8
B 0 3 0 845 | 89.0 | 79.9 | 82.7 | 81.3
C 0 0 3 87.0 [ 81.5 | 798 | 70.2 | 75.0
D 1 1 1 77.0 1925 | 69.1 | 843 [ 77.6
E 2 1 0 88.5 | 77.0 | 80.9 | 67.8 | 74.4
F 2 0 1 78.5 | 985 | 63.8 | 85.9 | 749
G 1 2 0 74.0 1 925 | 694 | 87.0 | 78.2
H 0 2 1 79.0 [ 925 | 72.3 | 84.3 8.3
1 1 0 2 84.0 | 87.5 | 735 [ 75.9 747
J 0 1 2 84.5 | 82.0 [ 81.0 | 785 | 79.8
[N 2 0 0 91.5 [ 705 | 81.3 | 69.3 | 753
L 0 2 0 80.3 [ 83.0 | 79.1 | 73.6 | 76.4
M 0 0 2 75.5 [ 850 | 746 | 76.1 | 75.4

IX CONCLUSIONS

Properties of the activation functions for multi-
frequency signal classification has been discussed us-
ing multilayer neural network supervised by BP algo-
rithm. The Gaussian function can provide the high-
est performance for the signals without noise. How-
ever, it is sensitive to the additive noise. The sig-
moid function is not useful for a single hidden unit.
If several hidden units are used, then the sigmoid
function becomes useful, and is insensitive to the ad-
ditive noise. The sinusoidal function is useful for
noisy signal.
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