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1 Introduction

Recently, much attention has been attracted to a wireless sensor network. It
generally consists many sensor nodes with memory units, communications and
calculation capabilities [1, 2]. In these researches, sensor nodes are connected
wirelessly and some local estimates are merged into the common estimate via
the wireless communication paths. It is well known that sensor networks are
superior to an observation by a system with a single sensor in a fault tolerance,
load reduction of operator, collection and application of information. Owing
to some advantages, it is possible to apply various fields such as guidance con-
trol systems, traffic control systems, nano-medicines and disaster countermea-
sures. Meanwhile, each sensor node uses electric power for a communication
and calculations, but the sensor nodes are generally powered and driven by
built-in batteries [3, 4]. Moreover it is difficult to change batteries frequently
or charge by power cable because of the increase in costs. Therefore, it is
important to utilize the energy efficiently to achieve an energy-saving system
and prolong sensor nodes life. For this objective, the sensor scheduling, the
optimization of the communication rate or the buffer length and decreasing
communication distances by the multi-hop communication have been stud-
ied [5–7]. Consequently, in this paper, we discuss a sensor scheduling problem
considering the estimation error variance and the communication energy in
the sensor networked feedback control system, one of the approach to this
objective.

Firstly, we consider a optimal sensor network configuration via multi-hop
communication for a feedback control system. The estimation problem in a
sensor network system has been studied in [8–11]. A distributed Kalman fil-
tering algorithm with a consensus strategy were proposed in [1, 12]. In these



methods each sensor node communicates with its neighbors on a network.
However, if the plant is applied control inputs from fusion center or one of
sensor nodes, all sensor node have to obtain its information in real time and
it is difficult to develop real system. In [13], a network configuration problem
with a multi-hop communication and a feedback control system considering
communication energy and estimation error variance. However amount of in-
formation transmitted from each sensor node increase with a number of sensor
nodes.

Secondly, we consider a network configuration for a sensor network that
sensor nodes have enought calculation ability. In beard,olf4,dwhyte,rant, it
is difficult to apply to the guidance control that the plant receives arbitrary
control inputs. Moreover, they do not consider the communication energy.
Meanwhile, the network configuration and the sensor scheduling algorithm
considering an estimation error variance and communication energy were pro-
posed in [6, 7, 13]. However, each sensor node has only a observation and
communication function and does not have a calculation function. The fusion
center calculates the estimate and transmits the control input to the plant.
In our framework, each sensor node has the calculation, communication and
observation functions and the control input is applied to the plant. Thus we
can not apply these previous methods.

In this paper, firstly, we deal with a optimal sensor network configura-
tion via multi-hop communication for a feedback control system. We first
define a sensor network with multi-hop communication. Then we assume that
each sensor node transmit same amount of information for issue resolution of
increasing amount of information transmitted. In this system, we discuss a
estimation problem and a network configuration problem. Then we show that
there is the unique positive definite solution to the discrete algebraic Riccati
equation in the error covariance update and a trade-off between the estimation
error variance and a communication energy. Secondly, we propose a network
configuration algorithm considering this trade-off. This network configuration
algorithm achieves sub-optimal network topology with minimum energy and
a desired error variance.

Secondly, we discuss a sensor scheduling problem considering the estima-
tion error variance and communication energy in a feedback control system
via a sensor network that sensor nodes have enought calculation ability. We
first propose the estimation algorithm with the unknown input of the plant in
the feedback control system via a sensor network. Each sensor node calculates
the local estimate without information of the control input and transmits its
information to the sensor node applying the control input to the plant. This
sensor node calculates the common estimate and control input using received
information. Then we show that there is the unique positive definite solution
to the discrete algebraic Riccati equation in the error covariance update. Sec-
ondly, we propose a sensor scheduling algorithm considering estimation error
variance and communication energy. This scheduling algorithm achieves sub-
optimal network topology with minimum energy and a desired error variance.



Finally, we verify effectiveness of a sensor scheduling algorithm by exper-
iments.

This chapter is organized as follows. In section 2, we discuss a optimal sen-
sor network configuration via multi-hop communication for a feedback control
system. In section 3, we discuss a a sensor scheduling problem considering the
estimation error variance and communication energy in a feedback control
system via a sensor network that sensor nodes have enought calculation abil-
ity.

2 Optimal Sensor Network Configuration via Multi-Hop
Communication

2.1 Problem formulation

Plant and Sensor Nodes

In this paper, we consider the feedback control system via a sensor network
illustrated in Fig. 1. This system consists the plant and N sensor nodes Si,
(i = 1, 2, ..., N). We assume all sensor nodes can take a measurement of the
plant. The process dynamics of the plant and the measurement equation of a
sensor node Si are given by

xk+1 = Axk + Buk + wk (1)
yi

k = Cixk + vi
k (2)

where xk ∈ R
n, uk ∈ R

m, yi
k ∈ R

qi are the state, the control input and the
measurement output of a sensor node Si respectively. Additionally, wk ∈ R

n,
vi

k ∈ R
qi are the process noise and measurement noise respectively. From (2),

each sensor node take a different measurement. Moreover, (1) and (2) satisfy
following assumptions 1-3.

Assumption 1 wk, vk =
[
(v1

k)T (v2
k)T · · · (vN

k )T
]T ∈ R

q , (q =
∑N

i qi) are
zero mean white Gaussian noise and satisfy equations

E
{[

wk

vk

] [
wT

k vT
k

]}
=

[
Q 0
0 R

]
, (3)

E
{
wkxT

0

}
= E

{
vkxT

0

}
= 0, (4)

where Q, R = diag(R1, R2, ...) are the positive semidefinite and positive defi-
nite covariance matrix of noises wk, vk respectively.

Assumption 2 The matrix pair (A, Q
1
2 ) is reachable.

Assumption 3 The matrix pair (C, A) is detectable, where

C =
[
CT

1 CT
2 · · · CT

N

]T
. (5)



Fig. 1. Sensor network system.
Fig. 2. An example of
Network.

Network Topology

In this paper, we deal multi-hop communication. N sensor nodes and the
fusion center S0 are connected wirelessly and information transmitted from
each sensor node are passed on to the fusion center via some relay nodes. The
example of a network topology is illustrated in Fig. 2. Let G = (V , E) denoted
a graph with the set of vertices V and the set of edges E . Then sensor node
Si and network topology satisfy following Assumption 4, 5.

Assumption 4 Sensor nodes Si can transmit zi
k ∈ R

r to the other sensor
node once per time step with a time delay less than a sampling time. Addi-
tionally, when a sensor node Si transmit information, this sensor node uses
the energy Ei.

Assumption 5 A network topology T is a directed spanning tree with root
S0.

From Assumption 5, a sensor node Si transmits zi
k containing information

of a measurement of Si to the other sensor node. the dimension of zi
k is r in all

sensor nodes. Moreover, each sensor node use a energy Ei for transmitting zi
k

to other sensor node. We assume E =
∑N

i=1 Ei is the energy the whole system
is using. The energy Ei is the weight of the edge of the network topology T .
In general, the communication energy depend on a length of a communication
pass between sensor nodes Si and S0. Consequently, if there are some relay
node between Si and S0, the communication energy to pass to the sensor node
S0 from Si will be reduced. But all sensor nodes transmit information once
per one time step and the time delay between sensor nodes Si and S0 will
increase. Consequently, there is a trade-off between an estimation accuracy
and a communication energy.



Control Problems

In this paper, we discuss an estimation problem and a network configuration
problem.

Problems can be formulated as following problems 1, 2.

Problem 1. We assume the plant and all sensor nodes satisfy Assumption
1-5 and the network topology T is determined. Then compute the optimal
state estimate x̂−

k that minimizes following estimation error variance.

J = E
{(

xk − x̂−
k

)T (
xk − x̂−

k

)}
(6)

Problem 2. Find the optimal network topology T ∗ satisfying J ≤ γ, As-
sumption 5 and following equation:

T ∗ = arg min
T

E, (7)

where γ > 0 is a design parameter.

2.2 Proposed method

Information merge method

In this paper, we define the sensor node receiving information from a sensor
node Si as the sensor node Par(Si) and the set including sensor nodes trans-
mitting information to a sensor nodeSi as the set Ni = {j|Par(Sj) = Si}.
Moreover we define the depth hi of a sensor node Si, the hight h̄ = maxi hi

of the network topology T . For example, N0 = {1, 2} and h̄ = 2 in Fig. 2.
A measurement output of each sensor node Si have to merge via zi

k

with same dimension. Consequently, we propose following information fusion
method for each sensor node.

zi
k = CT

i R−1
i yi

k−h̄+hi
+

∑
j∈Ni

zj
k−1, (8)

where yi
k = yi

0, (k ≤ 0). A dimension of CT
i R−1

i yi
k+hi−h̄

is n and all sensor
nodes transmit information with same dimension. Moreover we propose a
following information fusion method for fusion center.

zk =
∑
i∈N0

zi
k, (9)

where z0
k = zk is information merged in the fusion center. It follows from

yi
k−h̄+hi

and zj
k−1, (j ∈ Ni) in (8) that zi

k delays 1 time step per one relay
node. Consequently, in a network topology with Assumption 5, information
zk merged in the fusion center is given by following equation.



zk =
∑

j∈N0

zj
k =

N∑
j=1

CT
j R−1

j yj

k−h̄+1
(10)

zk is calculated in the fusion center at time step k and includes CiR
−1
i yi

k−h̄+1
of all sensor nodes. The time step of measurements belonging to zk depend
on h̄. The bigger h̄ is, the bigger a time delay of measurement belonging to
zk.

State Estimation Algorithm

We showed fusion center calculate zk including measurements with delay
yi

k−h̄+1
at time step k. In this section, we propose a estimation algorithm

using zk. Then a estimation algorithm satisfies following Theorem 1 in a sen-
sor network system (1) and (2).

Theorem 1 Consider the system (1), (2) and network topology T with As-
sumption 1-5. Then a estimation algorithm is given by following equations
and the estimate x̂j

k is minimum variance estimate based measurements of
sensor node Sj :

x̂−
k = Ah̄−1x̂k−h̄+1 + B̄h̄ūk−h̄+1, (11)

x̂k−h̄+1 = x̂−
k−h̄+1

+ Pk−h̄+1

(
zk − CTR−1Cx̂−

k−h̄+1

)
, (12)

P−
k = Ah̄−1Pk−h̄+1

(
Ah̄−1

)T

+ Gh̄Q̄GT
h̄ , (13)

Pk−h̄+1 =
{(

P−
k−h̄+1

)−1

+ CTR−1C

}−1

, (14)

where B̄h̄, Ḡh̄, Q̄ ∈ R
n(h̄−1)×n(h̄−1) is as follows

B̄h̄ =
[
B AB · · · Ah̄−2B

]
, (15)

Gh̄ =
[
In A · · · Ah̄−2

]
, (16)

Q̄ = block diag{Q, Q, ..., Q}. (17)

Proof. we first define following fictitious measurement output yk−h̄+1.

yk−h̄+1 =

⎡
⎢⎢⎢⎣

y1
k−h̄+1

y2
k−h̄+1

...
yN

k−h̄+1

⎤
⎥⎥⎥⎦

= Cxk−h̄+1 + vk−h̄+1. (18)

yk−h̄+1 include measurements taken at time step k− h̄+1 of all sensor nodes.
Then we consider the estimation algorithm using yk−h̄+1 taken at time step
k. (1) can be rewritten as follow



xk = Ah̄−1xk−h̄+1 + B̄h̄ūk−h̄+1 + Gh̄w̄k−h̄+1, (19)

where ūk−h̄+1, w̄k−h̄+1 is as follows

ūk−h̄+1 =

⎡
⎢⎢⎢⎣

uk−1

uk−2

...
uk−h̄+1

⎤
⎥⎥⎥⎦ , w̄k−h̄+1 =

⎡
⎢⎢⎢⎣

wk−1

wk−2

...
wk−h̄+1

⎤
⎥⎥⎥⎦ . (20)

(19) is difference equation of time step k and k − h̄ + 1. Then we propose
following estimation algorithm for (19) and (18).

x̂−
k =Ah̄−1x̂k−h̄+1 + B̄h̄ūk−h̄+1 (21)

x̂k−h̄+1=x̂−
k−h̄+1

+Kk−h̄+1

(
yk−h̄+1 − Cx̂−

k−h̄+1

)
(22)

where x̂−
k = E{xk|y0, y1, ..., yk−h̄+1} and x̂k−h̄+1 = E{xk−h̄+1|y0, y1, ..., yk−h̄+1}

are estimations of xk and xk−h̄+1 based all measurements up to time step
k− h̄+1. Now, the estimation error variance J is given by following equation.

J = E{(xk − x̂−
k )T(xk − x̂−

k )} = trP−
k (23)

The filter gain minimizing J satisfies following equations.

∂

∂Kk
trP−

k = 0 (24)

It follows from (19), (21) and (22) that the filter gain Kk and the error
covariance matrix Pk satisfying (24) are as follows

Kk−h̄+1 = P−
k−h̄+1

CT
(
CP−

k−h̄+1
CT + R

)−1

= Pk−h̄+1C
TR−1 (25)

Pk−h̄+1 =
{(

P−
k−h̄+1

)−1

+ CTR−1C

}−1

(26)

Meanwhile, error covariance matrix P−
k is as follow

P−
k = Ah̄−1

{(
P−

k−h̄+1

)−1

+ CTR−1C

}−1(
Ah̄−1

)T

+ Gh̄Q̄GT
h̄ , (27)

where Q̄ is covariance matrix of w̄k−h̄+1. Consequently, a estimation algorithm
using a measurement output (18).

Secondly, we show this algorithm is a estimation algorithm using zk in (8).
It follows from (25), (18) and (22) that we can get following.

x̂k−h̄+1 = x̂−
k−h̄+1

+ Pk−h̄+1

(
zk − CTR−1Cx̂k−h̄+1

)
. (28)

(28) is a estimation algorithm using zk merged in the fusion center. These
equations complete the proof.



Relation between an estimation error variance and a network
topology

In this section, we consider an estimation error variance trP−
k and a network

topology. It follows from Assumptions 2, 3 that there is the unique positive
definite solution P h̄

∞ to algebraic Riccati equation (13) satisfying following
equation:

P h̄
∞ = Ah̄−1

{(
P h̄
∞

)−1

+ CTR−1C

}−1 (
Ah̄−1

)T

+ Gh̄Q̄GT
h̄ . (29)

From (29), the solution P h̄
∞ depend on the depth h̄. Now the solution P h̄

∞
satisfies following Theorem 2.

Theorem 2 We assume if h̄ = α, β, (α > β), there is the unique positive
definite solutions Pα

∞, P β
∞ to algebraic Riccati equation (13) respectively. Then

Pα
∞ and P β

∞ satisfy following relation:

trPα
∞ ≥ trP β

∞. (30)

Proof. It follows from Assumptions 2 and 3 that the solution to (29) do not
depend on initial value. Moreover (13) is different equation between k and
k − h̄ − 1. Consequently it is apparent from these.

From Theorem 2, The smaller h̄ is, the smaller priori estimation error
is. Consequently, there is trade-off between an estimation error variance and
communication energy.

2.3 Network Configuration algorithm

In this section, we discuss a network configuration algorithm. We have to
configurate a network topology satisfying J = trP−

∞ ≤ γ and Assumption
5. For this purpose, we first need to calculate h̄ satisfying J = trP h̄

∞ ≤ γ.
secondly, we find rooted spanning tree where depths of all sensor node are
less than h̄ and a communication energy E is minimized. This tree is known
as h̄-HMST(the minimum-cost h̄-hop spanning tree). In several researches,
they showed approximation algorithm [14]. In this paper, we propose an algo-
rithm minimizing in a subset of available network topology. We first consider
following operation.

• Change destination of sensor nodes receiving information from sensor
nodes belonging the set V1 into sensor nodes belonging the set V2,

where V1 =
{
Sj |hj > h̄

}
and V2 =

{
Sj |hj < h̄

}
. It follows from this operation

that all sensor nodes have depths with less than h̄. We assume the set of all
available network topology that we can get from this operation as Ts. We
rewrite Problem 2 to following problem.



Network Construction Algorithm

1: Compute of h̄ satisfying

J = trP h̄
∞ ≤ γ.

2: Compute rooted minimum spanning tree T by Prim’s algorithm and define

V1 =
˘
Sj |hj > h̄

¯
,

V2 =
˘
Sj |hj < h̄

¯
.

3: Change Par(Si), (Si ∈ V1)
if V1 is not an empty set

Par(Si) := arg min
Sj∈V2

e (Si, Sj)

Ei := e (Si, Sj)
hi := hj + 1

end
4: return T

Problem 3. Find the optimal network topology T ∗ satisfying J ≤ γ, As-
sumption 5 and following equation:

T = arg min
T∈Ts

E, (31)

where γ > 0 is a design parameter.

In Problem 2 we find the network topology minimizing a communication
energy in all available network topology. However Problem 3 minimize in the
subset of all available network topology.

We propose Network Configuration Algorithm and it is a solution of Prob-
lem 3. In this algorithm, we use Prim’s Algorithm finding the minimum span-
ning tree. In network configuration algorithm, e(Si, Sj) is communication en-
ergy between sensor nodes Si and Sj .

Network Construction Algorithm satisfying following theorem.

Theorem 3 Network Construction Algorithm minimize a communication en-
ergy E in subset Ts and it is the solution of problem 3.

Proof. In 3: of Network Construction Algorithm, we select a sensor node with
minimum communication energy belonging the set V2. because the operation
are applied these sensor nodes, this algorithm is the solution of Problem 3.

Consequently, by designing γ, we can configurate a network topology what
are superior to estimation accuracy or communication energy.



Fig. 3. Sensor network

3 Optimal Sensor Network Configuration Considering
Estimation Error Variance and Communication Energy

4 PROBLEM FORMULATION

4.1 Plant and Sensor Nodes

In this paper, we consider the sensor networked feedback control system il-
lustrated in Fig. 3. This system consists the plant and N sensor nodes Si,
(i = 1, 2, ..., N). We assume all sensor nodes have enough computation capa-
bility and take a measurement of the plant. The process dynamics of the plant
and the measurement equation of the sensor node Si are given by

xk+1 = Axk + Buk + wk, (32)
yi

k = Cixk + vi
k, (33)

where xk ∈ R
n, uk ∈ R

m, yi
k ∈ R

qi are the state, the control input and the
measurement output of the sensor node Si respectively. Additionally, wk ∈ R

n,
vi

k ∈ R
qi are the process noise and the measurement noise respectively. We

assume that the control input uk is applied from the sensor node Sfk
, (fk =

1, 2, ..., N) to the plant and given by

uk = Lx̂fk

k , (34)

where x̂fk

k ∈ R
n is the estimate of the sensor node Sfk

and L is the feedback
gain. Now we assume we can arbitrarily determine which sensor node is the
sensor node Sfk

at each time step. Thus, the task of the sensor node Sfk
is

similar to the fusion center discussed in previous work, but it is not fixed.
Moreover, (32) and (33) satisfy assumptions 1-3.



4.2 Network Topology

The sensor network consists N sensor nodes and one of them is the sensor
node Sfk

applying the control input to the plant. We assume the sensor node
Sfk

can communicate with other sensor nodes directory and define the set
Nfk

containing sensor nodes communicating the sensor node Sfk
. Here there

is no communication in between arbitrary two sensor nodes belonging to the
set Nfk

at time step k. We assume we can arbitrary determine sensor nodes
belonging to the set Nfk

as a case of the sensor node Sfk
.

Remark 1. The wireless communication between the sensor node Sj , (j ∈ Nfk
)

and Sfk
means that the sensor node Sj , (j ∈ Nfk

) transmits information to
the sensor node Sfk

. Thus, all communication paths are unidirectional.

In general, if there are the bidirectional communication paths, each sensor
node can get and use a lot of information. But, in this paper, the network
topology vary with time because we discuss a sensor scheduling problem de-
termining the sensor node Sfk

and the set Nfk
each time step. Due to different

communication ranges of each sensor node or obstacles, it is difficult to keep
bidirectional communication path at all times in real physical system. More-
over, it can cause high machinery costs. Thus, we deals with the unidirectional
communication path. Consequently, all sensor nodes satisfy following Assump-
tion 6.

Assumption 6 The sensor node Sj , (j ∈ Nfk
) can transmit to the sensor

node Sfk
once while one time step with a time delay less than a sampling

time. Additionally, when the sensor node Sfk
applies the control input uk to

the plant and sensor node Sj, (j ∈ Nfk
) transmits information to the sensor

node Sfk
, These sensor nodes use the communication energy Efk,p, Ej,fk

∈ R+

respectively.

We define the total communication energy Ek of the system. The energy Ek

is described as follows

Ek = Efk,xk
+

∑
j∈Nfk

Ej,fk
. (35)

Remark 2. The communication energy Ei,j generally can be Ei,j = bi,j +
ai,j(di,j)ci,j and depend on a distance between sensor nodes Si and Sj , where
bi,j is a static part and ai,j is a dynamic part. ci,j is typically from 2 through
6 [13].

4.3 Control Problems

In this paper, we discuss the estimation problem with unknown input uk and a
sensor scheduling problem. Problems can be formulated as following problems
4, 5.



Problem 4. We assume the plant and all sensor nodes satisfy Assumptions
1-3, 6 and the sensor node Sfk

and the set Nfk
is determined. Then compute

the optimal state estimate x̂fk

k that minimizes the following estimation error
variance.

J = E
{
(xk − x̂fk

k )T(xk − x̂fk

k )
}

. (36)

Problem 5. At time step k, find the optimal network topology T ∗
k satisfying

J ≤ γ and the following equation.

T ∗
k = arg min

Tk

Ek, (37)

where γ > 0 is a design parameter.

5 ESTIMATION ALGORITHM

In this section, we propose the estimation algorithm in the sensor networked
feedback control system. The proposed algorithm based on extension of De-
centralized Kalman Filter in [10]. Each sensor node Sj , (j ∈ Nfk

) computes
the local estimate x̂j

k. Here these sensor nodes can not know the control in-
put because all communication paths are unidirectional. We can not apply an
existing method to the feedback system via a sensor network. Consequently,
we propose the novel estimation algorithm considering the unknown control
input. In this algorithm, each sensor node Sj , (j ∈ Nfk

) transmits x̂j−
k , x̂j

k,
P j−

k , P j
k to the sensor node Sfk

. The sensor node Sfk
computes estimate x̂fk

k

by information from sensor nodes Sj , (j ∈ Nfk
).

5.1 Estimation Algorithm of sensor nodes Sj, (j ∈ Nfk)

Firstly, we discuss an estimation algorithm of sensor nodes Sj , (j ∈ Nfk
). Each

sensor node Sj , (j ∈ Nfk
) do not have information of the control input because

all communication paths are unidirectional. Proposed algorithm satisfies the
following Theorem 4.

Theorem 4 Consider the system (32) and (33) with Assumption 1-3, 6. Then
an estimation algorithm of each sensor node Sj, (j ∈ Nfk

) is given by the
following equations and the estimate x̂j

k is the minimum variance estimate
based measurements of sensor node Sj.

x̂j−
k+1 = Ax̂j

k + Bûj
k, (38)

x̂j
k = x̂j−

k + Kj
k(yj

k − Cj x̂
j−
k ), (39)

ûj
k = Lx̂j

k, (40)

P j−
k+1 = (A + BL)P j

k (A + BL)T + Q + BLP fk

k LTBT



− (A + BL)M j
kLTBT − BL(M j

k)T (A + BL)T , (41)

P j
k =

{
(P j−

k )−1 + CT
j R−1

j Cj

}−1

, (42)

M j
k = (I − Kj

kCj)M
j−
k (I − Kfk

k Cfk
)T, (43)

M j−
k+1 = (A + BL)M j

kAT+ Q −BLP fk

k AT, (44)

where definition of each variable is described as follows

x̂j−
k = E

{
xk|yj

k−1, y
j
k−2, ...

}
,

x̂j
k = E

{
xk|yj

k, yj
k−1, ...

}
,

P j−
k = E

{
(xk − x̂j−

k )(xk − x̂j−
k )T

}
,

P j
k = E

{
(xk − x̂j

k)(xk − x̂j
k)T

}
,

M j
k = E

{
(xk − x̂j

k)(xk − x̂fk

k )T
}

,

M j−
k = E

{
(xk − x̂j−

k )(xk − x̂fk−
k )T

}
.

Proof. The filter equation for (32) and (33) are given by

x̂j−
k+1 = Ax̂j

k + Bûj
k, (45)

x̂j
k = x̂j−

k + Kj
k(yj

k − Cj x̂
j−
k ), (46)

ûj
k = Lx̂j

k. (47)

From (32)-(34), (45), (46) and (47), errors ej
k = xk − x̂j

k, ej−
k = xk − x̂j−

k can
be described as follows

ej
k = (I − Kj

kCj)e
j−
k − Kj

kvj
k, (48)

ej−
k+1 = (A + BL) ej

k + wk − BLefk

k . (49)

Thus estimation error covariance matrices P j
k and P j−

k+1 are described as fol-
lows

P j
k=(I−Kj

kCj)P
j−
k (I−Kj

kCj)T+Kj
kRj(K

j
k)T, (50)

P j−
k+1=(A + BL)P j

k (A + BL)T + Q + BLP fk

k LTBT

− (A + BL)M j
kLTBT − BL(M j

k)T (A + BL)T , (51)

where M j
k is the cross covariance matrix between the estimation errors of the

estimate x̂fk

k and x̂j
k.

Firstly, we consider the covariance matrix (50). From the condition ∂
∂Kk

trP j
k =

0 and (50), the filter gain Kj
k and error covariance P j

k can be described as
follows



Kj
k = P j

kCT
j R−1

j . (52)

P j
k =

{
(P j−

k )−1 + CT
j R−1

j Cj

}−1

. (53)

Secondly, we consider the cross covariance matrix M j
k in (51). From its defi-

nition, M j
k is described as follows

M j
k = (I − Kj

kCj)M
j−
k (I − Kfk

k Cfk
)T. (54)

The sensor node Sfk
knows the value of the control input uk because this

sensor node applies the control input to the plant. Thus the estimation error
efk

k is given as the following

efk−
k+1 = Aefk

k + wk. (55)

From (55) and its definition, the cross covariance matrix M j−
k is given by

M j−
k+1 = (A + BL)M j

kA + Q − BLP fk

k AT. (56)

Next, we consider the estimation algorithm of the sensor node Sfk
. The

estimation of the sensor node Sfk
is based on its measurement and the received

information x̂j−
k , x̂j

k, P j−
k and P j

k from some sensor nodes Sj , (j ∈ Nfk
). The

sensor node Sfk
has information of the control input uk. Thus, the estimation

algorithm of the sensor node Sfk
is following Decentralized Kalman Filter

proposed in [10].

x̂fk−
k+1 = (A + BL)x̂fk

k , (57)

x̄fk

k = x̂fk−
k + Kfk

k (yfk

k − Cfk
x̂fk−

k ), (58)

Kfk

k = P̄ fk

k CT
fk

R−1
fk

, (59)

P fk−
k = AP fk

k AT + Q, (60)

P̄ fk

k =
{
(P fk−

k )−1 + CT
fk

R−1
fk

Cfk

}−1

, (61)

P fk

k =

⎡
⎣(P̄ fk

k )−1+
∑

j∈Nfk

{
(P j

k )−1−(P j−
k )−1

}⎤
⎦
−1

, (62)

x̂fk

k = P fk

k

⎡
⎣(P̄ fk

k )−1x̄fk

k +
∑

j∈Nfk

{
(P j

k )−1x̄j
k − (P j−

k )−1x̂j−
k

}⎤
⎦ , (63)

where the definition of variables is as follows

x̄fk

k = E
{
xk|yfk

k , yfk

k−1, ...
}

,



x̂fk

k = E
{
xk|yfk

k , yfk

k−1, ..., y
j
k, yj

k−1

}
, j ∈ Nfk

,

P̄ fk

k = E
{
(xk − x̄fk

k )(xk − x̄fk

k )T
}

,

P fk

k = E
{
(xk − x̂fk

k )(xk − x̂fk

k )T
}

.

The estimate x̄fk

k is only based on measurements of the sensor node Sfk
.

But, the estimate x̂fk

k is based on measurements of the sensor node Sfk
and

sensor nodes belong to the set Nfk
. Then the covariance matrix P fk

k satisfies
the following Theorem 5.

Theorem 5 Consider the system (32) and (33) with Assumptions 1-3, 6. If
sensor nodes Sfk

= Sf , Sj1 , Sj2 , ..., (j1, j2 ∈ Nf ) are determined and the ma-
trix pair (Hf , A), Hf = [CT

f CT
j1 CT

j2 · · ·]T is detectable, then the estimate
x̂f

k is the solution of Problem 4 and there is a unique positive definite solution
P f
∞ of the following algebraic Ricatti equation.

P f
∞=AP f

∞AT + Q − AP f
∞HT

f

(
HfP f

∞HT
f +Vf

)−1
HfP f

∞AT, (64)

where Vf = diag{Rf , Rj1 , Rj2, ...}.

Proof. Substituting (42) into (62), we can get

P f
k =

[ (
P f−

k

)−1

+ HT
f V −1

f Hf

]−1

(65)

From (60) and (65), this is the algebraic Ricatti equation. Consequently, From
Assumption 2 and detectability of the matrix pair (Hf , A), the covariance
matrix P f

k has the unique positive definite solution P f
∞.

From Theorem 5, there is the unique positive definite solution of the algebraic
Ricatti equation (60)-(62) while sensor nodes Sfk

and Sj , (j ∈ Nfk
) are de-

termined. Additionally, from Assumption 3, if we use N − 1 sensor nodes as
Sj , (j ∈ Nfk

), there is the unique positive definite solution of the algebraic
Ricatti equation. In next section, we propose a sensor scheduling algorithm
considering the estimation error variance J = trP fk

∞ and the communication
energy. If we determine the set Nfk

including all sensor nodes, the estimation
error variance of the common estimate is minimized. But the communication
energy will increase because all sensor nodes have to transmit information to
the sensor node Sfk

. On the contrary, if we determine the set Nfk
is empty set,

the communication energy is zero because there are no communication paths.
But the estimation error variance of the estimate will increase. Consequently,
there is a trade-off between the estimation accuracy and the communication
energy.



6 SENSOR SCHEDULING ALGORITHM

In previous section, we showed that the estimation error variance of the esti-
mate x̂fk

k can be written as J = tr(P fk
∞ ). In this section, we propose a sensor

scheduling algorithm minimizing communication energy in subset of all avail-
able network topology under the condition J ≤ γ. The network topology can
be fixed uniquely if and only if we determine the sensor nodes Sfk

and Sj ,
j ∈ Nfk

. Here we can get that N2N−1 network topologies are available. Con-
sequently, we propose the following algorithm to reduce computation costs. In
the proposed algorithm, N(N −1) network topologies are available. Addition-
ally, E(Si,Ni) and J(Si,Ni) are communication energy of the whole system
and the estimation error variance respectively when sensor node Sfk

= Si and
the set Ni are determined.

Sensor Scheduling Algorithm

1: for α = 1 to N do

2: Nα = B = {1, ..., N}\α
3: repeat N − 1
4: β = arg maxj∈Nα∩B Eα,j

5: if J(Sα,Nα\Sβ) ≤ γ then

Nα := Nα\Sβ

6: B := B\Sβ

7: return Si∗ , Ni∗ , (i∗ = mini=1,...,N E(Si,Ni))

In this algorithm, firstly, we determine the sensor node Sfk
= Sα, (α = 1).

Secondly, we remove the sensor node Sβ from the set Nα in order of decreas-
ing the communication energy Eα,β under the condition J(Sα,Nα\Sβ) ≤ γ.
We calculate these subroutine N times (α = 1, 2, ..., N). Finally, the sensor
node Sfk

and the set Nfk
minimizing communication energy in subset of all

available network topology under the condition J ≤ γ are determined.
Example 1 is described as follows.

Example 1. Consider 3 sensor nodes (N = 3) illustrated in Fig. 4. We assume
the following conditions.

1) the Distances are d1,2 = d2,3 = 1, d1,3 = 2.
2) A communication energy is Ei,j = εd2

i,j ,(ε > 0).
3) The condition J ≤ γ is satisfied if and only if we use sensor nodes (S1,

S2, S3) or (S1, S3).

Now, we examine the proposed sensor scheduling algorithm in Example 1.
We first define α = 1 and N1 = B = {2, 3}. These mean that we first check

the communication energy in a case of the sensor node Sfk
is S1. Then 4:, 5:
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Fig. 4. Sensor nodes of Ex-
ample 1
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(a) A network topology (Sfk
= S1).

�� �� ��

(b) A network topology (Sfk
= S2).
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(c) A network topology (Sfk
= S3).

Fig. 5. Network topologies of Example 1

and 6: in a sensor scheduling algorithm are calculated 2 times. we can chose
β = 3 at the initial calculation. Then the sensor node S3 would not be removed
from Nα because the condition J(Sα,Nα\Sβ = {2}) ≤ γ is not satisfied.
Consequently, Nα = {2, 3}, B = {2}. After the initial calculation, we can
chose β = 2 at the second calculation. Because the condition J(Sα,Nα\Sβ =
{3}) ≤ γ is satisfied, the sensor node S2 is removed. Consequently, if we
determine the sensor nodes Sfk

is S1, the set N1 = {3} (see Fig. 5(a)) and
communication energy Ek is given by

E(S1,N1) = E1,xk
+ εd2

1,3 = E1,xk
+ 4ε. (66)

Next, we can define α = 2 and Nα = B = {1, 3}. We can calculate the
communication energy E2 and the set N2 by a method similar to above calcu-
lation. In this subroutine, because we can not remove sensor nodes from the
set N2 under the condition J2 ≤ γ, we can define N2 = {1, 3} (see Fig. 5(b))
and the communication energy is given by the following equation when the
sensor node Sfk

is S2

E(S2,N2) = E2,xk
+ ε

(
d2
1,2 + d2

2,3

)
= E2,xk

+ 2ε. (67)

Finally we choose α = 3 and N3 = {1, 2}. Then we can remove the sen-
sor node S2 from the set N3 under the condition. Consequently, Nα = {3}
(see Fig. 5(c)) and the communication energy is calculated as the following
equation.

E(S3,N3) = E3,xk
+ εd2

1,3 = E3,xk
+ 4ε (68)

(66)-(68) are the communication energy when the sensor nodes Sfk
is S1, S2

or S3 respectively. We consider the energy to transmit information from each
sensor node to the plant is E1,xk

= ε, E1,xk
= 4ε, E1,xk

= 9ε. at time step k.
Then the communication energy are given as follows

E(S1,N1) = 5ε, E(S2,N2) = 6ε, E(S3,N3) = 13ε.

Consequently, we can determine Si∗ = S1, Ni∗ = {3} at time step k.



7 Experimental Evaluation

7.1 Experimental Setup

The experiment was carried out on a two-wheeled vehicle, a CCD camera and
a computer as shown in Fig. 6.

DS1104

Camera

Transmitter

Sensor

PicPort-color

Vehicle

Computer

Halcon

Fig. 6. Experimental setup.

Each measurement output is calculated from the image of a CCD cam-
era mounted above the vehicle. The video signals are acquired by a frame
grabber board PicPort-color and image processing software HALCON gener-
ate nine measurements. Consequently, nine sensor nodes, a network topology
and measurement noises exist in the computer. We use DS1104 (dSPACE
Inc.) as a real-time calculating for an estimation and sensor scheduling. Now
Two-wheeled vehicle has the nonholonomic constraint. However two-wheeled
vehicle can be defined following framework by virtual structure for feedback
linearization [16].

A =

⎡
⎢⎢⎣

1 0 δ 0
0 1 0 δ
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦ , B =

⎡
⎢⎢⎣

δ2

2 0
0 δ2

2
δ 0
0 δ

⎤
⎥⎥⎦ ,

where δ = 0.2 and x0 = [ 1.3 0.7 0 0 ]T are the sampling time and the initial
state respectively. Additionally, we design the feedback gain L by LQG control.

7.2 Experimental Result of Network Configuration

In this subsection, an effectiveness of the network configuration algorithm
proposed in section 2 by experiments. There are ten sensor nodes available
and each sensor nodes has the following measurement equation and these
position is shown in Fig. 7.

yi
k =

[
1 0 0 0

]
xk + vi

k, (i = 1, 2)



yi
k =

[
0 1 0 0

]
xk + vi

k, (i = 3, 4)
yi

k =
[
0 0 1 0

]
xk + vi

k, (i = 5, 6)
yi

k =
[
0 0 0 1

]
xk + vi

k, (i = 7, 8)

yi
k =

[
1 0 0 0
0 1 0 0

]
xk + vi

k, (i = 9, 10)

Additionally, the covariance matrices of noises are Q = 1×10−4I4, R = 0.05I12

respectively.
Here we define the communication energy between arbitrarily two sensor

nodes. We assume that the communication energy between sensor nodes Si

and Sj is ei,j = εd2
i,j . di,fk

is the distance between sensor nodes Si and Sj and
ε is the positive constant.
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Fig. 7. Position of sensor nodes

Additionally, experiments were done following Case 1 and Case 2.

Case 1 : The experiment designing γ = 0.015
Case 2 : The experiment designing γ = 0.03

The experimental results of Case 1 and Case 2 are shown in Fig. 8, 9. Fig.
8, 9(a), (b), (c) and (d) show a network topology, the state xk, the estimate
x̂k and a information variable zk respectively. As shown in Figs. 8(a), 9(a),
network topologies satisfying the condition are h̄ = 4, 6 respectively. Addi-
tionally, error variances are J =0.0297, 0.0137 and communication energy are
E = 10.5ε, 3.12ε respectively. Consequently, there is a trade-off between an
estimation accuracy and a communication energy. As shown in Figs. 8(c),
9(c), a vibration of the estimate in case 1 is smaller than Case 2. As shown in
Figs. 8(d), 9(d), zk has information of weighted measurement. Fig. 10 shows
the variance J = trP−

k in Case 1 and Case 2 respectively. As shown in Fig.
10, trP−

k converge on trP−
k =0.0297, 0.0137 and it is less than the design

parameters respectively.



Consequently, we have showed that we can configurate a network topol-
ogy what are superior to estimation accuracy or communication energy by
designing γ.
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(a) Network topology. (b) State xk.

0 50 100 150 200
-0.5

0

0.5

1

1.5

2

Step

x k

x
k
1

x
k
2

x
k
3

x
k
4�

�

�

�

�

0 50 100 150 200
-50

0

50

100

150

Step

z k
z

k
1

z
k
2

z
k
3

z
k
4

(c) Estimate x̂k. (d) Transmission information zk.

Fig. 8. Experimental results (Case 1).
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(a) Network topology. (b) State xk.
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(c) Estimate x̂k. (d) Transmission information zk.

Fig. 9. Experimental results (Case 2).
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7.3 Experimental Result of Sensor Scheduling

In this subsection, effectiveness of a sensor scheduling algorithm proposed in
section 3 by experiments.

There are nine sensor nodes available and each sensor nodes has the fol-
lowing measurement equation and these position is shown in Fig. 11.

yi
k =

[
1 0 0 0

]
xk + vi

k, (i = 1, 5, 9)

yi
k =

[
0 1 0 0

]
xk + vi

k, (i = 2, 6)

yi
k =

[
0 0 1 0

]
xk + vi

k, (i = 3, 7)

yi
k =

[
0 0 0 1

]
xk + vi

k, (i = 4, 8)

Each measurement output is calculated from the image of a CCD camera
mounted above the vehicle. The video signals are acquired by a frame grab-
ber board PicPort-color and image processing software HALCON generate
nine measurements. Consequently, nine sensor nodes, a network topology and
measurement noises exist in the computer. We use DS1104 (dSPACE Inc.) as
a real-time calculating for an estimation and sensor scheduling. Additionally,
the covariance matrices of noises are Q = 1 × 10−4I4, R = 0.1I9 respectively.

Here we define the communication energy between arbitrarily two sensor
nodes. We assume that the communication energy between sensor nodes Si

and Sfk
is Ei,fk

= εd2
i,fk

. di,fk
is the distance between sensor nodes Si and

Sfk
and ε is the positive constant.
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Fig. 11. Position of sensor nodes.

The experiment was done designing γ = 0.02. The experimental results are
shown in Fig. 12. Fig. 12(a)-(c) show the trajectory of vehicle and network
topology. As shown in Fig. 12(a)-(c), sensor nodes are switched while the
vehicle is moving. Fig. 12(b) shows the estimation error. As shown in Fig.
12(b), the estimation error is zero mean. Fig. 12(e) shows the estimation error



variance P fk

k . As shown in Fig. 12(e), the estimation error variance converge
to the solution to algebraic Riccati equation and the solution is less than
design parameter γ at all times. Finally, Fig. 12(e) is a comparison between
following Cases 1, 2.

Case 1. A case that a sensor scheduling algorithm was applied.

Case 2. A case that the sensor node Sfk
was S6 at all times.

In these case, the error variance trP fk

k is same. However from Fig. 12(f)
the communication energy is different. This figure shows the energy of the
whole system is reduced by a sensor scheduling algorithm. Consequently, by
designing γ, a proposed algorithm reduce the communication energy under
the condition that the estimation error is smaller than desired value.
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(a) Network structure at k = 0. (b) Network structure at k = 61.
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(c) Network structure at k = 96. (d) Estimation error ek = xk − x̂k.

Fig. 12. Experimental results.
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Fig. 12. Experimental results.

8 Conclusions

In this paper, firstly, we discussed a network configuration problem considering
the priori estimation error variance and communication energy in a feedback
control system via a sensor network. We first have defined a sensor network
with multi-hop communication. Then we have assumed that each sensor node
transmit same amount of information for issue resolution of increasing amount
of information transmitted. Then we showed that there is the unique positive
definite solution to the discrete algebraic Riccati equation in the error co-
variance update and a trade-off between the estimation error variance and a
communication energy. Secondly, we have proposed a network configuration
algorithm considering this trade-off.

Secondly, we discussed a sensor scheduling problem considering the esti-
mation error variance and communication energy in a feedback control system
via a sensor network. We first have proposed the estimation algorithm with
the unknown input of the plant in the feedback control system via a sensor
network. Each sensor node calculates the local estimate without information
of the control input and transmits its information to the sensor node apply-
ing the control input to the plant. This sensor node calculates the common
estimate and control input using received information. Then we showed that
there is the unique positive definite solution to the discrete algebraic Riccati
equation in the error covariance update. Secondly, we have proposed a sensor
scheduling algorithm considering estimation error variance and communica-
tion energy. This scheduling algorithm achieved sub-optimal network topology
with minimum energy and a desired error variance.

Finally, we have verified effectiveness of a proposed method by experi-
ments.
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