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LAGUERRE AND DISK POLYNOMIAL EXPANSIONS WITH

NONNEGATIVE COEFFICIENTS

YUICHI KANJIN

Abstract. We establish Wiener type theorems and Paley type theorems for
Laguerre polynomial expansions and disk polynomial expansions with nonneg-
ative coefficients.

1. Introduction

　　　
A well-known theorem on functions with positive Fourier coefficients given by

Norbert Wiener (see [4, pp.242-250] and [19, §§1-2]) is the following:

[A] Wiener’s theorem . Let f ∈ L1(−π, π) be a function satisfying f̂(n) ≥ 0

for every n ∈ Z, where f̂(n) = (1/(2π))
∫ π

−π
f(θ)e−inθ dθ. If there exists a constant

δ > 0 such that
∫ δ

−δ
|f(θ)|2 dθ <∞, then

∫ π

−π
|f(θ)|2 dθ <∞.

On functions with positive Fourier coefficients satisfying ess sup|θ|<δ|f(θ)| < ∞
with some δ > 0, we have the following which is a part of the results of Paley [18]:

[B] Paley’s theorem . Let f ∈ L1(−π, π) be an even function satisfying f̂(n) ≥ 0

for every n. If ess sup|θ|<δ|f(θ)| <∞ with some δ > 0, then
∑∞

n=−∞ f̂(n) <∞.

Recently, Mhaskar and Tikhonov [17] extended these two theorems to the Jacobi

polynomial expansions. Let us state an essential part of their results. Let R
(α,β)
n (x)

be the Jacobi polynomials of order α, β > −1 with the normalization R
(α,β)
n (1) = 1,

that is, the orthogonal polynomials pn(x) on the interval [−1, 1] with respect to the
weight function wα,β(x) = (1− x)α(1 + x)β satisfying pn(1) = 1. It is known that

R
(−1/2,−1/2)
n (cos θ) = cosnθ. A function f on [−1, 1] is formally expanded: f(x) ∼∑∞
n=0 f̂(n)R

(α,β)
n (x). Here, f̂(n) is the Fourier-Jacobi coefficient of f defined by

f̂(n) = ρ−1
n

∫ 1

−1

f(x)R(α,β)
n (x)wα,β(x) dx, ρn =

∫ 1

−1

|R(α,β)
n (x)|2wα,β(x) dx.

[C] ([17]). Let f ∈ L1([−1, 1], wα,β). Suppose that every Fourier-Jacobi coefficient

f̂(n) is nonnegative. Then the following (i) and (ii) hold.

(i) If there exists a constant δ > 0 such that
∫ 1

1−δ
|f(x)|2wα,β(x) dx < ∞, then

f ∈ L2([−1, 1], wα,β(x)).
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(ii) If there exists a constant δ > 0 such that ess sup1−δ<x<1|f(x)| < ∞, then∑∞
n=0 f̂(n) <∞.

Actually, Mhaskar and Tikhonov have obtained a more general Wiener type
theorem ([17, Theorem 3.1]) by using the notion of solid space. A subspace X ⊂
L1([−1, 1], wα,β) is called solid if f ∈ L1([−1, 1], wα,β), g ∈ X and |f̂(n)| ≤ ĝ(n)
for every n imply f ∈ X. Their results [C] suggest that it is interesting to consider
Wiener type and Paley type theorems in other orthogonal polynomial expansions.

In this paper, we shall establish these types of theorems in the Laguerre poly-
nomial expansions (Theorem 1 in §2.2) and the disk polynomial expansions (The-
orem 2 in §3.2). The disk polynomials are orthogonal polynomials with two vari-
ables (cf. [5, 2.4.3 and p.62]). The Laguerre polynomials are orthogonal on the
non-compact interval [0,∞). Kawazoe, Onoe and Tachizawa [14, §2] constructed
a function f ∈ L1(R) with nonnegative Fourier transform f̂(ξ) ≥ 0 such that∫ δ

−δ
|f(x)|2 dx < ∞ with some δ > 0 and f ̸∈ L2(R), which is in contrast to our

Wiener type theorem for the Laguerre case.
Related results and further references are found in [1], [2], [7], [8], [13], [16] and

[21].
We shall deal with Laguerre polynomial expansions with nonnegative Fourier-

Laguerre coefficients in §2. In §2.1, we shall state known results on the Laguerre
polynomials and prepare two lemmas which are essential in our proofs of Wiener
type and Paley type theorems. Those theorems and other results will be proved
in §2.2. In §3, we shall discuss the disk polynomial case in the same order as the
Laguerre case. We set an addendum at the end of the paper for proofs of some
results on the disk polynomials.

2. Laguerre polynomial expansions

A Wiener type theorem and a Paley type theorem for the Laguerre polynomial
expansions will be given in this section. We suppose throughout this section that
the parameter α satisfies α ≥ 0 and the functions we treat are real-valued. We shall
work on the following spaces:

Lp
α =


{
f ; ∥f∥p =

(∫∞
0

|f(x)e−x/2|pxα dx
)1/p

<∞
}
, 1 ≤ p <∞,{

f ; ∥f∥∞ = ess supx>0 |f(x)e−x/2| <∞
}
, p = ∞.

As the above, the weighted norms are denoted by ∥f∥p without the subscript α.

2.1. Preparations. In this subsection, we summarize some facts and results with-
out proofs which are referred mainly to [9], and we shall give two lemmas which
will be used for proving our theorems.

Let L
(α)
n (x) be the Laguerre polynomial of degree n = 0, 1, 2, . . . , which is given

by the following Rodrigues’ formula

L(α)
n (x) =

exx−α

n!

(
d

dx

)n

(e−xxn+α).

The orthogonality is∫ ∞

0

L(α)
m (x)L(α)

n (x) dx = Γ(α+ 1)

(
n+ α

n

)
δmn, m, n = 0, 1, 2, . . .
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and the values at x = 0 are

L(α)
n (0) =

(
n+ α

n

)
.

We denote the normalized Laguerre polynomials by

R(α)
n (x) = L(α)

n (x)/L(α)
n (0),

and then the system {R(α)
n }∞n=0 is complete and orthogonal in L2

α. The polynomials
satisfy the following inequality ([6, 10.18(14)]):

(1) |R(α)
n (x)e−x/2| ≤ 1.

We define the Fourier Laguerre coefficients {f̂(n)}∞n=0 by

f̂(n) =

∫ ∞

0

f(x)R(α)
n (x)e−xxα dx,

which satisfy

|f̂(n)| ≤ ∥f∥1; |f̂(n)| ≤ ∥f∥2∥R(α)
n ∥2.

A function f(x) on the interval [0,∞) is formally expanded as follows:

f(x) ∼
∞∑

n=0

f̂(n)h(α)n R(α)
n (x) =

1

Γ(α+ 1)

∞∑
n=0

f̂(n)L(α)
n (x),

where

h(α)n =
1

∥R(α)
n (x)∥22

=
1

Γ(α+ 1)

(
n+ α

n

)
∼ nα.

The linearization coefficients

γ(k,m, n;α) =

∫ ∞

0

R
(α)
k (x)R(α)

m (x)R(α)
n (x)e−2xxα dx

satisfy the following [3, Theorem 1, (4.2) and (4.4)]:

e−xR(α)
n (x)e−xR(α)

m (x) =
∞∑
k=0

γ(k,m, n;α)h
(α)
k e−xR

(α)
k (x), x ≥ 0,(2)

γ(k,m, n;α) ≥ 0,

∞∑
k=0

h
(α)
k γ(k,m, n;α) = 1.

Let 1 ≤ p ≤ ∞. For f ∈ Lp
α, g ∈ L1

α, the convolution f ∗ g is defined by

f ∗ g(t) =
∫ ∞

0

Tα
t (f ;x)g(x)e

−xxα dx, t ≥ 0,

where Tα
t denotes the Laguerre translation operator given by

Tα
t (f ;x)

=
Γ(α+ 1)2α√

2π

∫ π

0

f(x+ t+ 2
√
xt cos θ)e−

√
xt cos θ Jα−1/2(

√
xt sin θ)

(
√
xt sin θ)α−1/2

sin2α θ dθ

for x, t > 0, Tα
t (f ; 0) = f(t) for t > 0, Tα

0 (f ;x) = f(x) for x ≥ 0. Then the
following inequalities hold:

∥Tα
t f∥p ≤ et/2∥f∥p (t ≥ 0); ∥f ∗ g∥p ≤ ∥f∥p∥g∥1.

Further the operator Tα
t satisfies

Tα
t (R

(α)
n ;x) = R(α)

n (x)R(α)
n (t), x, t ≥ 0.
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For f ∈ Lp
α, g ∈ Lq

α, 1 ≤ p, q ≤ ∞ with 1/p+ 1/q ≥ 1, the convolutions f ∗ g and
g ∗ f exist and

T̂α
t f(n) = f̂(n)R(α)

n (t) (t ≥ 0); f̂ ∗ g(n) = f̂(n)ĝ(n).

The Poisson integrals of a function f ∈ Lp
α, 1 ≤ p ≤ ∞ is defined by

P (α)
r (f ;x) = (f ∗ P (α)

r )(x) =
∞∑

n=0

rnf̂(n)h(α)n R(α)
n (x), 0 ≤ r < 1, x ≥ 0,

where

P (α)
r (x) =

∞∑
n=0

rnh(α)n R(α)
n (x) =

exr/(r−1)

Γ(α+ 1)(1− r)α+1
,

which satisfy

(3) ∥P (α)
r ∥1 ≤

(
2

1 + r

)α+1

, 0 ≤ r < 1.

Parseval’s formula is as follows:∫ ∞

0

f(x)g(x)e−xxα dx =

∞∑
n=0

h(α)n f̂(n)ĝ(n)

for functions f, g ∈ L2
α.

We now come to the lemmas which play an essential role to prove our Wiener
type and Paley type theorems.

Lemma 1. Let δ > 0. Then there exists a function ϕδ on [0,∞) such that suppϕδ ⊂
[0, δ), ϕ̂δ(0) = 1, ϕ̂δ(n) ≥ 0 for every n, and ϕ̂δ(n) = O(n−k), n → ∞ for any
positive integer k.

Proof. We choose a function gδ ∈ C∞(0,∞) such that gδ ≥ 0, supp gδ ⊂ (0, δ/4),
and

ĝδ(0) =

∫ ∞

0

gδ(x)e
−xxα dx = 1.

Then we put

ϕδ(t) = gδ ∗ gδ(t) =
∫ δ/4

0

Tα
t (gδ;x)gδ(x)e

−xxα dx.

We show first that suppϕδ ⊂ [0, δ). We see that

x+ t+
√
xt cos θ ≥ x+ t−

√
xt ≥ (

√
t−

√
x)2,

≥ (
√
δ −

√
δ/4)2 = δ/4

for t ≥ δ, x ≤ δ/4 and 0 ≤ θ ≤ π. It follows from the definition of the Laguerre
translation operator and supp gδ ⊂ (0, δ/4) that Tα

t (gδ;x) = 0 for t ≥ δ and

x ≤ δ/4, which implies suppϕδ ⊂ [0, δ). By ϕ̂δ(n) = ĝδ
2(n), we have ϕ̂δ(0) = 1 and

ϕ̂δ(n) ≥ 0 for every n. Since gδ ∈ C∞(0,∞) and supp gδ ⊂ (0, δ/4), it follows from
integration by parts that ĝδ(n) = O(n−k), n → ∞ for any positive integer k (cf.,

e.g., [12, Lemma 1]), so do the coefficients ϕ̂δ(n). □
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Remark 1. (i) The function ϕδ of this type was used by Mhaskar and Tikhonov [17]
and played an important role in their proofs of Wiener and Paley type theorems
for the Jacobi expansions.

(ii) From the definitions of the Laguerre translation operator and the convolution,
it is easy to see that the function ϕδ is continuous on [0,∞). It follows from (1)

that the series
∑∞

n=0 h
(α)
n ϕ̂δ(n)R

(α)
n (x)e−x/2 converges uniformly to a continuous

function g(x) on [0,∞), and for every x ∈ [0,∞) the series
∑∞

n=0 h
(α)
n ϕ̂δ(n)R

(α)
n (x)

converges to g(x)ex/2. On the other hand, the Poisson integral P
(α)
r (ϕδ; ·) of ϕδ

converges to ϕδ in Lp
α, 1 ≤ p <∞. Standard arguments lead us to g(x)ex/2 = ϕδ(x)

for every x ∈ [0,∞). Therefore we have that

ϕδ(x)e
−x/2 =

∞∑
n=0

h(α)n ϕ̂δ(n)R
(α)
n (x)e−x/2,

where the series converges uniformly on [0,∞), and

ϕδ(x) =
∞∑

n=0

h(α)n ϕ̂δ(n)R
(α)
n (x),

where the series converges for every x ∈ [0,∞). Further, we can see that ϕδ ∈
C∞(0,∞) by using the formula (d/dx)L

(α)
n (x) = −L(α+1)

n−1 (x).

Lemma 2. For δ > 0, let ϕδ be the function in Lemma 1. Suppose that f ∈ L1
α

and f̂(n) ≥ 0 for every n. Then,

(4) 0 ≤ f̂ ě(n) ≤ Γ(α+ 1)(fěϕδ )̂ (n),

for every n, where ě(x) = e−x.

Proof. Since∫ ∞

0

|f(x)e−xR(α)
m (x)R(α)

n (x)|e−xxα dx ≤
∫ ∞

0

|f(x)|e−xxα dx <∞

by (1), it follows that

(fěϕδ )̂ (n) =

∫ ∞

0

f(x)e−xϕδ(x)R
(α)
n (x)e−xxα dx

=
∞∑

m=0

h(α)m ϕ̂δ(m)

∫ ∞

0

f(x)e−xR(α)
m (x)R(α)

n (x)e−xxα dx.(5)

We put

I0(m,n) =

∫ ∞

0

f(x)e−xR(α)
m (x)R(α)

n (x)e−xxα dx.

Then we have by (2) that

(6) I0(m,n) =
∞∑
k=0

h
(α)
k γ(k,m, n;α)f̂(k),

which is justified by∫ ∞

0

|f(x)R(α)
k (x)|e−xxα dx ≤

∫ ∞

0

|f(x)|e−x/2xα dx <∞.
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Thus we have I0(m,n) ≥ 0 for every m and n. It follows from (5) that

(fěϕδ )̂ (n) ≥ h
(α)
0 ϕ̂δ(0)I0(0, n).

Noting that h
(α)
0 = 1/Γ(α + 1), ϕ̂δ(0) = 1 and I0(0, n) = f̂ ě(n), we have the

inequality (4). □

Remark 2. (i) It follows from the above proof that

(7) f̂ ě(n) =

∞∑
k=0

h
(α)
k γ(k, 0, n;α)f̂(k)

for every n, which will be used in the proof of Theorem 1, (ii).
(ii) The assumption f ∈ L2

α instead of f ∈ L1
α also justifies the identity (6) and

thus I0(m,n) ≥ 0. For, the inequalities∫ ∞

0

|f(x)R(α)
k (x)|e−xxα dx ≤ ∥f∥2 ∥R(α)

k ∥2 ≤ Cα∥f∥2k−α/2,

hold, where Cα is a constant depending only on α.

2.2. Wiener type and Paley type theorems for Laguerre expansions. We
have the following theorem which gives our Wiener type theorem and Paley type
theorem for the Laguerre polynomial expansions.

Theorem 1. Let f ∈ L1
α and suppose f̂(n) ≥ 0 for every n.

(i) If there exists a constant δ > 0 such that
∫ δ

0
|f(x)|2xα dx <∞, then ∥fě∥22 =∫∞

0
|f(x)e−x|2e−xxα dx <∞, where ě(x) = e−x.
(ii) If there exists a constant δ > 0 such that ess sup0≤x≤δ |f(x)| < ∞, then∑∞
n=0 h

(α)
n f̂(n) <∞.

Proof. (i): For δ > 0, let ϕδ be the function in Lemma 1. We have by Lemma 2
that

∞∑
n=0

h(α)n f̂ ě(n)2 ≤ Γ(α+ 1)2
∞∑

n=0

h(α)n {(fěϕδ )̂ (n)}2

= Γ(α+ 1)2
∫ ∞

0

|f(x)e−xϕδ(x)|2e−xxα dx

≤ Γ(α+ 1)2 ess sup0≤x≤δ |ϕδ(x)|2 ·
∫ δ

0

|f(x)|2xα dx,

that is, ∥fě∥22 <∞, which completes the proof of (i).
(ii): Let 0 < s < 1 and 0 < r < 1. We consider the following convergent double

series with nonnegative terms:

σ(r, s) =
∞∑
k=0

h
(α)
k rkf̂(k)

∞∑
n=0

h(α)n snγ(k, 0, n;α).

It follows from (7) that

σ(r, s) =
∞∑

n=0

h(α)n sn
∞∑
k=0

h
(α)
k rkγ(k, 0, n;α)f̂(k) ≤

∞∑
n=0

h(α)n sn f̂ ě(n).



POLYNOMIAL EXPANSIONS WITH NONNEGATIVE COEFFICIENTS 7

By using Lemma 2, we have

σ(r, s) ≤ Γ(α+ 1)
∞∑

n=0

h(α)n sn f̂ ěϕδ(n),

= Γ(α+ 1)

∞∑
n=0

h(α)n sn f̂ ěϕδ(n)R
(α)
n (0) = Γ(α+ 1)Ps(fěϕδ; 0).

Therefore we have by (3) that

σ(r, s) ≤ Γ(α+ 1)∥P (α)
s (fěϕδ; ·)∥∞ ≤ Γ(α+ 1)

(
2

1 + s

)α+1

∥fěϕδ∥∞

≤ Γ(α+ 1)2α+1 ess sup0≤x≤δ|f(x)|.

Letting r, s→ 1−, we have that

∞∑
k=0

h
(α)
k f̂(k)

∞∑
n=0

h(α)n γ(k, 0, n;α) ≤ Γ(α+ 1)2α+1 ess sup0≤x≤δ|f(x)|,

which completes the proof of (ii) since
∑∞

n=0 h
(α)
n γ(k, 0, n;α) = 1. □

Remark 3. Let f ∈ L1
α. Suppose that

∑∞
n=0 h

(α)
n |f̂(n)| < ∞. It follows from (1)

that the series
∑∞

n=0 h
(α)
n f̂(n)R

(α)
n (x)e−x/2 converges absolutely and uniformly to

a continuous function on [0,∞). Since the Poisson integral P
(α)
r (f ; ·) converges to

f in L1
α, we see that

f(x) =
∞∑

n=0

h(α)n f̂(n)R(α)
n (x), a.e. x ∈ [0,∞).

Therefore, the function f whose values are modified on a set of measure zero is
continuous.

Let us prove the following proposition inspired by Theorem 1 (i).

Proposition 1. Let f ∈ L2
α, and let N be a positive integer. Suppose that

(8)

∫ ∞

0

|f(x)e−x|2Nxα dx <∞,

and f̂(n) ≥ 0 for every n. If there exists a constant δ > 0 such that
∫ δ

0
|f(x)|2(N+1)xα dx <

∞, then fě ∈ L
2(N+1)
α , that is,

(9)

∫ ∞

0

|f(x)e−x|2(N+1)e−xxα dx <∞.

Proof. We put

IN (m,n) = {(fě)N+1R(α)
m }̂ (n) =

∫ ∞

0

(f(x)e−x)N+1R(α)
m (x)R(α)

n (x)e−xxα dx,



8 YUICHI KANJIN

and we shall show that IN (m,n) ≥ 0 for every m and n. Then we have the desired
inequality (9) as follows. Let ϕδ be the function in Lemma 1. We have that

{(fě)N+1ϕδ }̂ (n) =

∫ ∞

0

(f(x)e−x)N+1ϕδ(x)R
(α)
n (x)e−xxα dx

=
∞∑

m=0

h(α)m ϕ̂δ(m)

∫ ∞

0

(f(x)e−x)N+1R(α)
m (x)R(α)

n (x)e−xxα dx,

=

∞∑
m=0

h(α)m ϕ̂δ(m)IN (m,n).(10)

The second equality is justified since∫ ∞

0

|(f(x)e−x)N+1R(α)
m (x)R(α)

n (x)|e−xxα dx

≤
∫ ∞

0

|f(x)||f(x)e−x|Ne−xxα dx <∞

by |R(α)
n (x)e−x/2| ≤ 1 and f, (fě)N ∈ L2

α. Since IN (m,n) ≥ 0 and IN (0, n) =
{(fě)N+1}̂ (n), it follows from (10) that

{(fě)N+1ϕδ }̂ (n) ≥ 1

Γ(α+ 1)
{(fě)N+1}̂ (n) ≥ 0,

which leads to (9).

Let us prove IN (m,n) ≥ 0 by induction. Let N = 1. Noting f, f ěR
(α)
k ∈ L2

α, we
have by the identity (2) that

I1(n,m) =

∞∑
k=0

γ(k, n,m;α)h
(α)
k

∫ ∞

0

f(x)f(x)e−xR
(α)
k (x)e−xxα dx,

=
∞∑
k=0

γ(k, n,m;α)h
(α)
k

∞∑
p=0

f̂(p){fěR(α)
k }̂ (p).

By Remark 2, (ii), we have I0(k, p) = {fěR(α)
k }̂ (p) ≥ 0, which leads to I1(m,n) ≥ 0.

We also have by (2) that

IN (n,m) =
∞∑
k=0

γ(k, n,m;α)h
(α)
k

∫ ∞

0

f(x)(f(x)e−x)NR
(α)
k (x)e−xxα dx,

=
∞∑
k=0

γ(k, n,m;α)h
(α)
k

∞∑
p=0

f̂(p)IN−1(k, p).(11)

The first equality is justified by f ∈ L2
α and (8) since∫ ∞

0

|f(x)(f(x)e−x)NR
(α)
k (x)|e−xxα dx ≤

∫ ∞

0

|f(x)| · |f(x)e−x|Nex/2 · e−xxα dx.

Since f ∈ L2
α, it is trivial that

∫∞
0

|f(x)e−x|2xα dx < ∞, with which (8) leads

to
∫∞
0

|f(x)e−x|2(N−1)xα dx < ∞. By using the assumption IN−1(k, p) ≥ 0 of
induction, we have IN (n,m) ≥ 0. □

It may be an interesting problem to find the notion of “solid” space suitable for
the Laguerre expansions and extend Theorem 1 or Proposition 1 to such a space.
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3. Disk polynomial expansions

In this section, we shall give a Wiener type theorem and a Paley type theorem
for the disk polynomial expansions. We shall denote by D the closed unit disk
{ z = x+ iy ;x2 + y2 ≤ 1}. A function f(z) on D will be considered as a function
f(x, y) of the variables x and y, and a function f(z, z̄) of the variables z and z̄,
where z̄ = x−iy, and also a function f(r, θ) of the variables r and θ, where z = reiθ.

Throughout this section, we suppose that the parameter α satisfies α > 0. Let
mα be the positive measure of total mass one on D defined by

dmα(z) =
α+ 1

π
(1− x2 − y2)αdxdy.

In this section, for every p with 1 ≤ p ≤ ∞, Lp
α stands for the space Lp(D,mα) and

∥ · ∥p for ∥ · ∥Lp(D,mα).

3.1. Preparations. In this subsection, we summarize notations and results which
will be needed later.

Let m and n be nonnegative integers. The disk polynomials R
(α)
m,n(z) are defined

by

R(α)
m,n(z) = r|m−n|ei(m−n)θR

(α,|m−n|)
m∧n (2r2 − 1), z = reiθ, m ∧ n = min{m,n},

where R
(α,β)
n (x) = P

(α,β)
n (x)/P

(α,β)
n (1) and P

(α,β)
n (x) are the Jacobi polynomials

given by Rodrigues’ formula

(1− x)α(1 + x)βP (α,β)
n (x) =

(−1)n

2nn!

dn

dxn
{(1− x)n+α(1 + x)n+β}.

The following inequality holds (cf. [20, (4.1.1) and (7.32.2)]):

(12) |R(α)
m,n(z)| ≤ 1, z ∈ D.

The system {R(α)
m,n}∞m,n=0 is complete orthogonal in L2

α. The Fourier coefficients

f̂(m,n) of f ∈ L1
α for the system {R(α)

m,n}∞m,n=0 are defined by

f̂(m,n) =

∫
D
f(z)R

(α)
m,n(z) dmα(z) =

∫
D
f(z)R(α)

n,m(z) dmα(z).

A function f ∈ L1
α on D is formally expanded as follows:

f(z) ∼
∞∑

m,n=0

h(α)m,nf̂(m,n)R
(α)
m,n(z),

where

h(α)m,n =
1

∥R(α)
m,n∥22

=
m+ n+ α+ 1

α+ 1

(
m+ α

m

)(
n+ α

n

)
∼ (m+ n+ 1)2α+1.

The linearization coefficients for disk polynomials are positive [15, Corollary 5.2]:

R(α)
m,n(z)R

(α)
k,l (z) =

∑
p,q

a(m,n; k, l; p, q)h(α)p,qR
(α)
p,q (z),

a(m,n; k, l; p, q) =

∫
D
R(α)

m,n(z)R
(α)
k,l (z)R

(α)
p,q (z) dmα(z) ≥ 0.(13)

In the above sum, the pair (p, q) takes such values that m+ k + p = n+ l + q and
|m+ n− k − l| ≤ p+ q ≤ m+ n+ k + l.
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Let 1 ≤ p ≤ ∞. For f ∈ Lp
α and g ∈ L1

α, the convolution f ∗ g is defined by

f ∗ g(ζ) =
∫
D
T (α)
z f(ζ)g(z) dmα(z), ζ ∈ D,

where T (α)
z is the translation operator for disk polynomials defined by

T (α)
z f(ζ) =

α

α+ 1

∫
D
f(z̄ζ +

√
1− |z|2

√
1− |ζ|2ξ) dmα(ξ)

1− |ξ|2
.

It is known that

∥T (α)
z f∥p ≤ ∥f∥p; ∥f ∗ g∥p ≤ ∥f∥p∥g∥1;

f̂ ∗ g(m,n) = f̂(m,n)ĝ(m,n).

We use the following Poisson kernel defined in [11]:

P(α)
s (z) =

∞∑
m,n=0

s|m−n|+m∧nh(α)m,nR
(α)
m,n(z), 0 ≤ s < 1.

The Poisson integral of a function f ∈ Lp(D,mα), 1 ≤ p ≤ ∞ is defined by

P(α)
s (f ; z) = (f ∗ P(α)

s )(z) =
∞∑

m,n=0

s|m−n|+m∧nh(α)m,nf̂(m,n)R
(α)
m,n(z), z ∈ D.

We know the following [11, Theorem 5]:

(14) P(α)
s (z) ≥ 0, z ∈ D ;

∫
D
P(α)
s (z) dmα(z) = 1, 0 ≤ s < 1.

Parseval’s formula is as follows:∫
D
f(z) g(z) dmα(z) =

∞∑
m,n=0

h(α)m,n f̂(m,n) ĝ(m,n)

for f, g ∈ L2
α.

We shall use the following result given in [10, Proposition 6.1 and the proof of
Theorem 6.3]. It may be difficult to obtain a copy of [10], so we include a proof in
the addendum.

Lemma 3 ([10]). Define a differential operator ∆α by

∆α = 4(1− zz̄)
∂2

∂z∂z̄
− 2(α+ 1)

(
z
∂

∂z
+ z̄

∂

∂z̄

)
.

Then the following (i), (ii) and (iii) hold.

(i) The disk polynomials R
(α)
m,n satisfy

(15) ∆αR
(α)
m,n = −2(α+ 1)

(
m+ n+

2mn

α+ 1

)
R(α)

m,n.

(ii) For f, g ∈ C2(D),

(16)

∫
D
∆αf(z)g(z) dmα(z) =

∫
D
f(z)∆αg(z) dmα(z).

(iii) Let f ∈ C∞(D). For every positive integer k, there exists a positive constant
C such that

(17) |f̂(m,n)| ≤ C(m+ n+ 1)−k, m, n = 0, 1, 2, . . . .
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We shall construct a function having properties similar to the function ϕδ in
Lemma 1. For a and λ with 0 < a < 1 and 0 < λ < π, we use the following
notation:

(18) S̄(a, λ) = { z = seiϕ : a ≤ s ≤ 1, |ϕ| ≤ λ }.

Lemma 4. For a with 0 < a < 1, put

b(a) =
1

2
(a+

√
2− a2), λ(a) = π

√
1− a2

a

√
1− b(a)2

b(a)
.

Suppose 1/
√
2 < a < 1. Then there exists a function ψa on D such that suppψa ⊂

S̄(a, λ(a)), ψ̂a(0, 0) = 1, ψ̂a(m,n) ≥ 0 for every m and n, and ψ̂a(m,n) = O((m+
n)−k) as m,n→ +∞ for any positive integer k.

Proof. We note first that (i) a < b(a) < 1 for 0 < a < 1; (ii) 0 ≤
√
1− r2/r < 1 for

1/
√
2 < r ≤ 1; (iii)

√
1− r2/r ↓ +0 as r → 1−; (iv) 0 < λ(a) < π for 0 < a < 1.

Let 1/
√
2 < a < 1. We choose a function ha ∈ C∞(D) such that ha ≥ 0,

suppha ⊂ S̄(b(a), λ(a)/4) and

ĥa(0, 0) =

∫
D
ha(z) dmα(z) = 1.

Put ȟa(z) = ha(z̄). Then ȟa has the same properties as ha. Let ψa be a function
on D such that

ψa(ζ) = ha ∗ ȟa(ζ) =
∫
S̄(b(a),λ(a)/4)

T (α)
z ha(ζ)ȟa(z) dmα(z), ζ ∈ D.

We show first that suppψa ⊂ S̄(a, λ(a)). It is enough to show that for z ∈
S̄(b(a), λ(a)/4) and ζ ̸∈ S̄(a, λ(a))

T (α)
z ha(ζ) =

∫
D
ha

(
z̄ζ +

√
1− |z|2

√
1− |ζ|2ξ

) dmα(ξ)

1− |ξ|2
= 0,

which will follow from

(19) z̄ζ +
√
1− |z|2

√
1− |ζ|2ξ ̸∈ S̄(b(a), λ(a)/4)

for ξ ∈ D, z ∈ S̄(b(a), λ(a)/4) and ζ ̸∈ S̄(a, λ(a)). We show this. We write
z, ζ ∈ D by using the polar coordinates as z = seiϕ,−π < s ≤ π, 0 ≤ s ≤ 1
and ζ = reiθ,−π < θ ≤ π, 0 ≤ r ≤ 1. Assume r < a. Then for ξ ∈ D and
z ∈ S̄(b(a), λ(a)/4), we have by the definition of b(a) that

(20)
∣∣∣z̄ζ +√

1− |z|2
√
1− |ζ|2ξ

∣∣∣ < a+
√
1− b(a)2 = b(a).

Next we suppose a ≤ r ≤ 1 and |θ| > λ(a). Let ξ ∈ D and z ∈ S̄(b(a), λ(a)/4). We
define ω by the equation

sinω =

√
1− s2

√
1− r2

sr
, 0 ≤ ω <

π

2
.

It follows that ω ≤ π
√
1− s2

√
1− r2/(2sr) ≤ λ(a)/2. If λ(a) < θ ≤ π, then

1

4
λ(a) ≤ λ(a)− 1

4
λ(a)− ω < arg

(
z̄ζ +

√
1− |z|2

√
1− |ζ|2ξ

)
(21)

≤ π +
1

4
λ(a) + ω <

7

4
π < 2π − 1

4
λ(a).
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For −π < θ < −λ(a), we have

(22) −2π +
1

4
λ(a) < arg

(
z̄ζ +

√
1− |z|2

√
1− |ζ|2ξ

)
< −1

4
λ(a)

in the same way. By combining (20), (21) and (22), we have (19), which shows
suppψa ⊂ S̄(a, λ(a)).

Since ψ̂a(m,n) = |ĥa(m,n)|2, it follows that ψ̂a(0, 0) = 1 and ψ̂a(m,n) ≥ 0 for

everym and n. Also, Lemma 3 leads us to ψ̂a(m,n) = O((m+n)−k) asm,n→ +∞
for any positive integer k. □
Remark 4. We easily see that the function ψa is continuous on D. It follows from

(12) that the series
∑∞

m,n=0 h
(α)
m,nψ̂a(m,n)R

(α)
n,m(z) converges uniformly to a contin-

uous function on D. We know that the Poisson integral P(α)
s (ψa; ·) converges to ψa

in Lp
α, 1 ≤ p <∞ ([11, Corollary 6]). From these, we see that

ψa(z) =

∞∑
m,n=0

h(α)m,nψ̂a(m,n)R
(α)
n,m(z),

where the series converges absolutely and uniformly on D. Moreover, it is not hard
to prove ψa ∈ C∞(D) by using (15).

Lemma 5. For a with 1/
√
2 < a < 1, let ψa be the function in Lemma 4. Suppose

that f ∈ L1(D,mα) and f̂(m,n) ≥ 0 for every m and n. Then,

(23) f̂(m,n) ≤ f̂ψa(m,n)

for every m and n.

Proof. Since f ∈ L1(D,mα) and the expansion of ψa converges boundedly on D, it
follows that

(fψa) (̂m,n) =
∞∑

k,l=0

h
(α)
k,l ψ̂a(k, l)

∫
D
f(z)R

(α)
k,l (z)R

(α)
n,m(z) dmα(z).

By (13), we have∫
D
f(z)R

(α)
k,l (z)R

(α)
n,m(z) dmα(z) =

∑
p,q

a(k, l;n,m; p, q)h(α)p,q f̂(p, q).

Since all the terms appearing in the sums are positive, it follows that

(fψa) (̂m,n) ≥ h
(α)
0,0 ψ̂a(0, 0)a(0, 0;n,m;m,n)h(α)m,nf̂(m,n).

We note that h
(α)
0,0 = 1, ψ̂a(0, 0) = 1 and a(0, 0;n,m;m,n) = h

(α)
m,n

−1, which com-
pletes the proof. □
3.2. Wiener type and Paley type theorems. Wiener type and Paley type
theorems for the disk polynomial expansions are as follows.

Theorem 2. Let f ∈ L1(D,mα) and f̂(m,n) ≥ 0 for every m and n.
(i) If there exist constants a0 and λ0 with 0 < a0 < 1, 0 < λ0 < π such that∫

S̄(a0,λ0)
|f(z)|2 dmα(z) < ∞, then ∥f∥22 =

∫
D |f(z)|2 dmα(z) < ∞, where S̄(a0, λ0)

is defined by (18).
(ii) If there exist constants a0 and λ0 with 0 < a0 < 1, 0 < λ0 < π such that

ess supz∈S̄(a0,λ0) |f(z)| <∞, then
∑∞

m,n=0 h
(α)
m,nf̂(m,n) <∞.
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Proof. We choose a such that a0 < a < 1, 1/
√
2 < a and λ(a) < λ0, and let ψa be

the function in Lemma 4. By Lemma 5 and S̄(a, λ(a)) ⊂ S̄(a0, λ0), we have

∞∑
m,n=0

h(α)m,n{f̂(m,n)}2 ≤
∞∑

m,n=0

h(α)m,n{(fψa)̂ (m,n)}2

=

∫
D
|f(z)ψa(z)|2 dmα(z)

≤ max
z∈S̄(a,λ(a))

|ψa(z)|2 ·
∫
S̄(a0,λ0)

|f(z)|2 dma(z).

This means ∥f∥22 <∞, which completes the proof of (i).

Let 0 < s < 1. By Lemma 5 and R
(α)
m,n(1) = 1, we have

∞∑
m,n=0

s|m−n|+m∧nh(α)m,nf̂(m,n) ≤
∞∑

m,n=0

s|m−n|+m∧nh(α)m,nf̂ψa(m,n)R
(α)
m,n(1),

= P(α)
s (fψa; 1) ≤ ∥P(α)

s (fψa; ·)∥∞.

By (14), we see that ∥P(α)
s (fψa; ·)∥∞ ≤ ∥fψa∥∞, which implies

∞∑
m,n=0

s|m−n|+m∧nh(α)m,nf̂(m,n) ≤ max
z∈S̄(a,λ(a))

|ψa(z)| · ess sup
z∈S̄(a0,λ0)

|f(z)|.

Letting s→ 1−, we complete the proof of (ii). □

Remark 5. Let f ∈ L1(D,mα) be a function in Theorem 2 (ii). Then we can modify
the values of f on a set of measure 0 with respect to dmα so that f is continuous
and

f(z) =
∞∑

m,n=0

h(α)m,nf̂(m,n)R
(α)
m,n(z),

the series converges absolutely and uniformly on D.

We can obtain the analogue of Theorem 2 (i) for L2N (D,mα), N = 1, 2, 3, . . . ,
that is, we have the following.

Proposition 2. Let f ∈ L1
α and f̂(m,n) ≥ 0 for every m and n. If there exist con-

stants a0 and λ0 with 0 < a0 < 1, 0 < λ0 < π such that
∫
S̄(a0,λ0)

|f(z)|2N dmα(z) <

∞, then
∫
D |f(z)|2N dmα(z) <∞.

Proof. We shall show that if h ∈ L1
α and g ∈ L2N

α satisfy |ĥ(m,n)| ≤ ĝ(m,n) for
every m and n, then h ∈ L2N

α . Then taking h = f and g = fψa, we have the

proposition owing to Lemma 5. To show h ∈ L2N
α , we prove that every ĥN (m,n)

exists and |ĥN (m,n)| ≤ ĝN (m,n). We show this by induction. The case N = 1

is clear. Assume that h ∈ L1
α, g ∈ L

2(N+1)
α and |ĥ(m,n)| ≤ ĝ(m,n) for every m

and n. It follows from the assumption of induction that hN ∈ L2
α. By Parseval’s
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identity and (13), we have

(hN+1)̂ (m,n) =

∫
D
hN (z)h(z)R

(α)
m,n(z) dmα(z),

=
∞∑

k,l=0

ĥN (k, l)(h̄R
(α)
m,n)̂ (k, l),

=
∞∑

k,l=0

ĥN (k, l)
∑
p,q

a(m,n; l, k; p, q)h(α)p,q ĥ(p, q).

In the same way, we have the above identity with g instead of h. Therefore, the
assumption of induction completes the proof. □

We can extend Proposition 2 to a larger class of solid spaces than L2N
α . A

subspace X ⊂ L1
α is called solid if f, g ∈ L1

α, |f̂(m,n)| ≤ ĝ(m,n) for every m and
n, and g ∈ X imply that f ∈ X. Let Xloc be the space of functions f ∈ L1

α

satisfying the condition that there exist positive constants a0 and λ0 with 0 < a <
1, 0 < λ0 < π such that fψ ∈ X for any ψ ∈ C∞ with supp ψ ⊂ S̄(a0, λ0). We

denote by P the space of functions f ∈ L1
α satisfying f̂(m,n) ≥ 0 for every m

and n. Then, by Lemma 5 we easily obtain the following result: If X is a solid
space, then Xloc ∩ P = X ∩ P. This is an extension of Proposition 2 since the
spaces L2N

α , N = 1, 2, 3, . . . are solid, which was already proved in the proof of the
proposition. This extension is the disk polynomial analogue of the theorem on the
Jacobi polynomials obtained by Mhaskar and Tikhonov [17, Theorem 3.1].

Addendum

For readers’ convenience, we shall give a proof of Lemma 3 by following the lines
of Heyer and Koshi [10].

Let us give a proof of (i) of the lemma. We treat the case m ≥ n. In this case,
we have

R(α)
m,n(z) = zm−nR(α,m−n)

n (2zz̄ − 1), z ∈ D.

Substituting u = 2zz̄ − 1, we have

∆αR
(α)
m,n(z) = zm−n

{
4(1− u2)

d2

du2
R(α,m−n)

n (u)

+ 4 ((m− n− α)− (α+m− n+ 2)u)
d

du
R(α,m−n)

n (u)

− 2(α+ 1)(m− n)R(α,m−n)
n (u)

}
.

Since −2(α+1)(m−n) = 4n(n+α+(m−n)+1)−2(α+1)(m+n+2mn/(α+1)),
the differential equation [20, (4.2.1)] leads to the identity (15). The case m ≤ n
will be done similarly. We completes the proof of (i) of the lemma.

We state a proof of (ii) of the lemma. For 0 < ϵ < 1, we put Dϵ = { z : |z| ≤
1− ϵ}. Since

(1− x2 − y2)α∆αf =
∂

∂x
(1− x2 − y2)α+1 ∂f

∂x
+

∂

∂y
(1− x2 − y2)α+1 ∂f

∂y
,



POLYNOMIAL EXPANSIONS WITH NONNEGATIVE COEFFICIENTS 15

it follows from Green’s formula that∫
Dϵ

(∆αf)ḡ dmα

=
α+ 1

π

∫
Dϵ

{
∂

∂x

(
(1− x2 − y2)α+1 ∂f

∂x
ḡ

)
+

∂

∂y

(
(1− x2 − y2)α+1 ∂f

∂y
ḡ

)}
dxdy

− α+ 1

π

∫
Dϵ

(
∂f

∂x

∂ḡ

∂x
+
∂f

∂y

∂ḡ

∂y

)
(1− x2 − y2)α+1 dxdy,

=
α+ 1

π

∫
∂Dϵ

(1− x2 − y2)α+1

(
∂f

∂x
ḡ dy − ∂f

∂y
ḡ dx

)
− α+ 1

π

∫
Dϵ

(
∂f

∂x

∂ḡ

∂x
+
∂f

∂y

∂ḡ

∂y

)
(1− x2 − y2)α+1 dxdy.

The first contour integral satisfies∫
∂Dϵ

(1− x2 − y2)α+1

(
∂f

∂x
ḡ dy − ∂f

∂y
ḡ dx

)
= O(ϵα+1), ϵ→ 1− .

Thus we have∫
D
(∆αf)ḡ dmα = −α+ 1

π

∫
D

(
∂f

∂x

∂ḡ

∂x
+
∂f

∂y

∂ḡ

∂y

)
(1− x2 − y2)α+1 dxdy.

In this equality, we replace the functions f and ḡ by ḡ and f̄ , respectively. Then
we see that

∫
D(∆αf)ḡ dmα =

∫
D f∆αg dmα, which is (16). The proof of (ii) of the

lemma is complete.
A proof of (iii) of the lemma is as follows. Let f ∈ C∞(D), and let k be a positive

integer. We choose a positive integer r such that k ≤ r + α + 1/2. By (i) and (ii)
of the lemma, we have that

(−2)r(α+ 1)r
(
m+ n+

2mn

α+ 1

)r

f̂(m,n) =

∫
D
f(z)(∆α)rR

(α)
m,n(z) dmα(z),

=

∫
D
(∆α)

rf(z)R
(α)
m,n(z) dmα(z),

and that ∣∣∣∣∫
D
(∆α)

rf(z)R
(α)
m,n(z) dmα(z)

∣∣∣∣ ≤ ∥R(α)
m,n∥2∥(∆α)

rf∥2.

Since ∥R(α)
m,n∥2 ≤ C(m+ n+ 1)−α−1/2, it follows that

|f̂(m,n)| ≤ C(m+ n+ 1)−r−α−1/2 ≤ C(m+ n+ 1)−k

with a positive constant C independent of m and n, which completes the proof of
(iii) of the lemma.
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