
A learning multiple-valued logic networkusing
genetic algorithm

言語: eng

出版者:

公開日: 2017-10-03

キーワード (Ja):

キーワード (En):

作成者:

メールアドレス:

所属:

メタデータ

http://hdl.handle.net/2297/36317URL

International Journal of Innovative
Computing, Information and Control ICIC International ⓒ2014 ISSN 1349-4198
Volume 10, Number 2, February 2014 pp. 1–-10

A Learning Multiple-Valued Logic Network
Using Genetic Algorithm

Yuki Todo1 and Takahiro Mitsui2

Faculty of Electrical and Computing Engineering
Kanazawa University

Kakuma-machi, Kanazawa 920-1192, Japan
yktodo@se.kanazawa-u.ac.jp

Received February 2013; revised July 2013

ABSTRACT. This paper describes a genetic algorithm based learning Multiple-Value Logic
(MVL) network. The proposed learning network operates on a population of candidate
window parameters to produce new window parameters with lower errors between the
desired outputs and the actual outputs of the MVL network. Thus, the learning MVL
network has a large number of search points, making it possible to obtain a global
minimum. The learning capability of the proposed MVL network with genetic algorithm is
confirmed by simulations on several typical MVL functions. The simulation results show
that the genetic algorithm based learning MVL network efficiently finds the appropriate
network, window parameters, and bias, so that the MVL functions, especially for those
relatively small problems.
Keywords: Multiple-valued logic, Genetic algorithm, Learning, global minimum, local
minimum

1. Introduction. Multiple-Valued Logic (MVL) has been studied for many years [1-3].
However, most of them have focused on Multiple-valued logic circuits and systems [4-6].
Recently, the ability of MVL networks to accumulate knowledge about objects and
processes using learning algorithms makes their applications in image processing, speech
recognition, disease diagnosis and data mining very promising and attractive [7-13]. Neural
networks based on multi-valued neurons have been introduced in [14] and further
developed in [15-18]. Multi-valued neural element (MVN) was based on the ideas of
multiple-valued threshold logic [19]. Its main properties are ability to implement arbitrary
mapping between inputs and outputs described by partially defined multiple-valued
function.
In [20], the authors proposed a learning MVL network that used a manner analogous to

neural back-propagation, and required derivatives of the node functions. But, because
derivatives of the node functions generally do not exist and derivatives are zero for most
inputs, learning cannot be performed efficiently. Therefore, some other learning methods
for MVL networks using the local search method, and further the stochastic dynamic local
search method were proposed in [21, 22]. They are some kinds of “non-back-propagation”

1

2 Y. TODO AND T. MITSUI

learning methods, but are still frustrated by high error barriers which trap the simulation in
one of the numerous meta-stable configurations. Thus, an algorithm is needed which can
jump from one minimum to other and allow an effective sampling of window parameter
space.
This paper describes such a learning algorithm for MVL networks. The algorithm is based

on the genetic algorithm (GA), an optimization strategy inspired by the Darwinian
evolution process [23]. Starting with a population of candidate parameters, we select a
fraction of the population as ‘parents’ by using the error between the actual outputs and
desired outputs of the MVL network as the criteria of fitness. The next generation of
candidate parameters is produced by mating these parents. The process is repeated until the
error gets to a pre-determined value. We use the genetic algorithm based learning MVL
network to learn several typical MVL functions. In all cases we simulated, the genetic
algorithm based learning MVL network efficiently finds the appropriate network, window
parameters, and biases, so that the MVL functions, especially for those relatively small
problems starting from an biased population of random parameters of MVL networks.

This paper is organized as follows: in the next section, the multiple-valued logic network
is briefly reviewed. Section 3 describes a genetic algorithm for the MVL networks.
Simulation results are given in section 4. Section 5 details our conclusions.

2. Multiple-Value Logic (MVL) Network. A Multiple-Valued Logic is an obvious
extension from classical two-valued logic to a R-valued logic for R greater than 2. For any
given R-valued system with the set {0,1,…,R-1}, the multiple-variable MAX and MIN
operators together with appropriate unary operator(s), for example a literal operator (LIT)
enable any R-valued function to be synthesized in a sum-of-products form,

𝐹𝐹(𝑥𝑥1𝑥𝑥2, … , 𝑥𝑥𝑛𝑛) = ∑ 𝐹𝐹(𝑒𝑒1, 𝑒𝑒2, … , 𝑒𝑒𝑛𝑛) ∙ 𝑥𝑥1(𝑒𝑒1, 𝑒𝑒1)𝑒𝑒1,𝑒𝑒2,…,𝑒𝑒𝑛𝑛 𝑥𝑥2(𝑒𝑒2, 𝑒𝑒2) ∙∙∙ 𝑥𝑥𝑛𝑛(𝑒𝑒𝑛𝑛, 𝑒𝑒𝑛𝑛) (1)

where x1,x2,…,xn are R-valued variables, ei∈0,1,2,…,R-1, i=0,1,2,…,n, F(e1,e2,…,en) ∈
0,1,2,..,R-1.
(1) MAX operator

𝑚𝑚𝑚𝑚𝑚𝑚1 + 𝑚𝑚𝑚𝑚𝑚𝑚2+, … , +𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑀𝑀𝑀𝑀𝑀𝑀(𝑚𝑚𝑚𝑚𝑚𝑚1,𝑚𝑚𝑚𝑚𝑚𝑚2, … ,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚)
 = 𝑡𝑡ℎ𝑒𝑒 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑜𝑜𝑜𝑜 (𝑚𝑚𝑚𝑚𝑚𝑚1,𝑚𝑚𝑚𝑚𝑚𝑚2, … ,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚) (2)

(2) MIN operator

𝑥𝑥1𝑗𝑗 ∙ 𝑥𝑥2𝑗𝑗 ∙, … ,∙ 𝑥𝑥𝑛𝑛𝑛𝑛 = 𝑀𝑀𝑀𝑀𝑀𝑀j�𝑥𝑥1𝑗𝑗, 𝑥𝑥2𝑗𝑗, … , 𝑥𝑥𝑛𝑛𝑛𝑛�
= 𝑡𝑡ℎ𝑒𝑒 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑜𝑜𝑜𝑜 �𝑥𝑥1𝑗𝑗, 𝑥𝑥2𝑗𝑗, … , 𝑥𝑥𝑛𝑛𝑛𝑛� (3)

(3) Literal operator

𝑥𝑥(𝑎𝑎, 𝑏𝑏) = � 𝑅𝑅 − 1 𝑎𝑎 ≤ 𝑥𝑥 ≤ 𝑏𝑏
 0 𝑚𝑚𝑚𝑚 o𝑡𝑡ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 (4)

A LEARNING MULTIPLE-VALUED LOGIC NETWORK 3

where a and b are called the window parameters.
Figure 1 shows the general realization topology for the R-valued combinatorial function,

using MAX, MIN and literal operators. This network is a three-layer feed-forward
network, as described below:

Layer1: Each node in this layer is a literal function and its node function is given by
Eq.(4). The window parameters of the i-th input to the j-th MIN are defined as aij, bij (aij,
bij ∈ 0, 1,2,…,R-1 and aij<bij, i = 1,2,…,n and j = 1,2,…,Rn-1). The literal function of the
node is shown in Figure. 2. As the value of aij, bij changes, the literal
function varies correspondingly, thus exhibiting various forms of literal functions, and
producing any multiple-valued logic function.

Layer 2: A node in layer 2 corresponds to the MIN operation. Each node selects a
particular area of a MVL function and defines its function value by a logic signal 1 or 2 or
… or R-1included within the MIN term. Itcan be expressed as follows.

𝑀𝑀𝑀𝑀𝑀𝑀𝑗𝑗 = 𝑀𝑀𝑀𝑀𝑀𝑀(𝑥𝑥1𝑗𝑗, 𝑥𝑥2𝑗𝑗, … , 𝑥𝑥𝑖𝑗𝑗, … , 𝑥𝑥𝑛𝑛𝑗𝑗, 𝑐𝑗𝑗) (5)

where cj is biasing parameter of MINj, being a logic signal 1 or 2 ... or (R-1).
Layer 3: This node gives a MAX operator between the product terms:

𝑂𝑂 = 𝑀𝑀𝑀𝑀𝑀𝑀(𝑀𝑀𝑀𝑀𝑀𝑀1,𝑀𝑀𝑀𝑀𝑀𝑀2, … ,𝑀𝑀𝑀𝑀𝑀𝑀𝑚𝑚) (6)

The learning MVL network described above is a multi-layered feed-forward network in
which each node performs a particular function (a node function) on incoming signals
using a set of parameters specific to this node. The form of the node function varies from
layer to layer, and each node function can be defined by prior knowledge on the network.
Unlike the traditional neural networks, the MVL networks give the maximal numbers of the
nodes needed for any MVL functions.

x(a1j,b1j)

MINjx(aij,bij)

x(anj,bnj)

x(a1j,b1j)

MIN1x(ai1,bi1)

x(an1,bn1)

x(a1m,b1m)

MINmx(aim,bim)

x(anm,bnm)

MAX

X1

Xi

Xn

c1

cj

cm

4 Y. TODO AND T. MITSUI

FIGURE 1. A learning MVL architecture based on a canonical realization of MVL function

FIGURE 2. The definition of a literal function.

3. Genetic Algorithm (GA) for MVL Network. Genetic algorithm (GA) is computational
model that uses the process of evolution. This algorithm encodes a potential solution to a
specific problem on a simple chromosome-like data structure and applies recombination
operators to these structures so as to preserve critical information. At first implementation
of GA is to prepare a population of (typically random) chromosomes. Then evaluation of
each chromosome is performed by an error function between the actual outputs and the
desired outputs. Based on the evaluation, we preferentially select parents with lower error
function. Then, this algorithm performs the genetic operations such as crossover and
selection, and mutation to parents. These operations produce the next generation of
chromosomes. These chromosomes are evaluated again, and repeat until the end condition
is satisfied.

In the present work, we represent a multiple-valued logic function by the list of window
parameters and biasing parameters in an order as

𝑉 = {𝑉1, 𝑉2, … , 𝑉𝑗𝑗, … } (8)

where,

𝑉𝑗𝑗 = {𝑙𝑙1𝑗𝑗, 𝑏𝑏1𝑗𝑗 , … , 𝑙𝑙𝑖𝑗𝑗, 𝑏𝑏𝑖𝑗𝑗 , … , 𝑙𝑙𝑛𝑛𝑗𝑗, 𝑏𝑏𝑛𝑛𝑗𝑗, 𝑐𝑗𝑗} (9)

Our mating operator P: P(V, V’)→V” performs the following action upon two parents
parameters V and V’ to produce a child V”. First, we prepare a random population of
chromosomes {V}. Then, we select parents with lower error from {V}. The error function is
given by

 𝐸 = ∑ (𝑂𝑂𝑝 − 𝑇𝑝)2𝑃
𝑝 (10)

where Op and Tp represent the actual output value and the desired output value
corresponding the p-th input pattern (x1, x2,…, xn)p, respectively and P is the number of the

a b

R-1

x

A LEARNING MULTIPLE-VALUED LOGIC NETWORK 5

total input patterns.
Then we create a new population by repeating following steps until the new population is

complete.
[Selection] Select two parent chromosomes from a population according to their errors

(the smaller error, the bigger chance to be selected).
[Crossover] Cross over the parents from a new children with a crossover probability

(about 0.5). If no crossover was performed, children are exact copy of parents.
[Mutation] mutate new children at each locus with a mutation probability (about 0.1).
[Accepting] Place new children in a new population
The new generated population is used for a further run of algorithm. Figure. 3 and Figure.

4 shows an example of selection and crossover.
These operations are repeated until the end condition is satisfied.

FIGURE 3. An examples of selection

FIGURE 4. An examples of crossover: X,Y are GA’s gene and X,Y∈ 0,1,…,R-1.

4. Simulation Results. To illustrate the learning MVL network, we used several typical
multiple-valued logic functions, such as 2-variable 4-valued, 8-valued, 16-valued and
4-variable 4-valued problems. The first example is a 2-variable 4-valued function as shown
in Table 1. A canonical realization of the function can be the summation of the 11 terms as
function below.

𝐹𝐹(𝑥𝑥1, 𝑥𝑥2) = 1 ∙ 𝑥𝑥1(0,0) ∙ 𝑥𝑥2(0,0) + 1 ∙ 𝑥𝑥1(0,0) ∙ 𝑥𝑥2(1,1) + 1 ∙ 𝑥𝑥1(1,1) ∙ 𝑥𝑥2(0,0) +
1 ∙ 𝑥𝑥1(3,3) ∙ 𝑥𝑥2(0,0) + 1 ∙ 𝑥𝑥1(3,3) ∙ 𝑥𝑥2(1,1) + 1 ∙ 𝑥𝑥1(3,3) ∙ 𝑥𝑥2(2,2) +
1 ∙ 𝑥𝑥1(1,1) ∙ 𝑥𝑥2(3,3) + 2 ∙ 𝑥𝑥1(3,3) ∙ 𝑥𝑥2(3,3) + 3 ∙ 𝑥𝑥1(0,0) ∙ 𝑥𝑥2(2,2) +

3 ∙ 𝑥𝑥1(1,1) ∙ 𝑥𝑥2(2,2) + 3 ∙ 𝑥𝑥1(2,2) ∙ 𝑥𝑥2(2,2) (11)

TABLE 1. Truth table of a 2-variable 4-valued function
X2＼X1 0 1 2 3

0 1 0 0 1
1 1 1 0 1

Parent[x]’s error:4
Parent[y]’s error: 9
Parent[z]’s error: 11

Parent[x]’s error: 4

Tournament selection
Parent[1]’serror:12
Parent[2]’s error: 5

///
Parent[j]’s error: 8

///
Parent[n]’s error: 12

Parent[1]: XXXXXXX

Parent[2]: YYYYYYY

Child[1]: XYXYYXX

Child[2]: YXYXXYY

Uniform crossover

6 Y. TODO AND T. MITSUI

2 3 3 3 1
3 0 1 0 2

(a) (b)

FIGURE 5. The MVL network of Table 1 before (a) and after (b) learning

A LEARNING MULTIPLE-VALUED LOGIC NETWORK 7

FIGURE 6. The final MVL network of Table 1 after learning

FIGURE 7. Learning curve of 2-variables 4-valued function

TABLE 2. The comparisons among the networks

In this simulation, we used 11 MIN nodes, i.e., 22 window parameters a, 22 window
parameters b, and 11 biasing parameters c which were initialized randomly from 0 to 3, and
the genetic algorithm described above with 2 candidates and 30 of individuals. The MVL
network before learning is shown in Figure.5 (a). After learning we have realized a
reduction of 22 literal nodes to 12, and 11 MIN nodes to 6, as shown in Figure.5 (b). This is
corresponding to the reduction in MVL algebras:

𝐹𝐹(𝑥𝑥1, 𝑥𝑥2) = 1 ∙ 𝑥𝑥1(0,1) ∙ 𝑥𝑥2(1,2) + 1 ∙ 𝑥𝑥1(3,3) ∙ 𝑥𝑥2(0,3) + 1 ∙ 𝑥𝑥1(0,0) ∙ 𝑥𝑥2(0,2)
+2 ∙ 𝑥𝑥1(3,3) ∙ 𝑥𝑥2(3,3) + 3 ∙ 𝑥𝑥1(0,2) ∙ 𝑥𝑥2(2,2) + 1 ∙ 𝑥𝑥1(1,1) ∙ 𝑥𝑥2(2,3) (12)

The final MVL network is shown in Figure. 6. As Figure. 7 illustrated, the learning MVL
network using the genetic algorithm correctly generated the quaternary function after
roughly 2700 mating operations.

In comparative tests with our algorithm, the stochastic dynamic local search (SDLS)
algorithm, back propagation (BP) algorithm and local search (LS) algorithm were used.
We generated 100 different initial parameter vectors randomly for all networks. In all

Av. Initial Av.Final Min
BP 80 10.91 10.62
LS 28 4.74 1
SDLS 28 3.40 0
GA 24 0.24 0

8 Y. TODO AND T. MITSUI

simulations, the networks were all trained to learn the same 2-variable 4-valued problem as
shown in Table 1 and the same error measure was used. The comparisons among the
networks are shown in Table 2 where "Av." denotes "Average", "Min." denotes
"Minimum". Referring to Table 2, one sees our learning network using the genetic
algorithm performed better than the stochastic dynamic local search (SDLS) algorithm,
back propagation (BP) algorithm and local search (LS) algorithm.
In order to see the learning convergence for larger problems, we simulated 2-variable

8-valued, 2-variable 16-valued and 4-variable 4-valued problems. In these simulations, the
tournament size was 4 and the number of individuals was 50. Figures. 8-10 show the
learning curves of the 2-variable 8-valued, 2-variable 16-valued and 4-variable 4-valued
problems. As can be seen, the networks learned quite well to these problems.
We simulated 2-variable 8-valued by changing the number of individuals to 10-100 to see

the effect of number of individuals. In these simulations, the tournament size was 4 and the
number of generation alternation was 2000. The result is Table 3. Av. time is the average of
computation time per generation change. Although the average of error decreased as the
number of individuals increased, the computation time increased. There is a need to
consider the efficiency and the balance between the computation time and the average
error.

FIGURE 8. Learning curve of 2-variables 8-valued function

A LEARNING MULTIPLE-VALUED LOGIC NETWORK 9

FIGURE 9. Learning curve of 2-variables 16-valued function

FIGURE 10. Learning curve of 4-variables 4-valued function

TABLE 3. The comparisons among the individuals
Individuals Av.Error initial Av.Error final Av.Time[s]

10 804 83 1.04
20 704 31 2.59
30 743 8 4.58
40 807 6 6.02
50 793 10 9.14
60 784 13 12.1
70 826 6 17.4
80 628 13 22.9
90 732 2 31.0
100 710 2 38.89

5. Conclusions. In this paper, we have proposed a learning multiple-valued logic network
using the genetic algorithm. We used the genetic algorithm based learning MVL network to
learn a large number of 2-variable 4-valued problems, 2-variable 8-valued, 4-variable
4-valuedproblems and 2-variable 16-valued problems. In all cases we simulated, the genetic
algorithm based learning MVL network efficiently found the appropriate network, window
parameters, and biases, so that the MVL functions, especially for those relatively small
problems starting from an biased population of random parameters of MVL networks.

10 Y. TODO AND T. MITSUI

REFERENCES

[1] G. Epstein, G. Frieder, and D. C. Rine, "The Development of Multiple-Valued Logic as Related to

Computer Science", Computer, vol.7, pp.20-32,1974.
[2] S. L. Hurst, "Multiple-Valued Logic-its status and its future", IEEE Trans. Computers, vol.c-33, no.12,

pp.1160-1179, Dec., 1984.
[3] K. C. Smith, "Circuits for multiple-valued logic - A tutorial and appreciation", in Proc. 4rd IEEE

International Symposium on Multiple-Valued Logic, pp.30-43, May, 1976.
[4] H. R. Grosch, Signed ternary arithmetic, Digital Computer Lab, MIT Cambridge, Memorandum M-1496,

1954.
[5] M. Stark, Two bits per cell ROM, Digest of Papers of COM-PCON Spring 81, pp. 209-212, 1982.
[6] S. P. Onnewee and H. G. Kerlhoof, Current-mode CMOS high-radix circuits, Proc. 16th Int. Symp, on

Multiple-Valued Logic, pp.60-69, 1986.
[7] C. Y Lee and W. H Chen, Several Valued combinational switching circuit, Trans. AIEE. Vol.75,

pp.278-283, 1956.
[8] D. E. Rumelhart, G. E. Hinton and R. J. Williams, "Learning representations by back-propagating errors",

Nature, Vol.323, pp.533-536, 1986.
[9] Q. P. Cao, Z. Tang, R. L. Wang and W .G. Wang, "Local Search Based Learning Method for

Multiple-Valued Logic Networks", IEICE Trans. Fundamentals, vol.E86-A,no.7, pp.1876-1884, July
2003.

[10] I. N. Aizenberg and N. N. Aizenberg "Pattern recognition using neural network based on
multi-valued neurons", Lecture Notes in Computer Science, 1607-II (J. Mira, J. V. Sanches-Andres -
Eds.), Springer-Verlag, pp.383-392, 1999.

[11] I. Aizenberg, E. Mysnikova,M. Samsonova and J. Reintz, "Application of the neural networks
based on multi-valued neurons to classification of °u images of gene expression patterns", Fuzzy Days,
Spriner-Verlag, Berlin, pp.29-304, 2001.

[12] T. Akiduki, Z. Zhang, T. Imamura and T. Miyake, “Design of Multi-Valued Cellular Neural
Networks for Associative Memories”, International Journal of Innovative  Computing, Information and
Control, Vol. 8, No. 3(A), pp. 1575–1589, 2012

[13] Y. Zhang, Z. Pei and P. Shi, “Association Rule Mining based on Topology for Attributes of
Multi-Valued Information Systems”, International Journal of Innovative  Computing, Information and
Control, Vol. 9, No. 4, pp. 1679–1690, 2013

[14] N. N. Aizenberg and I .N. Aizenberg, "CNN based on multi-valued neuron as a model of
associative memory for grayscale images", Proc. of the 2nd IEEE International Work-shop on Cellular
Neural Networks and their Applications, Munich, October, pp.12-14, 1992.

[15] N. N. Aizenberg, I. N. Aizenberg and G. A. Krivosheev, "Multi-Valued Neurons: Learning,
Networks, Application to Image Recognition and Extrapolation of Temporal Series", Lecture Notes in
Computer Science, pp.389-395,1995.

[16] N. N. Aizenberg, I. N. Aizenberg and G. A. Krivosheev "Multi-Valued Neurons: Mathematical
model, Networks, Application to Pattern Recognition", Proc. of the 13 Int.Conf. on Pattern Recognition,
Vienna, August pp.25-30, 1996, Track D, IEEE Computer Soc. Press, pp.185-189, 1996.

[17] I. N. Aizenberg and N. N. Aizenberg "Application of the Neural Networks Based on Multi-Valued
Neurons in Image Processing and Recognition", SPIE Proceedings, pp.88-97, 1998.

[18] I. N. Aizenberg "Neural networks based on multi-valued and universal binary neurons: theory,
application to image processing and recognition", Lecture Notes in Computer Science, Springer-Verlag,
pp.306-316, 1999.

[19] I. N. Aizenberg ,N. N. Aizenberg and J. Vandewalle "Multi-valued and universal binary neurons:
theory, learning, applications", Kluwer Academic Publishers, Boston/Dordrecht /London, 2000.

[20] Z. Tang, O. Ishizuka, and K. Tanno,.”A Learning Multiple-Valued Logic Network that can Explain
Reasoning”, IEEJ C, vol. 119, no. 8, pp.970-978, 1999

[21] Q. CAO, Z. Tang, R. L. Wang, and X. G. Wang, ”A Local Search Based Learning Method for
Multiple-Valued Logic Networks”, IEICE Trans. on Fundamentals, vol. E86-A, no.7, pp.1876-1884,
2003

[22] Q. Cao, S. Gao, J. Zhang, Z. Tang, and H. Kimura, “A stochastic dynamic local search method for
learning Multiple-Valued Logic networks” IEICE Trans. on Fundamentals, vol. E90-A, no. 5,
pp.1085-1092, 2007

[23] J. H. Holland, Adaptation in Natural and Artificial Systems, Ann Arbor: The University of
Michigan Press, 1975

