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Multi-Frequency Signal Classification by Multilayer
Neural Networks and Linear Filter Methods

Kazuyuki HARA™ and Kenji NAKAYAMA', Members

SUMMARY This paper compares signal classification perfor-
mance of multilayer neural networks (MLNNs) and linear filters
(LFs). The MLNNs are useful for arbitrary waveform signal
classification. On the other hand, LFs are useful for the signals,
which are specified with frequency components. In this paper,
both methods are compared based on frequency selective per-
formance. The signals to be classified contain several frequency
components. Furthermore, effects of the number of the signal
samples are investigated. In this case, the frequency information
may be lost to some extent. This makes the classification prob-
lems difficult. From practical viewpoint, computational com-
plexity is also limited to the same level in both methods. IIR
and FIR filters are compared. FIR filters with a direct form can
save computations, which is independent of the filter order. 1IR
filters, on the other hand, cannot provide good signal classifica-
tion due to their phase distortion, and require a large amount
of computations due to their recursive structure. When the num-
ber of the input samples is strictly limited, the signal vectors
are widely distributed in the multi-dimensional signal space. In
this case, signal classification by the LF method cannot provide
a good performance. Because, they are designed to extract the
frequency components. On the other hand, the MLNN method
can form class regions in the signal vector space with high de-
gree of freedom. When the number of the signal samples is not
so limited, both the MLNN and LF methods can provide the
same high classification rates. In this case, since the signal vec-
tors are distributed in the specific region, the MLNN method has
some convergence problem, that is local minimum problem. The
initial weights should be carefully determined around the opti-
mum solution. Another point is robustness for noisy signal. The
LFs can suppress wide-band noise by using very high-Q filters.
However, the MLNN method can be also robust. Rather, it is a
little superior to the LF method when the computational load is
limited.

key words: multilayer neural networks, signal classification, FIR
filters, IR filters, frequency selective classification

1. Introduction

Recently, neural networks (NNs)[1] have been applied
to the signal processing fields, including signal de-
tection[2]-[6], digital demodulator[7],[8] and digital
signal classification[9],[10]. In these applications, the
NN methods can provide better performance. Further-
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more, there are many papers comparing multilayer NNs
(MLNNs) and statistical methods in the application
point of view. For example, pattern classification per-
formance, complexity of structure for implementation
and computations have been taken into account in com-
parison in Tsoi[11], Atlas[12], Gish[13], and Lipp-
mann [ 14], respectively. From these results, the MLNN
method is recognized to be superior to linear filter (LF)
methods under some conditions. However, these condi-
tions have not been well discussed.

In this paper, comparison between the MLNN and
the LF methods that used in signal classification is dis-
cussed. Usually, the MLNN method is seemed to be
useful for arbitrary pattern classification. On the other
hand, the LF methods are good for detecting the sig-
nals specified with frequency components. The purpose
of this paper is to investigate usefulness of the MLNN
method in the signal processing field, therefore, the lat-
ter signals are taken into account. Thus, the signals are
classified based on their frequency components.

Furthermore, the observation period is very short.
This means the number of the signal samples is set to
be very small. Since, in this case, frequency informa-
tion may be lost to some extent, the signal classifica-
tion becomes more difficult. This kind of limitations
appears in the digital communication, the signal pro-
cessing, and the real time image processing[13] fields.
From practical viewpoint, computational complexity is
also limited. Namely, the comparison will be discussed
based on length of the signal sequence and complexity
of implementation.

Since the MLNN is a non-parametric model, the
generalization for untrained data is an important cri-
terion. Furthermore, robustness for noisy signal clas-
sification is also compared. Through theoretical and
experimental results, we derive the conditions, under
which we can estimate which method is useful in fre-
quency selective signal classification.

Classification mechanisms of the MLNN method
and the LF methods are explained in the Sects.2 and 3,
respectively. Moreover, in Sect. 4, classification perfor-
mance as a pattern classifier is analyzed for the MLNN
and the LF methods. Learning ability of the MLNN is
also discussed in this section. Then, they are compared
based on the analysis results. Computer simulations
and discussions are given in Sect. 5.



HARA and NAKAYAMA: MULTI-FREQUENCY SIGNAL CLASSIFICATION BY MLNN AND LFS

2. Signal Classification by Multilayer Neural Net-
work

2.1 Multilayer Neural Networks

A two-layer neural network is constdered here. N sam-
ples of the signal {z(ng+n),n =0~ N —1} is applied
to the input layer. ng is a starting point of the obser-
vation. There are P signal classes. We use the notation
Tpm(no + n) to denote the p th class and the m th sig-
nal. The n th input unit receives xpm (no+ N —n). The
connection weight from the n th input unit to the j th
hidden unit is wy,;. The input potential net; and the
output y; of the j th hidden unit are given by

N

net; = anj:cpm(no—i-N—n) +96; (N
n=1

y; = fu(net;) 2)

where, fy (-} is an activation function of the hidden
layer and 6; is the bias of the j th hidden unit. The
hidden unit output y; is transferred to the output layer.
The same process, as in the hidden unit layer, is carried
out in the output layer. The number of the output units
is equal to that of the signal classes. The MLNN is
trained so that a single output unit responds to one of
the signal classes.

2.2 Signal Classification Mechanism

In the case of using a single neuron, to classify the
signal set X, consist of two classes X; and X, in
an N-dimensional space is viewed as dividing the N-
dimensional space into two sub-spaces by a hyper-plane
wix = 0. Here, w is a set of connection weights and «
is an input signal with N samples, that is equivalent to
an N-dimensional vector. Each sub-space includes the
signals belong to either X; or X5. When this hyper-
plane exists, the signal set X can be classified correctly.
This can be expressed by

x e X,
xze X,

wiz > a,
wle < a,

(3)

Monotonically increasing nonlinear functions, in-
cluding a threshold function and a sigmoid function
Eq.(4), are used as an activation function of the neu-
ron.

1

- 4
1 4+ e—net ( )

y(net) =

Pattern classification ability of the MLNN has been
studied by many researchers. Funahashi[16] has proved
that the two-layer NN can approximate any continuous
function with any accuracy if a large number of hidden
units are used. The activation function is the sigmoid
function. Gibson[15], Cover[17] and Makhoul[19]
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separately demonstrated that the MLNN has a high de-
gree of freedom of forming sub-regions at the hidden
layer. They pointed out that such a high flexibility re-
alized with non-linear activation function and multi-
layered structure. It allows forming suitable regions to
a complex data classification.

3. Signal Classification by Linear Filters
3.1 Filter Design and Implementation

In a finite impulse response (FIR) filter with a direct
form [20], the output is given by

N-1

yp(n) = Y (k + no)hy(n — k), (5)
k=0
hp(n—k)=0,n—k <0

Here, hy(n — k) are the filter coefficients, by which the
p th class signal can be extracted. To realize a high-
Q filter, a very high-order transfer function is required.
However, a linear phase is easily realized.

An infinite impulse response (IIR) filter[20] re-
quires a low-order transfer function, that is a small
number of coefficients. However, the recurrent structure
requires higher computation than the FIR filter.

One of the IIR filter realization is a cascade form
of the second-order circuits, whose transfer function is
written as

ao+ a1zt +agz”?

H(Z) - 1+biz7 4+ byz=2 " ©)
The output y(n) is calculated as
win) = z(n) — byw(n — 1) — baw(n — 2) )]

y(n) = aow(n) + aqw(n — 1) + asw(n — 2). (8)

w(n) is an internal variable as shown in Fig.1. A
high-Q filter can be realized using a low-order transfer
function. However, the linear phase response cannot be
guaranteed.

3.2 Signal Classification by Output Power

The same number of the filters as that of the signal

Fig. 1 Second order IIR filter.
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classes are used in the signal classification. The p th
class filter is designed to extract the frequency compo-
nents of this class, and to suppress those of all the other
classes. The power of the p th filter output S, is calcu-
lated by

ni+K-1

Sp= Y yn). )

n=n,

Where, y,(n) is the filter output and K is the number
of the output samples. n; is the beginning of the steady
state response. Classification is done by using the fol-
lowing criterion.

If S, =max{S,} then € X, (10)
P

that is the signal is classified into the p th class.

Next, computation complexity required in calculat-
ing the output power is discussed. The FIR filter with
a direct form always needs N computations in calculat-
ing one output as shown in Eq.(5). One computation
includes one multiplication and one addition. It is in-
dependent of the filter order denoted Nprg. In other
words, a very high-Q, that is high-order FIR filter can
be used to achieve higher resolution without increasing
in the memory capacity and the number of computa-
tions. The output samples in the steady state are used
in calculating the output power.

On the other hand, the IIR filter has a recursive
structure as shown in Fig. 1. In calculating the M th
output y{M), the filter should operates from n = 0 to
n = M. Letting filter order be Ny;g, y(M) requires
(5/2)NiirM computations. It is mainly determined
by Nyrr and M, not N. Here, we assume the 2nd-
order section needs 5 computations as shown in Fig. 1.
Furthermore, y(M) in the steady state should be used
in estimating the output power. Thus, even though
Nrrr <« Nppg, the IIR filter may require more com-
putations than the FIR filter in estimating the output
power.

3.3 Signal Classification Performance

Classification performance of the LF methods is inves-
tigated based on the spectrum distribution of the signals
regarding the number of the signal samples.

When many samples are used to represent the in-
put signals, the frequency components are almost the
same as the original signal’s. Then highly accurate sig-
nal classification is possible by the LF methods. To
analyze a frequency component by a high-Q band-pass
filter (BPF), difference of the output power between the
input signals that include or not include the frequency
components are obtained. Moreover, the output of the
high-Q BPF nearly regarded as a sinusoidal waveform.
Then it is possible to identify that the frequency com-
ponent is included in an input signal or not with small
number of filter output samples.
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(b) N is small and kjp, is large.

(a) N is large and k; is small.

Fig. 2 Signal detection region of FIR filter.

If the input signal is in the p th class, the outputs
of the p th class filter y,(n) and the others y,(n) satisfy
the following equation.

n1+K;—1 n1+K;—1
S lwp)>max Y fyy(n)| (1)
n=n n=ni

Where, K is the number of the filter outputs, and is as-
sumed to be small. Supposing an appropriate threshold
a, this condition can be replaced by

ni+K;—1 n;1+K;—1 N-1
o o lwmml= Y 1) w(k+no)hy(n—k)|
n=rm n=ny k=0

> . (12)

In this equation, the right hand inequality forms some
regions in an N-dimensional space, where the p th class
signals are included. This region is called a signal de-
tection region of the p th class. Figure 2(a) shows a con-
ceptual image of the signal detection regions given by
Eq. (12) for two-dimensional signals. The shaded parts
are the signal detection regions and the solid line shows
a boundary of the regions that formed by y,(n) =0 in
Eq.(12). The signals of the p th class are concentrated
in the shaded parts and the other class signals are dis-
tributed around the boundary.

When the number of the signal samples is small,
the frequency components or the spectrum distribution
is distorted from those of the original signal’s. Because,
using a small number of the signal samples is equal
to using a short interval window, and this affects the
amplitude response of the signal. The signal detection
region is formed by

ni+Kp—1

Z [yp(n)| > . (13)

n=nji

Where K}, > K;. The region specified by this inequality
is wider than that given by Eq. (12). Equation (13) can
be satisfied when some outputs take large values than
a. Then the condition of the classification is relaxed by
using many output samples. A conceptual image of this
extended regions is illustrated as some shaded parts in
Fig.2 (b).
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4. Comparison between MLNN and LF Methods
4.1 Degree of Freedom of Space Division

The degree of the freedom of forming the class region
is discussed in the following. The filter coefficients to
calculate y(n) are hp(n— N +1) ~ hp(n). Thus, a set of
successive N coefficients is used to calculate y(n). Let
this set be h,(n, N). There is strong correlation among
h,(n, N). In other words, they cannot be determined in-
dependently. They are designed to extract the necessary
frequencies. h,(n, N) corresponds to a set of the con-
nection weights from the input to the hidden layers of
the MLNN. These connection weights do not have any
constraints for a select. They can be adjusted using the
training data. Therefore, the MLNN can realize more
flexible sub-regions, and is superior to the LF methods
in pattern classification. However, the MLNN is depen-
dent on the training data. The training should be done
to achieve good generalization performance.

Discussions based on computer simulation will be
given in Sect. 5.

4.2 Learning Ability and Convergence Property

Linear Filters:

When the frequency components of the signals are
known in advance, the filter specification can be deter-
mined, and the filters can be designed to extract the nec-
essary frequencies and suppress the unnecessary ones.
Usually, high-Q amplitude and linear phase are desir-
able. On the other hand, when the frequencies are not
known, the filters cannot be designed following some
specifications, rather they should be designed through
some training algorithms like “adaptive filters.” In this
paper, however, it is assumed that the frequency com-
ponents of the signals are known, and the former case
is taken into account.

Multilayer Neural Networks:

A main difference between the linear filters and
the general neural networks is “non-linearity.” Espe-
cially, if non-linear units are not used in the MLNN, it
is equivalent to a set of the FIR filters. In this case, sig-
nal classification process in both methods becomes the
same. This is induced by results of Sects.2 and 3. On
the other hand, supervised training algorithm, like the
Back-propagation (BP) algorithm[1], is used to train
the MLNNSs. In this paper, the BP algorithm is used to
train the MLNN. Thus, discussions on learning ability
and convergence property are important. As described
in Sect.2, for the MLNN, the classification problem is
equivalent to dividing the N-dimensional space into sev-
eral sub-spaces. The following is discussed based on
this point of view.

As mentioned before, the number of the signal sam-
ples is assumed to be small. This is further divided into
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the following two cases, (1) a very small number, and
(2) a relatively small number.

In the case (1), the frequency components become
vague. In other words, the regions, in which the signals
of each class are distributed, are changed from their
original distribution. Sometime, the class regions are
mixed. However, if they are not overlapped, it is possi-
ble to separate the regions into the different classes. In
this case, feature is not clear and the training is rela-
tively difficult.

In the case (2), the signals include accurate fre-
quency components, and they are distributed in some
specified regions. The regions of the different classes
are separated. However, the boundary between them
may be complicated and narrow. Then, feature is clear
and the training is easier than that of case (1).

Furthermore, the circuit complexity, which is
mainly determined by the number of the hidden units,
is practically important. In the MLNN method, to
achieve complete separation, that is to form the compli-
cated boundary, many hidden units are required. Then
MLNN is required to adjust a number of connection
weights. For this reason, the learning will slowly con-
verge, and will be easily trapped at the local minimum.
Therefore, the initial connection weights should be care-
fully determined.

On the other hand, if not enough number of the
hidden units are used, the complete separation is impos-
sible. However, relatively high classification rate can be
obtained due to high degree of freedom of forming the
boundary as mentioned in Sect.2. In this case, stable
and fast convergence can be obtained.

5. Simulation Results and Comparisons

Since, the MLNN method is useful for general pattern
classification, then, to compare the both methods fairly,
the following multi-frequency signals are used. The
frequencies are located alternately between the signal
classes, and the amplitude and the phase of each fre-
quency component are generated randomly. Therefore,
the signal waveforms of the different classes are similar.
This kind of classification may be a difficult problem.

5.1 Multi-Frequency Signal

The p th signal class, denoted X, includes M signals.
X, ={zpmn),m=1~Mn=0~N -1} (14)

The multi-frequency signal is defined as follows:

R
Tpm(n) = Z Ay sin(wprnT + Gy (135)

r=1

where, wp, = 27 fpr, fpr 1s the r th frequency component
of the p th class. T is a sampling period. Amplitude
A, and phase ¢, of each frequency component are
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randomly generated in (0,1] and [0,27), respectively.
Two classes are used. The number of the signal samples
is N=10 or N=20. The frequencies in one class (class
1) are 1, 2 and 3Hz, and in the other class (class 2),
1.5, 2.5 and 3.5 Hz, respectively. A sampling frequency
is 10Hz. These frequencies can be scaled.

2000 input signals are prepared for each class. For
the MLNN, 200 signals are used for training, and 1800
signals for testing. After the training converges, the
training signals were perfectly classified. Thus, the
MLNN is equivalently evaluated with 2000 signals. All
the signals are used for testing the LF methods.

For noisy signals, the additive noise, uniformly dis-
tributed in [—0.5, 0.5], is used. The SNR is about
6.5dB.

5.2 Multilayer Neural Network Design

The MLNN with a single hidden layer is used. Mini-
mization of the number of hidden units have been well
discussed [23],[24]. In this paper, however, it is deter-
mined by experience. Almost the highest classification
performance was obtained with three hidden units. The
number of output units is equal to that of the signal
classes. A single output unit is assigned to one class.
This means the MLNN is trained so that a single output
unit responds to one of the signal classes.

Back-propagation (BP) algorithm is used for train-
ing the networks. Both noise-free and noisy signals’ sets
are used in a training phase and a testing phase. The
learning rate 17 and the momentum term coefficient « are
0.1 and 0.8, respectively, which are decided also by expe-
rience. The training is stopped when the mean squared
errot is less than 0.01 or the number of iterations exceeds
3000.

A ratio of the number of the correctly classified
signals and the number of the entire testing signals, de-
noted “classification rate,” is evaluated under several
conditions. A signal is classified into the p th class if
the p th output unit takes the maximum value.

5.3 Linear Filter Design

FIR filter

Figure 3 shows an example of the amplitude re-
sponse of a 1000th-order FIR filter for the class 1. It
has the peaks at frequencies 1, 2 and 3 Hz, and the band
width is 0.02 Hz. The output signal of the FIR filter is
calculated by Eq. (5) in the steady state.
IIR filter

The transfer function of the ¢ th second order cir-
cuit is given as follows:

o 1- 2co88,;27  + 272
" 1-2r;cosp27t + 72272

Hi(z) (16)

The total transfer function is
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Fig. 3 Amplitude response of FIR filter designed to extract
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Fig. 4 Amplitude response of IIR filter to extract class 1 sig-
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Fig. 5 Impulse response of class 1 filter.

H(z) = HHi(z). (17)

In order to realize a high-Q filter, fifteen zeros and
three poles are used for each class. r; in Eq.(16) for
the class 1 are 0.9945, 0.995 and 0.9985, for the class 2,
0.994, 0.995 and 0.9985, respectively. The pole frequen-
cies are 1.0, 2.0 and 3.0 Hz for the class 1, and 1.5,2.5
and 3.5Hz for the class 2, respectively. All zeros lo-
cate on the unit cycle. Figure 4 shows the amplitude
response of the class 1 filter. The impulse response is
shown in Fig. 5.

By using this filter for classification of the multi-
frequency signals, the classification rate for the noise
free signals with 10 samples is 86.9%. To achieve this
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Table 1 Probability of exact signal classification in percentage
when computation is limited.

Methods N=10 N=20

NFS | NS | NFS NS

MLNN | 97.8 | 869 | 97.7 91.5
FIR 4.7 37 100 87.5
IIR 0.0 00 | 49.0 49.0

N : Number of samples

NFS : Noise Free Signal, NS : Noisy Signal

accuracy, 2000 output samples are required. This rate
is not good compared with that of the FIR filter will
be shown in Table 2. The reason is the phase distor-
tion caused by the high-Q amplitude response. By using
a lower-Q filter than the above, the classification rate
was increased from 86.9% to 95.4%. In this case, r; in
Eq.(16) are changed to 0.94, 0.94 and 0.98 for the class
1, and 0.92, 0.935 and 0.98 for the class 2. In the lower-
Q IIR filter, 200 output samples are required. On the
other hand, since the FIR filter always can guarantee
the linear phase, a very high-Q filter can be effectively
used as shown in Fig. 3.

5.4 Computational Complexity

Normalized computational complexity (NCC) is de-
fined to compare classification performance based on
the same number of computations. The NCC for each
method is listed on Table A-1 and A-2. The calcula-
tion method of NCC for each classification method is
given in Appendix.

5.5 Signal Classification Results

The following two conditions are investigated; the num-
ber of computations is limited or not limited. In the for-
mer case, computations of the LF methods are decided
as almost the same as in the MLNN method.

The classification rates with limited computations
are listed in Table 1 in percentage. From this table, the
MLNN method can provide higher performance than
the LF methods. The classification rates of using the
signals with 20 samples are better than those of the sig-
nals with 10 samples. In the LF methods, the classifi-
cation rates are higher for 20 samples’ signals than that
of 10 samples’. Therefore, non-linearity is notable for
10 samples’ signals and is not notable for 20 samples’.

Classification rate of the I1IR filter for 20 sample
signals is worse than that of FIR filter. The main rea-
son of this difference comes from a recurrent structure
of 1IR filter. If the computation is limited, the output
samples in the transient state become dominant in the
output power, and accuracy is decreased.

In the case of the computation being not limited,
the classification rates are shown in Table 2. The classi-
fication rates of the LF methods can be improved, and
are almost the same in all methods.
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Table 2  Probability of exact signal classification in percentage
when computation is not limited.

Methods N=10 N=20

NFS | NS | NFS NS

MLNN 100 | 91.5 | 100 99.4
FIR 100 | 90.5 | 100 99.8
IIR 95.4 | 86.5 | 100 99.8

N : Number of samples

NFS : Noise Free Signal, NS : Noisy Signal

The MLNN method uses the valley shape activa-
tion function[7] instead of the sigmoid function in the
hidden layer.

5.6 Learning Ability of Multilayer Neural Network

As discussed in Sect.4.2, when a large number of hid-
den units are used, it is difficult to converge to the best
solution. The initial connection weights should be care-
fully selected. When random numbers are used as the
initial connection weights, the MLNN could not achieve
good classification rates as the filters. However, by us-
ing the coefficients of the FIR filter as the initial con-
nection weights, the MLNN achieved the same classifi-
cation rates as the filters’.

In this case, the valley shaped function is used in
the hidden unit. The valley shaped function rectifies
unit input and it can detect the signal amplitude. From
the following discussion, the initial connection weights
between the input layer and the hidden units can be
determined by the coefficients of the FIR filter. From
Egs. (1) and (5), the input of the hidden unit is corre-
spond to the output of the FIR filter calculated by using
a set of successive IV coefficients. The output of the hid-
den unit using the valley shaped activation function is
equal to the rectified output of the FIR filter. The input
of the output unit is the weighted sum of the absolute
value of the FIR filter outputs, which is correspond to
the filter output power. Although, this function can be
realized by using two sigmoid functions, the former can
make fast convergence possible.

5.7 Robustness of MLNN to Noise Level Changes

Robustness for noise level changes is guaranteed by the
filters. However, this kind of robustness is not always
guaranteed by the MLNN. Then, the robustness of the
MLNN for noise level changes is further investigated.

5.7.1 Analysis of Connection Weight

By comparing the Egs.(l) and (5), the connection
weights between a hidden unit and input layer corre-
spond to the filter coefficients h,(n — k). Then the con-
nection weight between the input layer and the hidden
layer are analyzed by using Fourier transform. Fig-
ures 6 and 7 are the amplitude responses of the connec-
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Fig. 6 Fourier transform of sets of connection weights trained
with noise free signals.
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Fig. 7 Fourier transform of sets of connection weights trained
with noisy signals.

tion weights trained with noise free and noisy signals.
The numbers of the input units and the hidden units
are 10 and 3, respectively. From above two figures, the
amplitude response of the connection weights suppress-
ing other class frequencies. From these figures, the am-
plitude response of the connection weights suppressing
other class frequencies.

When the MLNN is trained using noise free signals,
there are two types of amplitude response; one is sup-
pressing class 1 frequencies and the other is suppressing
class 2 frequencies. The features of the noise free signal
may be clear and the class regions in an N-dimensional
space are separated clearly. However, the features of the
noisy signals are dispersed by random noise, and the
class regions are not clearly separated. Therefore, the
training using noisy signals is more difficult than that
of using the noise free signals. From the Fig.7, only
the amplitude response of suppressing class 2 frequency
components is obtained, so, this result supports above
discussion.

Figure 8 shows the amplitude responses of Figs. 6
and 7 in the same graph. The connection weights
of the input layer and the 3rd hidden unit are used.
From this figure, when the MLNN trained by noisy sig-
nals, the amplitude response slightly changed into flatter
than that of trained using noise free signals. So, the
MLNN adapted to the noisy signals by changing its con-
nection weight to have insensitive amplitude response.
The FIR filter has a sharp amplitude response and
can sufficiently suppress non-interest frequencies. The
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Fig. 8 Fourier transform of two sets of connection weights
trained with noise free and noisy signals.
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Fig. 9  Fourier transform of a set of connection weights trained
with noise free signals. Number of hidden units is 100.

MLNN, it does not have such a sharp amplitude re-
sponse.

When the number of hidden units is increased from
three to 100, the amplitude response of the connection
weights is changed as shown in Fig. 9. In this case, the
amplitude response is similar to that of the FIR filter.

From above analysis, the MLNN achieved ampli-
tude response that can classify the signals. However, the
amplitude response of the connection weights is changed
due to number of hidden units. So, the MLNN can
make a suitable amplitude response due to given num-
ber of hidden units.

As the training is converged, it is confirmed that the
input signals are converted into the linearly separable
output pattern at the hidden layer. Then the patterns
can be classified by single layer NN of the hidden and
the output layers. The connection weights between the
hidden layer and the output layer are adjusted to em-
phasize the feature extracted by the connection weights
from the input layer to the hidden layer. From the sim-
ulation results, some hidden units are activated for one
class, then the connection weights from these hidden
units to the output unit assigned to this class are rela-
tively large.

5.7.2 Robustness to White Noise
For LF methods, robustness to the noise level change is

guaranteed. So, when the noise level is reduced, classifi-
cation rate will be better. The MLNN is trained with 20
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samples including +0.5 additive random noise. When
the noise level is decrease to 0, the classification rate
is reduced from 90.6% to 89.7%. In this case, 200 data
for each class is used for training. So, generalization
for smaller noise signals is not achieved. However, by
increasing the number of the training signals from 200
to 400, the network provides the classification rates of
91.7% for +0.2 additive noise, and 91.3% for the noise
free signals, respectively. Thus, the robustness for noise
level change can be guaranteed by training the network
with a larger number of the noisy signals.

6. Conclusions

The signal classification by the MLNN and the LF
methods have been compared with each other. The sig-
nals to be classified are specified by the multi-frequency
components. The MLNN method is more efficient to
classify the short period signal than the other under
the limited computation. In other words, the MLNN
has high-degree of freedom to combine the sub-regions
at the hidden layer into the desired regions at the out-
put layer. On the other hand, the LF methods do not
have such freedom due to their linearity. Therefore,
when the signal period is very short, and consequently
their vectors are distributed widely and randomly in
the signal space, the MLNN method is superior to the
LF methods. Both methods, however, provide almost
the same high performance for the relatively long pe-
riod signal without the computational limitation. The
MLNN method has good generalization and robustness
for the un-training data and noisy signals, respectively.
It has, however, some convergence problem, that is lo-
cal minimum solutions, in the long period signal case.
The initial weights should be carefully determined. The
FIR filter with a direct form is more useful for detecting
the short period signals than the IIR filter in classifica-
tion accuracy and computational requirement. Because
a very high-Q response with linear phase can be real-
ized, and computation of an output is separated from
the other, in which the number of computations is pro-
portional to that of the input samples.
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Appendix: Normalized Computation Complexity

Normalized computational complexity (NCC) and the
number of the parameter for each method is listed in Ta-
bles A- 1 and A-2. An inner product of N-dimensional
vector is counted as unity in NCC. The number of ele-
ments of the free parameter is listed in these tables. The
parameter for each method is explained in the follow-
ings. Since, parameters should be integers, so NCC for
all methods is not exactly the same. The number of
samples of the signal is denoted by N for the following
methods.

A.l Multilayer Neural Network

The NCC for the MLNN is calculated for the MLNN
architecture that performs the highest classification for
the training signals and for the test signals. After the
training converges, the hidden unit outputs approach to
‘I’ or ‘0°[22]. So, the sigmoid function can be replaced
by a threshold function in the test phase. Therefore,
the calculation of the sigmoid function is omitted from
NCC.

Let the number of input units be N, the number of
hidden units be M, and the number of the output units
is P, respectively, NCC is given by NCC = M + %P.
The parameter is the number of the hidden units.

A2 FIR Filter

From the Eq.(5), NCC for one output calculation is
unity. If the number of the signal classes is denoted by
P, and the number of output samples required to calcu-
late one output power be K, then NCC is calculated as

Table A-1 Normalized computational complexities and pa-
rameters.(Computation is limited.)

Methods N=10 N=20
NCC | NP | NCC | NP
MLNN 3.6 3 33 3
FIR 4.0 2 4.0 2
IR 5.1 1 5.1 2
N: Number of samples

NP: Number of elements of parameter

Table A-2 Normalized computational complexities and pa-
rameters.(Computation is not limited.)

Methods N=10 N=20
NCC | NP | NCC | NP
MLNN 48 40 44 40
FIR 20 10 20 10
IR 1020 | 200 | 510 | 200
N: Number of samples

NP: Number of elements of parameter
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NCC = P x K. Here, the number of the output samples
is the parameter.

A.3 1IR Filter

In the case of N, pole frequencies and N, zero frequen-
cies are used and N, > N, then N, of the 2nd-order
circuits are used. Each circuit includes five inner prod-
ucts of the signal and the filter coefficients, then compu-
tation for one filter output is N, x 5+ (N, — Np) x 3 =
2X Np,+3x N,. Then NCC = (2x N, +3x N,)/N.
Ny is as the same as the number of frequencies included
in one class. The number of the output samples is the
parameter.
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