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ABSTRACT. This paper describes a genetic algorithm based learning Multiple-Value Logic 
(MVL) network. The proposed learning network operates on a population of candidate 
window parameters to produce new window parameters with lower errors between the 
desired outputs and the actual outputs of the MVL network. Thus, the learning MVL 
network has a large number of search points, making it possible to obtain a global 
minimum. The learning capability of the proposed MVL network with genetic algorithm is 
confirmed by simulations on several typical MVL functions. The simulation results show 
that the genetic algorithm based learning MVL network efficiently finds the appropriate 
network, window parameters, and bias, so that the MVL functions, especially for those 
relatively small problems. 
Keywords: Multiple-valued logic, Genetic algorithm, Learning, global minimum, local 
minimum 

 
1. Introduction. Multiple-Valued Logic (MVL) has been studied for many years [1-3]. 
However, most of them have focused on Multiple-valued logic circuits and systems [4-6].  
Recently, the ability of MVL networks to accumulate knowledge about objects and 
processes using learning algorithms makes their applications in image processing, speech 
recognition, disease diagnosis and data mining very promising and attractive [7-13]. Neural 
networks based on multi-valued neurons have been introduced in [14] and further 
developed in [15-18]. Multi-valued neural element (MVN) was based on the ideas of 
multiple-valued threshold logic [19]. Its main properties are ability to implement arbitrary 
mapping between inputs and outputs described by partially defined multiple-valued 
function. 
In [20], the authors proposed a learning MVL network that used a manner analogous to 

neural back-propagation, and required derivatives of the node functions. But, because 
derivatives of the node functions generally do not exist and derivatives are zero for most 
inputs, learning cannot be performed efficiently. Therefore, some other learning methods 
for MVL networks using the local search method, and further the stochastic dynamic local 
search method were proposed in [21, 22]. They are some kinds of “non-back-propagation” 

1 
 



  
 
2                            Y. TODO AND T. MITSUI 

learning methods, but are still frustrated by high error barriers which trap the simulation in 
one of the numerous meta-stable configurations.  Thus, an algorithm is needed which can 
jump from one minimum to other and allow an effective sampling of window parameter 
space. 
This paper describes such a learning algorithm for MVL networks. The algorithm is based 

on the genetic algorithm (GA), an optimization strategy inspired by the Darwinian 
evolution process [23]. Starting with a population of candidate parameters, we select a 
fraction of the population as ‘parents’ by using the error between the actual outputs and 
desired outputs of the MVL network as the criteria of fitness. The next generation of 
candidate parameters is produced by mating these parents. The process is repeated until the 
error gets to a pre-determined value. We use the genetic algorithm based learning MVL 
network to learn several typical MVL functions. In all cases we simulated, the genetic 
algorithm based learning MVL network efficiently finds the appropriate network, window 
parameters, and biases, so that the MVL functions, especially for those relatively small 
problems starting from an biased population of random parameters of MVL networks. 

This paper is organized as follows: in the next section, the multiple-valued logic network 
is briefly reviewed. Section 3 describes a genetic algorithm for the MVL networks. 
Simulation results are given in section 4. Section 5 details our conclusions. 
 
2. Multiple-Value Logic (MVL) Network. A Multiple-Valued Logic is an obvious 
extension from classical two-valued logic to a R-valued logic for R greater than 2. For any 
given R-valued system with the set {0,1,…,R-1}, the multiple-variable MAX and MIN 
operators together with appropriate unary operator(s), for example a literal operator (LIT) 
enable any R-valued function to be synthesized in a sum-of-products form,  
 

𝐹𝐹(𝑥𝑥1𝑥𝑥2, … , 𝑥𝑥𝑛𝑛) =  ∑ 𝐹𝐹(𝑒𝑒1, 𝑒𝑒2, … , 𝑒𝑒𝑛𝑛) ∙ 𝑥𝑥1(𝑒𝑒1, 𝑒𝑒1)𝑒𝑒1,𝑒𝑒2,…,𝑒𝑒𝑛𝑛 𝑥𝑥2(𝑒𝑒2, 𝑒𝑒2) ∙∙∙ 𝑥𝑥𝑛𝑛(𝑒𝑒𝑛𝑛, 𝑒𝑒𝑛𝑛) (1) 
 
where x1,x2,…,xn are R-valued variables, ei∈0,1,2,…,R-1, i=0,1,2,…,n, F(e1,e2,…,en) ∈
0,1,2,..,R-1. 
(1) MAX operator 
 

𝑚𝑚𝑚𝑚𝑚𝑚1 + 𝑚𝑚𝑚𝑚𝑚𝑚2+, … , +𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚  =  𝑀𝑀𝑀𝑀𝑀𝑀(𝑚𝑚𝑚𝑚𝑚𝑚1,𝑚𝑚𝑚𝑚𝑚𝑚2, … ,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚) 
                       = 𝑡𝑡ℎ𝑒𝑒 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑜𝑜𝑜𝑜 (𝑚𝑚𝑚𝑚𝑚𝑚1,𝑚𝑚𝑚𝑚𝑚𝑚2, … ,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚)           (2) 

 
(2) MIN operator 
 

𝑥𝑥1𝑗𝑗 ∙ 𝑥𝑥2𝑗𝑗 ∙, … ,∙ 𝑥𝑥𝑛𝑛𝑛𝑛  =  𝑀𝑀𝑀𝑀𝑀𝑀j�𝑥𝑥1𝑗𝑗, 𝑥𝑥2𝑗𝑗, … , 𝑥𝑥𝑛𝑛𝑛𝑛� 
= 𝑡𝑡ℎ𝑒𝑒 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑜𝑜𝑜𝑜  �𝑥𝑥1𝑗𝑗, 𝑥𝑥2𝑗𝑗, … , 𝑥𝑥𝑛𝑛𝑛𝑛� (3) 

 
(3) Literal operator 

𝑥𝑥(𝑎𝑎, 𝑏𝑏) =  � 𝑅𝑅 − 1  𝑎𝑎 ≤ 𝑥𝑥 ≤ 𝑏𝑏
 0   𝑚𝑚𝑚𝑚    o𝑡𝑡ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒   (4) 
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where a and b are called the window parameters.
Figure 1 shows the general realization topology for the R-valued combinatorial function, 

using MAX, MIN and literal operators. This network is a three-layer feed-forward 
network, as described below:

Layer1: Each node in this layer is a literal function and its node function is given by 
Eq.(4). The window parameters of the i-th input to the j-th MIN are defined as aij, bij (aij,
bij ∈ 0, 1,2,…,R-1 and aij<bij, i = 1,2,…,n and j = 1,2,…,Rn-1). The literal function of the 
node is shown in Figure. 2. As the value of aij, bij changes, the literal 
function varies correspondingly, thus exhibiting various forms of literal functions, and 
producing any multiple-valued logic function.

Layer 2: A node in layer 2 corresponds to the MIN operation. Each node selects a
particular area of a MVL function and defines its function value by a logic signal 1 or 2 or 
… or R-1included within the MIN term. Itcan be expressed as follows.

𝑀𝑀𝑀𝑀𝑀𝑀𝑗𝑗 = 𝑀𝑀𝑀𝑀𝑀𝑀(𝑥𝑥1𝑗𝑗, 𝑥𝑥2𝑗𝑗, … , 𝑥𝑥𝑖𝑗𝑗, … , 𝑥𝑥𝑛𝑛𝑗𝑗, 𝑐𝑗𝑗)         (5)

where cj is biasing parameter of MINj, being a logic signal 1 or 2 ... or (R-1).
Layer 3: This node gives a MAX operator between the product terms:

𝑂𝑂 = 𝑀𝑀𝑀𝑀𝑀𝑀(𝑀𝑀𝑀𝑀𝑀𝑀1,𝑀𝑀𝑀𝑀𝑀𝑀2, … ,𝑀𝑀𝑀𝑀𝑀𝑀𝑚𝑚) (6)

The learning MVL network described above is a multi-layered feed-forward network in 
which each node performs a particular function (a node function) on incoming signals 
using a set of parameters specific to this node. The form of the node function varies from 
layer to layer, and each node function can be defined by prior knowledge on the network. 
Unlike the traditional neural networks, the MVL networks give the maximal numbers of the 
nodes needed for any MVL functions.

x(a1j,b1j)

MINjx(aij,bij)

x(anj,bnj)

x(a1j,b1j)

MIN1x(ai1,bi1)

x(an1,bn1)

x(a1m,b1m)

MINmx(aim,bim)

x(anm,bnm)

MAX 

X1 

Xi 

Xn 

c1 

cj 

cm 
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FIGURE 1. A learning MVL architecture based on a canonical realization of MVL function 
 
 
 
 
 
 
 
 
 

 
FIGURE 2. The definition of a literal function. 

 
3. Genetic Algorithm (GA) for MVL Network. Genetic algorithm (GA) is computational 
model that uses the process of evolution. This algorithm encodes a potential solution to a 
specific problem on a simple chromosome-like data structure and applies recombination 
operators to these structures so as to preserve critical information. At first implementation 
of GA is to prepare a population of (typically random) chromosomes. Then evaluation of 
each chromosome is performed by an error function between the actual outputs and the 
desired outputs. Based on the evaluation, we preferentially select parents with lower error 
function.  Then, this algorithm performs the genetic operations such as crossover and 
selection, and mutation to parents. These operations produce the next generation of 
chromosomes. These chromosomes are evaluated again, and repeat until the end condition 
is satisfied. 

In the present work, we represent a multiple-valued logic function by the list of window 
parameters and biasing parameters in an order as 

 
𝑉 = {𝑉1, 𝑉2, … , 𝑉𝑗𝑗, … }                               (8) 

 
where, 

𝑉𝑗𝑗 = {𝑙𝑙1𝑗𝑗, 𝑏𝑏1𝑗𝑗 , … , 𝑙𝑙𝑖𝑗𝑗, 𝑏𝑏𝑖𝑗𝑗 , … , 𝑙𝑙𝑛𝑛𝑗𝑗, 𝑏𝑏𝑛𝑛𝑗𝑗, 𝑐𝑗𝑗}                (9) 
 

Our mating operator P: P(V, V’)→V” performs the following action upon two parents 
parameters V and V’ to produce a child V”.  First, we prepare a random population of 
chromosomes {V}. Then, we select parents with lower error from {V}. The error function is 
given by  
 

  𝐸 = ∑ (𝑂𝑂𝑝 − 𝑇𝑝)2𝑃
𝑝                 (10) 

 
where Op and Tp represent the actual output value and the desired output value 
corresponding the p-th input pattern (x1, x2,…, xn)p, respectively and P is the number of the 

a b 

R-1 

x 
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total input patterns.
Then we create a new population by repeating following steps until the new population is 

complete.
[Selection] Select two parent chromosomes from a population according to their errors 

(the smaller error, the bigger chance to be selected).
[Crossover] Cross over the parents from a new children with a crossover probability 

(about 0.5). If no crossover was performed, children are exact copy of parents.
[Mutation] mutate new children at each locus with a mutation probability (about 0.1).
[Accepting] Place new children in a new population
The new generated population is used for a further run of algorithm. Figure. 3 and Figure.

4 shows an example of selection and crossover.
These operations are repeated until the end condition is satisfied.

FIGURE 3. An examples of selection

FIGURE 4. An examples of crossover: X,Y are GA’s gene and X,Y∈ 0,1,…,R-1.

4. Simulation Results. To illustrate the learning MVL network, we used several typical 
multiple-valued logic functions, such as 2-variable 4-valued, 8-valued, 16-valued and 
4-variable 4-valued problems. The first example is a 2-variable 4-valued function as shown 
in Table 1. A canonical realization of the function can be the summation of the 11 terms as 
function below. 

𝐹𝐹(𝑥𝑥1, 𝑥𝑥2) = 1 ∙ 𝑥𝑥1(0,0) ∙ 𝑥𝑥2(0,0) + 1 ∙ 𝑥𝑥1(0,0) ∙ 𝑥𝑥2(1,1) + 1 ∙ 𝑥𝑥1(1,1) ∙ 𝑥𝑥2(0,0) +
1 ∙ 𝑥𝑥1(3,3) ∙ 𝑥𝑥2(0,0) +  1 ∙ 𝑥𝑥1(3,3) ∙ 𝑥𝑥2(1,1) + 1 ∙ 𝑥𝑥1(3,3) ∙ 𝑥𝑥2(2,2) +
1 ∙ 𝑥𝑥1(1,1) ∙ 𝑥𝑥2(3,3) + 2 ∙ 𝑥𝑥1(3,3) ∙ 𝑥𝑥2(3,3) + 3 ∙ 𝑥𝑥1(0,0) ∙ 𝑥𝑥2(2,2) +

3 ∙ 𝑥𝑥1(1,1) ∙ 𝑥𝑥2(2,2) + 3 ∙ 𝑥𝑥1(2,2) ∙ 𝑥𝑥2(2,2) (11)

TABLE 1. Truth table of a 2-variable 4-valued function
X2＼X1 0 1 2 3

0 1 0 0 1
1 1 1 0 1

Parent[x]’s error:4
Parent[y]’s error: 9
Parent[z]’s error: 11

Parent[x]’s error: 4

Tournament selection
Parent[1]’serror:12
Parent[2]’s error: 5

///
Parent[j]’s error: 8

///
Parent[n]’s error: 12

Parent[1]: XXXXXXX

Parent[2]: YYYYYYY

 

Child[1]: XYXYYXX

Child[2]: YXYXXYY

 

Uniform crossover
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2 3 3 3 1
3 0 1 0 2

(a)  (b)

FIGURE 5. The MVL network of Table 1 before (a) and after (b) learning
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FIGURE 6. The final MVL network of Table 1 after learning

FIGURE 7. Learning curve of 2-variables 4-valued function

TABLE 2. The comparisons among the networks

In this simulation, we used 11 MIN nodes, i.e., 22 window parameters a, 22 window 
parameters b, and 11 biasing parameters c which were initialized randomly from 0 to 3, and 
the genetic algorithm described above with 2 candidates and 30 of individuals. The MVL 
network before learning is shown in Figure.5 (a). After learning we have realized a 
reduction of 22 literal nodes to 12, and 11 MIN nodes to 6, as shown in Figure.5 (b). This is 
corresponding to the reduction in MVL algebras:

𝐹𝐹(𝑥𝑥1, 𝑥𝑥2) = 1 ∙ 𝑥𝑥1(0,1) ∙ 𝑥𝑥2(1,2) + 1 ∙ 𝑥𝑥1(3,3) ∙ 𝑥𝑥2(0,3) + 1 ∙ 𝑥𝑥1(0,0) ∙ 𝑥𝑥2(0,2)
+2 ∙ 𝑥𝑥1(3,3) ∙ 𝑥𝑥2(3,3) + 3 ∙ 𝑥𝑥1(0,2) ∙ 𝑥𝑥2(2,2) + 1 ∙ 𝑥𝑥1(1,1) ∙ 𝑥𝑥2(2,3) (12)

The final MVL network is shown in Figure. 6. As Figure. 7 illustrated, the learning MVL 
network using the genetic algorithm correctly generated the quaternary function after 
roughly 2700 mating operations. 

In comparative tests with our algorithm, the stochastic dynamic local search (SDLS)
algorithm, back propagation (BP) algorithm and local search (LS) algorithm were used.  
We generated 100 different initial parameter vectors randomly for all networks. In all 

Av. Initial Av.Final Min
BP 80 10.91 10.62
LS 28 4.74 1
SDLS 28 3.40 0
GA 24 0.24 0
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simulations, the networks were all trained to learn the same 2-variable 4-valued problem as 
shown in Table 1 and the same error measure was used. The comparisons among the 
networks are shown in Table 2 where "Av." denotes "Average", "Min." denotes 
"Minimum". Referring to Table 2, one sees our learning network using the genetic 
algorithm performed better than the stochastic dynamic local search (SDLS) algorithm, 
back propagation (BP) algorithm and local search (LS) algorithm.
In order to see the learning convergence for larger problems, we simulated 2-variable 

8-valued, 2-variable 16-valued and 4-variable 4-valued problems. In these simulations, the
tournament size was 4 and the number of individuals was 50. Figures. 8-10 show the 
learning curves of the 2-variable 8-valued, 2-variable 16-valued and 4-variable 4-valued
problems. As can be seen, the networks learned quite well to these problems. 
We simulated 2-variable 8-valued by changing the number of individuals to 10-100 to see 

the effect of number of individuals. In these simulations, the tournament size was 4 and the 
number of generation alternation was 2000. The result is Table 3. Av. time is the average of 
computation time per generation change. Although the average of error decreased as the 
number of individuals increased, the computation time increased. There is a need to 
consider the efficiency and the balance between the computation time and the average
error.

FIGURE 8. Learning curve of 2-variables 8-valued function
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FIGURE 9. Learning curve of 2-variables 16-valued function 
 
 
 
 
 
 
 
 
 

 
 

 

 

 

FIGURE 10. Learning curve of 4-variables 4-valued function 
 

TABLE 3. The comparisons among the individuals 
Individuals Av.Error initial Av.Error final Av.Time[s] 

10 804 83 1.04 
20 704 31 2.59 
30 743 8 4.58 
40 807 6 6.02 
50 793 10 9.14 
60 784 13 12.1 
70 826 6 17.4 
80 628 13 22.9 
90 732 2 31.0 
100 710 2 38.89 

 
5. Conclusions. In this paper, we have proposed a learning multiple-valued logic network 
using the genetic algorithm. We used the genetic algorithm based learning MVL network to 
learn a large number of 2-variable 4-valued problems, 2-variable 8-valued, 4-variable 
4-valuedproblems and 2-variable 16-valued problems. In all cases we simulated, the genetic 
algorithm based learning MVL network efficiently found the appropriate network, window 
parameters, and biases, so that the MVL functions, especially for those relatively small 
problems starting from an biased population of random parameters of MVL networks. 
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