Computationally efficient implementation of
sarse-tap FIR adaptive filters with tap-position
control on intel IA-32 processors

E&a: eng

HhRE

/ABIR: 2017-10-03
F—7—NK (Ja):
*—7— K (En):
YER

A—=ILT7 KL R:
FilE:

http://hdl.handle.net/2297/19407

Computationally Efficient Implementation of
Sparse-Tap FIR Adaptive Filters with Tap-Position
Control on Intel IA-32 Processors

Akihiro Hirano and Kenji Nakayama
Graduate School of Natural Science and Technology,
Kanazawa University,

Kanazawa, 920-1192, Japan
Email: {hirano,nakayama} @t.kanazawa-u.ac.jp

Abstract—This paper presents an computationally efficient
implementation of sparse-tap FIR adaptive filters with tap-
position control on Intel IA-32 processors with single-instruction
multiple-data (SIMD) capability. In order to overcome random-
order memory access which prevents a vectorization, a block-
based processing and a re-ordering buffer are introduced. A
dynamic register allocation and the use of memory-to-register
operations help the maximization of the loop-unrolling level. Up
to 66percent speedup is achieved.

I. INTRODUCTION

Recent years, personal computer (PC) based communication
systems such as Skype and Messenger becomes very popular.
PC-based systems are useful not only for personal communi-
cations, but also for business systems such as teleconferencing.
Hands-free voice communication over the Internet shown by
Fig. 1 without acoustic echo cancellers (AEC’s) causes an echo
path with very long flat-delay, which might be more than 4000
taps. Fig. 2 depicts an impulse response of such an echo path.
There are multiple flat-delay sections and dispersive regions.

To reduce a large number of computations for a long-
tap adaptive filter which can cope with an unknown number
of multiple echoes, sparse-tap adaptive FIR filters with tap-
position control have been proposed[1], [2]. These algorithms
distribute a small number of filter coefficients to significant
regions of the echo-path impulse response. For tap-position
control, scrub taps waiting in a queue (STWQ) algorithm[1]
and grouping algorithm[2] have been proposed. Though an
implementation of such filters on digital signal processors
(DSP’s) has been reported, implementations on PC-based
system have not been reported.

Modern processors for PC’s have powerful instruction set
for multimedia processing. Intel IA-32 architectures[3] have
MMX (Multi Media eXtention) and also SSE (Streaming
Single instruction multiple data Extension, Streaming SIMD
Extension). Four-way vector operations are supported for 32-
bit floating-point (FP) data.

In this paper, an efficient implementation of sparse-tap
adaptive FIR filters on Intel IA-32 processors is discussed.
Section II describes sparse-tap adaptive FIR filters. TA-32
processor is briefly described in Sec. III, followed by some

i

S

Multimedia >
§ Terminal §
© 0 © 0
Internet-to-Phone
Gateway
§ Analog Analog
PBX 2 PBX 1
[

Hands-Free Terminal
without Echo Canceller

Fig. 1. Teleconferencing over Internet

PBX1 PBX2 Room

AYAYER

Response

Fig. 2. Example of echo path with multiple dispersive regions

implementation issues. The proposed implementation is shown
by Sec. V. Section VI compares the performance.

II. SPARSE-TAP ADAPTIVE FIR FILTERS

Sparse-tap adaptive FIR filters shown by Fig. 3 have N4
active taps with filter coefficients while we have N total taps.
The other taps (inactive taps) do not have coefficients. When
N, << Nr, the computational costs can be reduced. This
filter calculates the echo replica y(n) at time index n from
the input signals 2:(n) and the filter coefficients wy(n) for the
k-th active tap by

Ny—1
y(n) = > wp(n)a(n —iy). (1)

[Echo Path

NT taps NT>>N

| Routing Switch

Tap-Position

Control : +

0
Coefficient N, coefficients
Update
° :
Fig. 3. Echo cancellation by sparse-tap adaptive FIR filter

The active-tap index i designates the location of the k-
th active tap. The filter coefficient w(n) is updated by a

Normalized Least-Mean-Square (NLMS) algorithm [4] by
pe(n)e(n — iy)

= Wk (n) + Na—1
k=0

wi(n + 1)

22(n — i) @
[is a step-size parameter which controls the convergence.
e(n) is an error signal.

The tap-position control algorithms[1], [2] select N 4 active
taps from N taps. The active taps are selected based on the
coefficient values; after Ty iterations of coefficient updates,
active taps with the Nr smallest coefficient in magnitude are
made inactive. Then, Nr new active taps are selected.

STWQ algorithm[1] stores inactive tap indices in a queue.
Np indices are taken from the queue and inactive taps with
these indices are activated.

In the grouping algorithm[2], Nt taps are divided into
N¢ equisized subgroups. Ng queues corresponding to the
subgroups contain the inactive tap indices. For tap assignment,
one subgroup is selected at a time. New active tap indices are
taken from the queue for the selected subgroup. The selected
subgroup hops from one subgroup to another.

The grouping algorithm achieves fast convergence by con-
trolling the staying time Ts(¢) and the selection order for the
i-th subgroup. Initially, selection order and staying time T's (%)
are set to the order of subgroup number ¢ and a constant
Tsg, respectively. If all subgroups have been selected once,
Ts(i) and the order are re-determined based on the sum of
the absolute coefficient values in each subgroup. The order of
subgroups is determined in the order of the sums. Ts(7) is
determined in proportion to the sum.

III. INTEL IA-32 PROCESSORS[3]

In this implementation, Intel Core microarchitecture, e.g.
Core2 Duo, is assumed. Main features are listed below.
« Five execution pipelines, up to fourteen stages
— ALU, FP/MMX/SSE Move, Branch

ALU, FP/MMX/SSE Add
ALU, FP/MMX/SSE Multiply
— Load

— Store

o Executes up to five instructions per cycle

— Up to three ALU operations per cycle
— Up to three SSE operations per cycle

o Branch prediction

o 32kB instruction + 32kB data L1 cache

e 2MB, 4MB or 6MB L2 cache

« Hardware prefetchers, which predict data access sequence
and automatically load data from external memory into
cache

« FEight general-purpose integer registers

« Eight FP registers

o Eight SSE registers

The MMX and SSE instructions[5], [6] provide some vector
operations. For 32-bit floating-point data, simultaneous cal-
culations on four independent data sets can be carried out.
Therefore, up to four-times speed-up might be possible if data
bandwidth allowed.

IV. CONSIDERATIONS ON IMPLEMENTATION

There are many considerations on implementation using
general-purpose processors with SIMD capability. Examples
are listed below.

« Efficient Vectorization

o Data alignment for SIMD load/store operations

o Implementation of tapped delay lines

e Memory hierarchy, especially slow external memory

o Long latency for memory load: Core2 processor requires
additional six cycles even for L1 cache

o Few data registers: Only eight for IA-32

e Memory-to-register operations: Source operand for com-
putation can be memory

The vectorization and the data alignment are common to
implementation on DSP’s, while the others might be specific
for general-purpose processors. Most DSP’s are equipped with
the address generators for the tapped delay lines, multiple data
memories with no-wait access. Few data registers, memory-to-
register operations are specific for IA-32 processors.

In the four-way vectorization for FIR filtering, simultaneous
calculation for k-th tap through (k + 3)-th tap are common
way. However, such approach cannot be applied directly for
sparse-tap filters. This is because load operations of the input
signals through the routing switch prevent the vectorization.
Generally, the order of the active-tap positions is in random.
Therefore, simultaneous load of the input signals commonly
used in vector operations is not possible.

Fig. 4 shows a two-way SIMD case. Two input signals
x(n —ip) and xz(n — i1) are located at two distant addresses.
Though multiple scalar-load operations followed by a vec-
tor calculation is possible, this approach often degrades the
performance[7]. The misalignment problem[8] on the tapped
delay lines also occurs.

Main Delay-Line

x(n) | ... |x(n-i1)

——

Two scalar input signals

X(n-io) | ...

Vector Computation Unit

Filer Coefficient Vector

Filer Coefficients

wo(n) Even Words

Odd Words

wi(n)

Fig. 4. Problems on Vectorization

Such data access through the routing switch causes other
problems. In order to load the input signal x(n — i) for k-the
active tap, two load operations, one for the active-tap index iy,
and one for the input signal 2:(n — i), are necessary. Thus the
number of load operations and also the number for address
calculations increase. For random-order memory accesses, the
efficiency of the data cache might degrade.

For long pipeline latency, the loop unrolling[9] is widely
used. This technique requires a large number of data registers;
usually n registers are needed to overcome n-cycle latency.
Since the minimum latency for a load operation is seven
instruction cycles, at least eight-way loop unrolling would
be feasible to hide the latency. Eight registers might not be
sufficient for some applications.

V. IMPLEMENTAION OF SPARSE-TAP ADAPTIVE FIR
FILTERS

This implementation focuses on how to vectorize sparse-
tap adaptive FIR filters and also on how to optimize the
program with only a few data registers. The vectorization
utilizes a property of PC-based communication systems. The
optimization exploits IA-32 specific operations.

A. Vectorization Strategy

In PC-based comunication systems, a signal processing
would be carried out on a block of multiple input samples
rather than a sample-by-sample manner. This is because the
input/output (I/0) buffers and packet buffers cause a block-
based processing. Such a block-based processing can be uti-
lized to vectorization; multiple vectors of the input signals for
an active-tap can be prepared at a time.

A two-stage processing, which consists of a re-ordering
stage and a processing stage, is introduced in this implemen-
tation. Fig. 5 demonstrates the strategy. In the re-ordering
stage, the input signals for the active taps are copied into a re-
ordering buffer. When re-ordering buffer size is Ng, Np sam-
ples for k-th active tap, x(n —iy) through x(n—ix — Ng+1),
will be successively copied into the buffer. The processing
stage can utilize vector operations because the input signals
have been located in the order of the processing.

Main Delay-Line

X(n) | .o | X(N-i1) | .n [X(N-I1-7) | oo | X(N-i0) | ... [X(N-i0-7) | ...
| |
Stage 1: Re-Ordering
/ ,'/ Re-Ordering Buffer
X(n"O) X(n'|0'7) Even Words
. ' Y . Odd Words
x(n-it1) x(n-i1-7)

Input Signal Vector

Vector Computation Unit

Stage 2: Processing

Filer Coefficient Vector

Filer Coefficients

wo(n) Even Words

wi(n) Odd Words

Fig. 5. Vectorization Strategy

A block-based processing might make such a two-stage
strategy computationally efficient even when the overhead for
the re-ordering stage is introduced. The first reason is, of
course, four-way SIMD processing which might increase the
processing speed by up to four times. The second reason is a
cache efficiency. For the successive access z:(n — i) through
z(n —ip — Np + 1) will make the hardware cache prefetch
easy to operate.

The third reason is the reduction of the memory accesses.
For example, the load operations for the active-tap index 7y
can be reduced. Only once per Np samples is necessary. On
the other hand, twice per one sample is necessary for a sample-
by-sample operation.

B. Optimization

In order to maximize the level of the loop unrolling,
the memory-to-register operations are used if possible. For
the coefficient updates by the NLMS algorithm, all multiply
operations and all add operations are the memory-to-register
operations. For the FIR filtering and power calculation, which
are performed in a same loop, the half of the multiply
operations are the memory-to-register operations. This saves
the data registers. Since the compiler tend to generate a load-
store style code, the optimization has been carried out by using
an in-line assembler.

Fig. 6 demonstrates the dynamic register allocation for the
partial filter output yx(n) defined by

k

ye(n) =Y wi(n)z(n —ir) ©)

=0

and the partial input power pg(n) defined by

k
pr(n) = Z xQ(n —). 4)
1=0

xmmo [
xmm-
xmmz2
xmm3 f:
xmmé4
xmmb5 |:
Xxmm6
xmm7

)

/] Pertial output yk(n)

Pertial power pk(n)
: Temporaly data

Register Map for FIR and Power

Fig. 6.

TABLE I
SPECIFICATIONS OF ADAPTIVE FILTER

Sampling frequency 16kHz
Block size 320
Number of taps Nt 16000
Number of active taps N 4 800
Adaptation NLMS
Precision 32-bit floating point

These partial results work through eight data registers xmmO
through xmm?7, not staying at a single register. This also saves
the data registers. These register-saving techniques makes
eight-way loop unrolling by using only eight data registers
possible.

VI. PERFORMANCE COMPARISONS

The grouping algorithm has been implemented and tested.
The specifications of the implemented sparse-tap adaptive
filter is shown in Tab. I. Table II depicts the specifications
of the platform. The critical part of the adaptive filter has
been programmed in an assembly language. Instructions have
been scheduled for highest speed on Core2 processors. For
performance comparison, a program in C language with SSE
scalar operations is used.

Table III compares the performance. The calculation times
for 1200seconds of input data have been measured. By the
re-ordering and the vectorization, the computation speed is in-
creased by almost 66percent. The vectorized version is almost
five times faster for the FIR filtering and power calculation,
while that is almost three times faster for the NLMS algorithm.

Though the improvements depend on the re-ordering buffer
size, 40percent speedup can be achieved for a wide range
of the block size; from 10 to 160. If only the re-ordering is
introduced, the performance is degraded because the overhead
is larger than the improvements.

TABLE II
SPECIFICATIONS OF PLATFORM

Core2 Duo
Type E8200
Core Clock 2.66GHz
FSB Clock 1333MHz
L1 Data Cache 32kB
L1 Inst. Cache 32kB
L2 Cache 6MB
Chipset Intel G33
TABLE III
COMPARISON OF CPU TIME
Buffer | Vector Total | Ratio FIR+ | LMS | Re-ordering
Size Power
None No 79.48 1.00 33.17 | 28.44 -
320 No 139.49 1.76 31.33 | 17.64 68.54
80 No 85.14 1.07 31.33 | 1743 17.30
320 Yes 103.38 1.30 6.42 6.77 68.45
160 Yes 50.09 0.63 6.38 6.73 24.40
80 Yes 48.84 0.61 6.33 6.48 17.39
40 Yes 50.19 0.63 6.43 6.45 24.14
10 Yes 57.82 0.72 6.47 6.23 26.15
4 Yes 76.19 0.96 5.88 5.97 44.29
1 Yes 157.78 1.99 6.35 6.05 120.26

VII. CONCLUSIONS

A computationally efficient implementation of sparse-tap
FIR adaptive filters has been proposed. To vectorize, the
block-based processing and the re-ordering operations are
introduced. The introduction of the dynamic register allocation
and the use of memory-to-register operations maximize the
loop-unrolling level. Almost 66percent of the execution speed
is achieved.

REFERENCES

[1] S. Kawamura and M. Hatori, “A tap selection algorithm for adaptive

filters,” Proc. of ICASSP ’86, pp. 2979-2982, 1986.

S. Ikeda and A. Sugiyama, “A fast convergence algorithm for sparse-tap

adaptive fir filters for an unknown number of multiple echoes,” Proc. of

ICASSP ’94, pp. 41-44, 1994.

“Intel 64 and IA-32 architectures software developer’s manual volume 1:

Basic architecture,” May 2007.

J. Nagumo and A. Noda, “A learning method for system identification,”

IEEE Trans. AC, vol. 12, no. 3, pp. 282-287, Mar 1967.

“Intel 64 and IA-32 architectures software developer’s manual volume

2a: Instruction set reference, a-m,” May 2007.

“Intel 64 and IA-32 architectures software developer’s manual volume

2b: Instruction set reference, n-z,” May 2007.

[7] “ADSP-2136x SHARC processor hardware reference,” May 2006.

[8] B. Juurlink A. Shahbahrami and S. Vassiliadis, ‘“Performance impact of
misaligned accesses in SIMD extensions,” Proc. of ProRISC 2006, pp.
334-342, 2006.

[9] David A. Patterson and John L. Hennessy, “Computer organization and
design,” .

[2

—

3

[t}

[4

—_

[5

—

[6

—

