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Abstract. To clarify the nonequilibrium processes of self-gravitating systems, we examine
a system enclosed in a spherical container with reflecting walls, by N-body simulations. To
simulate nonequilibrium processes, we consider loss of energy through the reflecting wall, i.e.,
a particle reflected at a non-adiabatic wall is cooled to mimic energy loss. We also consider
quasi-equilibrium structures of stellar polytropes to compare with the nonequilibrium process,
where the quasi-equilibrium structure is obtained from an extremum-state of Tsallis’ entropy.
Consequently, we numerically show that, with increasing cooling rates, the dependence of the
temperature on energy, i.e., the e T curve, varies from that of microcanonical ensembles (or
isothermal spheres) to a common curve. The common curve appearing in the nonequilibrium
process agrees well with an e-T curve for a quasi-equilibrium structure of the stellar polytrope,
especially for the polytrope index n ~ 5. In fact, for n > 5, the stellar polytrope within an
adiabatic wall exhibits gravothermal instability [Taruya, Sakagami, Physica A, 322 (2003) 285].
The present study indicates that the stellar polytrope with n ~ 5 likely plays an important role
in quasi-attractors of the nonequilibrium process in self-gravitating systems with non-adiabatic
walls.

1. Introduction
Self-gravitating or long-range attractive interacting systems exhibit several peculiar features,
such as negative specific heat and nonequilibrium non-extensive statistical mechanics. For
example, negative specific heat plays an important role in astrophysical phenomena, especially in
the gravothermal catastrophe of globular clusters [1, 2]. In such systems, standard Boltzmann—
Gibbs statistics are not valid because of the existence of long-range potentials. Therefore,
non-extensive statistics have been investigated based on Tsallis’ generalized entropy [3, 4], by
Plastino et al. [5], Abe [6], Chavanis [7] and many other researchers (see e.g. Ref. [4] and
references therein).

Recently, from an astrophysical viewpoint, Taruya and Sakagami [8, 9, 10, 11, 12] have
elegantly shown that an extremum-state of Tsallis’ entropy, i.e., a stellar polytrope, has a
consistent thermodynamic structure, which implies a thermodynamic instability because of



the negative specific heat. They focused on quasi-equilibrium structures of stellar polytropic
systems and examined a system enclosed in a spherical container with reflecting walls. This
result suggests that the stellar quasi-equilibrium distribution can be described by the stellar
polytrope and that the stellar polytropic distribution is expected to be a quasi-attractor of self-
gravitating systems. The earlier studies mainly investigated microcanonical ensembles, since a
system within an adiabatic wall or the so-called Antonov problem [1, 2, 13, 14] is essential for
studying self-gravitating systems such as globular clusters.

In fact, from the viewpoint of thermodynamic properties, the influence of energy loss or
variation in energy (e.g., the evaporation of stars from globular clusters or radiation loss) has
not been examined in detail, with only a few studies [15] considering this influence. Thus
it is not yet clear whether the stellar polytrope can be applied to a nonequilibrium process
with energy loss and it is therefore important to investigate numerically the thermodynamic
properties of the nonequilibrium process with energy loss. In this context, we examine a self-
gravitating system enclosed in a spherical container with reflecting walls, by N-body simulations.
In this study, a particle reflected at a non-adiabatic wall is cooled to mimic energy loss for
nonequilibrium processes. Through this investigation, we attempt to apply the stellar polytrope
to the nonequilibrium process with a non-adiabatic wall.

The present paper is organized as follows. In Sec. 2, we give a brief review of numerical
techniques for simulating a self-gravitating system enclosed in a spherical container with non-
adiabatic walls. In Sec. 3, we briefly review a quasi-equilibrium structure of stellar polytropes
calculated from an extremum-state of Tsallis’ entropy. In Sec. 4, we present the simulation
results and examine the nonequilibrium process with non-adiabatic walls, by a comparison with
the stellar polytrope. Finally, we present our conclusions. In this paper, the results shown in
Ref. [16] are reconsidered and discussed from the viewpoint of an application of Tsallis’ entropy.

2. N-body simulations
We consider a simple system consisting of N point-particles enclosed in a spherical container of
radius R with reflecting walls, as shown in Fig. 1. To simulate nonequilibrium processes, we
consider the loss of energy through the reflecting wall, i.e., a particle reflected at a non-adiabatic
wall is cooled to mimic energy loss. In this section, we briefly review a method to simulate the
nonequilibrium process, according to Ref. [16].

To simulate a self-gravitating N-body system, we integrate the set of classical equations of
motion for the particles interacting through the Plummer softened potential,
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where r and r( represent the distance between particles and the softening parameter, respectively

Adiabatic wall or non-adiabatic wall

Figure 1. Setup for the N-body simulation. We
consider a simple self-gravitating system consisting
of N point-particles enclosed in a spherical
container of radius R with adiabatic or non-
adiabatic walls.

Point-particles



[17, 18, 19]. The total energy E of the self-gravitating N-body system is defined as
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E = Exg + Epg = Z

9 - 2 27 (2)
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where Exp, Epp and m; represent kinetic energy, potential energy and the mass of the i-th
point-particle, respectively. G, v; and r;; represent the gravitational constant, the speed of the
i~th particle and the distance between the i-th and j-th particles, respectively. The mass of each
particle is set to be m. Applying traditional conventions for self-gravitating systems, the total
rescaled energy ¢ is defined as

R R
€ SKE + 6PE GM2 G(mN)27 (3)

where M, exp and epg represent the total mass, rescaled kinetic and potential energies,
respectively. In this study, the unit of time is \/R3/(Gm). The units are set to be G =

R = m =1, to ensure generality of the system. In our units, the temperature T of the system

is given by
2 2
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Sop, CKE = 35K, (4)

assuming that the kinetic energy corresponds to the temperature and that Boltzmann’s constant
kB is 1.

In this study, we consider a small system consisting of N = 250 point-particles in a spherical
container of radius R = 1. For simulating the N-body system, the set of equations of motion is
integrated using Verlet’s algorithm. To maintain the accuracy of our simulations, the time step
At is selected as 1075, based on a simulation with several different time-steps [17]. Through
the present simulations, all interparticle forces are calculated directly at each time step At. In
this paper, all the numerical results are averaged over 30 simulations with identically prepared
initial setups, to observe an averaged behavior of the system.

To mimic a spherical adiabatic wall for microcanonical ensembles, the radial component of
the velocity of a particle is reversed when it reaches the wall [17]. Accordingly, the velocity
speed |v;| of the particle is conserved through the reflection. In contrast, to mimic a spherical
non-adiabatic wall for nonequilibrium processes, the velocity after the reflection is reduced as

vgreﬂected) _ (1 . 7)’01'7 (5)
where « is a velocity reduction rate or a cooling rate [16]. That is, a non-adiabatic wall is
employed to simulate energy loss by reflecting walls. The cooling rate v is varied from 0.001
to 0.8, to investigate the influence of the non-adiabatic wall. Note that v = 0 corresponds
to the adiabatic wall for a microcanonical ensemble. We have checked the total angular
momentum through our simulations and confirmed that the variation in total angular momentum
is sufficiently small to avoid a phase transition of the system.

For the Plummer softened potential, the softening parameter ry is set to be 0.005R.
Accordingly, the collapse and explosion energies for the system with an adiabatic wall [18] are
Ecoll  —0.339 and €4y = 0.267, respectively. In such self-gravitating systems, the crossing time
7. and the relaxation time 7, are evaluated as 7. ~ 1/y/Gp = 1/,/p and 7, ~ (0.1N/In N)7,,
respectively, where p represents the density of the system [13]. In our units, the crossing and
relaxation times are 7, =~ 0.1 and 7, = 0.6, respectively, assuming a uniform density profile. The
collapse time of the present system is approximately 600, since the collapse time in a system
with N = 125-250 particles and ry = 0.005R is approximately ~ 1037, [19].



For the initial setup, we prepared a self-gravitating system at an approximate virial
equilibrium state, by means of 30 microcanonical ensemble simulations in which each simulation
time is 10 time units [16]. In the present simulation, the initial total energy ¢ is set to be 0.5,
which is higher than the explosion energy e, ~ 0.267. Note that the initial total momentum
and initial total angular momentum are set to be 0. To check the system, we examined density
profiles and found that the density profile is slightly nonuniform at ey = 0.5, which is generally
considered as the uniform state. We also confirmed that the system is in an approximate virial
equilibrium state using the virial ratio. Therefore, in our simulations, we employ the above
system as the initial setup. The initial energies are g = 0.5000£0.0096, exg, = 1.1206 =0.0109
and epg, = —0.6206 £0.0076, where the errors indicate the 68% confidence level in terms of the
normal error distribution. We have confirmed that our main results do not greatly depend on
the initial total energy, e.g., g = 0.3.

Using the above initial setup, a simulation for a system with a non-adiabatic wall was carried
out with various cooling rates v. For v = 0.001, 0.01, 0.1 and 0.2-0.8, the simulation time is
t = 100, 18, 4 and 2, respectively. Accordingly, our simulation time should be shorter than
the collapse time of the present system, ~ 600; that is, we examine an early relaxation process
before the collapse. As for v = 0, a microcanonical ensemble simulation is carried out.

3. Stellar polytrope

Taruya and Sakagami [8, 9, 10, 11, 12] have shown that the extremum-state of Tsallis’
entropy, i.e., the stellar polytrope, has a consistent thermodynamic structure, which implies
thermodynamic instability due to a negative specific heat. They found that the stellar polytropic
distribution should be a quasi-attractor of self-gravitating systems. We expect that the quasi-
equilibrium structure of the stellar polytrope should be related to a nonequilibrium process
appearing in the self-gravitating system with a non-adiabatic wall. Therefore, we briefly review
the stellar polytrope calculated from an extremum-state of Tsallis’ entropy, according to the
works of Taruya and Sakagami [11, 12].

3.1. Tsallis’ entropy and stellar polytrope

In the new framework of Tsallis’ non-extensive thermo statistics, all the macroscopic observables
of quasi-equilibrium systems should be characterized by escort distributions, although the
escort distributions themselves should not be fundamental [11, 12]. In fact, we can find a
more fundamental probability function p(x,v) that quantifies the phase-space structure, where
(z,v) represents 6-dimensional phase-space. Note that the phase-space measure is defined as
d®r = d3zd3v /3, where h? = (Iyvg)? represents the phase-space element with the unit of length
lp and the unit of velocity vy.

Using the fundamental probability function p(x,v), the escort distribution is defined as

v v) = @)}
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and the macroscopic observables expressed as normalized g-expectation values are given by

(6)
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where the normalization condition for p(x,v) is given as

[ v =1 (8)



Tsallis’ generalized entropy is given as

1
Sq = — d°r[{p(z, v)}? - p(z,v)]. (9)
Through an extremum-state of Tsallis’ entropy, i.e., solving the variational problem, Taruya
and Sakagami have shown that the polytropic relation can be given as

P(r) = Knf{p(r)}'*/", (10)

where K, P(r) and p(r) are the dimensional constant, the isotropic pressure and the density
at radius r, respectively [11, 12]. The polytrope index n is given by

1 1
= —+ - 11
n=1,73 (11)

3.2. Emden solutions and thermodynamic properties of the stellar polytrope
In this section, we focus on a spherically symmetric system with polytrope index n > 3/2, in
which the equilibrium distribution is at least dynamically stable [13]. In such situations, the
stellar equilibrium distribution should be characterized by the so-called Emden solutions, and
all the physical quantities should be discussed using the homology invariant variables [12]. For
example, Chavanis examined the gravitational instability of isothermal and polytropic spheres
in detail, using the Milne variables [7, 22, 23]. Note that we consider here a quasi-equilibrium
structure of the stellar polytropic system with pure gravitational potentials [11, 12].

The equations for the hydrostatic equilibrium of self-gravitating systems [11, 12] are given by

dP(r) — Gm(r)

) _ Gy, (12)
dﬂ;y) = dmp(r)r?, (13)

where m(r) represents the mass evaluated at radius r. The dimensionless quantities, i.e., § and

¢, are introduced as
n n+1)P.\Y?
p= ot = { UL e (149)

where p. and P, are the density and pressure at the center of the spherical container, respectively.
Then, the ordinary differential equation for the hydrostatic equilibrium is given as

2
0" + EG’ + 0" =0, (15)

and the boundary conditions are set to be
6(0) = 1,0'(0) =0, (16)

where the prime represents the derivative with respect to &, i.e., d/d¢. Solutions of Eq. (15)
with (16), i.e., Emden solutions, are calculated numerically using, for example, Runge-Kutta
methods. This is because the solution cannot be solved analytically, except for the polytrope
indices, n = 0, 1 and 5.



To characterize the equilibrium properties of the Emden solution [11, 12], homology invariants
are defined as

dInm(r) _ drrdp(r)  €O"

Y= "dmr m(r) 0 (17)
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In the following, we consider a quasi-equilibrium structure of the stellar polytropic system
enclosed in a spherical container with adiabatic walls. Taruya and Sakagami have evaluated
the total energy E of a confined stellar system in terms of the total mass M, the pressure P,
and density pe at the boundary r.. (They considered an extremum-state of Tsallis’ entropy at a
fixed mass and energy.) Moreover, they determined a plausible physical temperature T, using
the modified Clausius relation [11, 12]. Based on this analysis, as a function of the homology
invariants at the wall, i.e., u, and v., the dimensionless quantities for the total energy and
inverse temperature are given by

_ Er. 1 3 n+1 Ue
)\:—GMZ_ n—5{2(1 o )—i—(n 2)@6}, (19)
M? -
n= G B (n —5)ve (20)
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where 7, corresponds to R in the present study. For details, see Egs. (37) and (42) in Ref. [11]
or Egs. (3.27) and (3.33) in Ref. [12].
In our units, the total rescaled energy and temperature can be given as

€= =\, (21)
T=1/n. (22)

To confirm the thermodynamic properties of the stellar polytrope, we observe the trajectories
of the Emden solutions in the e-T' plane. Asshown in Fig. 2, for higher energies, the temperature
T decreases with decreasing total energy ¢. Accordingly, the system behaves like an ideal gas with
a positive specific heat, i.e., de/ dT > 0. In contrast, for lower energies, the temperature increases
as the total energy decreases. In other words, the specific heat in this region is negative, i.e.,
de/ dT < 0. This is because the potential energy of the system is dominant in the lower energy

0.8
L/ Figure 2. (Color online) Trajectories of
0.6 n= Emden solutions in the e-1" plane. Each
: (isothermal) point along the trajectory represents an

Emden solution evaluated at different
radiuses 7.,. Based on the boundary
conditions, all the trajectories start from
(e, T) = (00, o) corresponding to the
limit r. — 0. With increasing radius,
0.2 the trajectories move as indicated by the

-0.8 -04 0.0 0.4 arrow. The polytrope index n = oo
corresponds to an isothermal sphere [16].
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region. We now observe the influence of the polytrope index n. We find that the trajectories
for n > 5 gradually change their direction and finally spiral around a fixed point, while the
trajectories for n < 5 terminate suddenly because of the finite radius [11]. In fact, for n > 5, a
stellar polytrope within an adiabatic wall exhibits gravothermal instability, as investigated by
Taruya and Sakagami [11, 12].

4. Results

We first examine the nonequilibrium process with non-adiabatic walls by N-body simulations.
For this, we observe typical time evolutions of the energies for v = 0.001, 0.01, 0.1, 0.2, 0.3, 0.4
and 0.5. As shown in Fig. 3, the total energy ¢ decreases rapidly from the initial total energy of
€o = 0.5, due to the non-adiabatic wall. Hereafter we call the first stage the rapid initial cooling
stage [20]. We can confirm that the behavior of each curve is consistent, especially during the
rapid initial cooling stage. Similarly, the kinetic energy exg decreases with «¢ during the rapid
initial cooling stage. However, the kinetic energy gradually increases after this stage, while the
total energy decreases, i.e., de/degg is negative. This indicates that an incidence of negative
specific heat occurs, assuming that the kinetic energy corresponds to the temperature of the
system [16].

For v = 0.3, 0.4 and 0.5, the kinetic energy oscillates considerably during the rapid initial
cooling stage, after which the amplitude of the oscillations decays. This is because, for larger
cooling rates, the decrease in energy is too large to maintain the virial equilibrium state during
the rapid initial cooling stage [16]. However, all the systems are in an approximate virial
equilibrium state, except around the large oscillations and the rapid initial cooling stage. We
have confirmed that the oscillation does not greatly depend on the average operation and the
time step. The oscillation may disappear when the number of particles is large [21].

1.5
1.0
€y
0.5
0.0
&
0.5 Figure 3. (Color online) Time
evolutions of the total energy e
ly=0001 001 0.1 02 03 04 05 and kinetic energy kg, for various
L cooling rates . The horizontal
-1.0 axis represents the rescaled time
0.0 0.2 0.4 0.6 0.8 1.0 ~t. The results are averaged
vt over 30 simulations with identically

prepared initial setups [16].
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Figure 4. (Color online) De-
pendence of the temperature
T on the total energy ¢ for var-
ious cooling rates v and poly-
trope indices n. For v > 0,
the simulation starts from an
initial total energy of gy =
0.5. The open circles repre-
sent v = 0, i.e., microcanon-
ical ensemble simulations [16].
The trajectories of Emden so-
lutions with n = 5, 12 and oo
are re-plotted from Fig. 2.
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Next, to examine the nonequilibrium processes of the self-gravitating system, we observe
the dependence of the temperature 7' on the total energy ¢ for various cooling rates, as shown
in Fig. 4. In this figure, we calculate the temperature 7' from the kinetic energy using Eq.
(4). (The assumption that the kinetic energy corresponds to the temperature of the system is
valid, since all the systems are in an approximate virial equilibrium state, except around the
large oscillations and the rapid initial cooling stage [16].) Moreover, in Fig. 4, we re-plot the
trajectories of the Emden solutions for the polytrope indices n = 5, 12 and oo, to compare with
the nonequilibrium process for various cooling rates. Note that a pure gravitational potential
is used for the stellar polytrope, while the softening parameter is set to be ro = 0.005R in
our nonequilibrium simulations. Accordingly, we have to take into account the influence of the
softening parameter, since it affects the dependence of the temperature on the total energy.

As shown in Fig. 4, our microcanonical ensemble simulations (7 = 0) are consistent with the
isothermal sphere (n = o0), except for a part of the spiral curve. The difference between v = 0
and n = oo indicates the influence of the deviation from a pure gravitational potential. For
—0.2 5 ¢, the system behaves like an ideal gas with a positive specific heat, while the specific
heat for ¢ 5 —0.2 is negative [16]. To compare with the microcanonical ensemble, we examine a
system with a small cooling rate, v = 0.001. (The simulations for v > 0 start from an initial total
energy of ¢g = 0.5.) As expected, the result for v = 0.001 agrees well with the microcanonical
ensemble (v = 0), although the temperature for v = 0.001 is slightly lower than that for v = 0.
We can confirm that a negative specific heat occurs not only in the microcanonical ensemble
but also in certain nonequilibrium processes with a non-adiabatic wall.

Now, we investigate the influence of the cooling rate more closely. As shown in Fig. 4, for
—0.2 S ¢, the curve further deviates from the microcanonical ensemble (v = 0) with increasing
cooling rate . In other words, the greater the cooling rate, the steeper the slope of the curve.
For ¢ 5 —0.2, or rather € $ eou, the temperature increases with decreasing total energy,
excepting several large oscillations. (All the systems are in an approximate virial equilibrium
state, except around the large oscillations and the rapid initial cooling stage.) Therefore, it is
clearly demonstrated that a negative specific heat occurs in the system for various cooling rates.
Moreover, each curve gradually shifts towards a certain common curve. However, the extent of
the negative specific heat or de/ dT" does not greatly depend on the cooling rate. That is, with
increasing cooling rate, the dependence of the temperature on energy, i.e., the eT curve, varies
from the microcanonical ensemble to a common curve.

We expect that the tendency towards a common curve is related to a kind of quasi-attractor
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o | Qr-ool Figure 5. (Color online) Density
0 ﬁgjé contrast D(= pc/pe) and the neg-
08 [ ©y=0 ative of the energy A\(= —¢). The
0.6 real lines represent the stellar poly-
—€. /10.4 | tropes with n = 5, 12 and oco. The
symbols represent the simulation
02 1 / n=oo results of the nonequilibrium pro-
00 (isothermal) cess for various cooling rates v. For
02 Lo v i i i ~v > 0, the symbols represent evo-
10° 10" 102 10 10* 105 10° lutionary states; that is, the states
D (_ P / pe) for v > 0 evolve as indicated by the

arrow, as time progresses.

discussed in Ref. [8] by Taruya and Sakagami. (Note that the stellar polytrope examined
by Taruya and Sakagami is assumed to be a quasi-equilibrium structure under the restriction
of constant total energy, while the total energy is not fixed in the present nonequilibrium
simulation.) Accordingly, we compare our nonequilibrium process with a quasi-equilibrium
structure of stellar polytropes. We find that the common curve appearing in the nonequilibrium
process agrees well with an e~T curve for the polytrope index of n = 5. (The polytrope index of
n = 5 corresponds to the appearance of gravothermal instability for a stellar polytrope within an
adiabatic wall [11, 12].) This indicates that a quasi-equilibrium structure for a stellar polytrope
with n ~ 5 should play an important role in quasi-attractors of the present nonequilibrium
simulation. (We have confirmed that the tendency towards a common curve does not greatly
depend on the softening parameter, e.g., rg = 0.050R. Of course, the deviation from the e T
curve for n = 5 depends on the softening parameter.) Moreover, we found that the curve for
v = 0.01 agrees well with the curve for a polytrope index of n = 12, except for a part of the
spiral curve.

As discussed above, the present nonequilibrium process is expected to be related to the
stellar polytrope. To examine this more closely, we observe the relationship between the density
contrast D = p./pe and the negative of the total energy A(= —¢), for various cooling rates vy and
polytrope indices n. (Here p. and p, represent the densities at the center and wall, respectively.
Based on the works of Taruya and Sakagami [11, 12], A\(= —¢) is used in this discussion.) To
obtain the density contrast for various cooling rates, the density profile calculated from the
Emden solution is fitted with the corresponding density profile of our simulations, using Eq.
(14). Based on the fitted curves, we evaluated the density contrast for various cooling rates.
In Fig. 5, typical density contrasts are plotted except for large oscillations of the large cooling
rates. Note that, for v > 0, the symbols in the figure represent evolutionary states; that is, the
states for v > 0 evolve as indicated by the arrow, as time progresses.

As shown in Fig. 5, the results for v = 0 (¢) and v = 0.01 (O ) agree well with the D-\
curves for n = oo and n = 12, respectively. As expected, this is consistent with the result shown
in Fig. 4. Similarly, the results for v = 0.1 (A) and v = 0.8 (O) agree well with the D-X curve
for n = 5. That is, the common curve appearing in v = 0.1-0.8 is likely to be related to stellar
polytrope with n ~ 5. Of course, the stellar polytrope is assumed to be a quasi-equilibrium
structure under the restriction of constant total energy. However, these results indicate that the
stellar polytrope calculated from Tsallis” entropy can be applied to the present nonequilibrium
process with a non-adiabatic wall.



5. Conclusions
To clarify the nonequilibrium processes of self-gravitating systems, we examined a system
enclosed in a spherical container with reflecting walls, by N-body simulations. For this, we
investigated the nonequilibrium process numerically and compared it with a quasi-equilibrium
structure of stellar polytropes, which is calculated from an extremum-state of Tsallis’ generalized
entropy. In our simulations, for microcanonical ensembles, the radial component of the
velocity of a particle was reversed when it reached the wall. In contrast, for simulating a
nonequilibrium process, we considered loss of energy through the reflecting wall, i.e., a particle
reflected at a non-adiabatic wall was cooled to mimic energy loss. We have shown that, with
increasing cooling rates, the dependence of the temperature on energy, i.e., the e T curve,
varies from the microcanonical ensemble to a common curve. The common curve appearing
in the nonequilibrium process is consistent with an e~1" curve for the polytrope index n = 5
corresponding to the appearance of gravothermal instability. This indicates that the quasi-
equilibrium structure of stellar polytropes for n ~ 5 should play an important role in quasi-
attractors of the nonequilibrium process appearing in a self-gravitating system with a non-
adiabatic wall. The stellar polytrope considered here is assumed to be a quasi-equilibrium
structure under the restriction of constant total energy. However, we found that the stellar
polytrope calculated from Tsallis’ entropy can be applied to the nonequilibrium process with a
non-adiabatic wall. That is, the behavior of the present nonequilibrium process is likely to be
related to the stellar polytrope.

We are grateful to Prof. M. Sakagami for valuable comments in the Kyoto RIMS workshop.
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