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Moment stability in mean square
of stochastic delay differential equation

Peng Xue, Shigeru Yamamoto and Yosuke Ikei

Abstract— In this paper, we derive a moment stability region
in terms of coefficient parameters for a stochastic delay dif-
ferential equation. Such a stochastic delay equation with both
time delay and random effects is an essential model of control
systems. As a main result, a fundamental stability problem
is solved by delay-dependent stochastic analysis. We adopt
the domain-subdivision approach and use Ito’s formula in the
analysis. For a given time delay, the stability of the stochastic
delay differential equation is studied with variable power of
noise. It is also shown that an unstable stochastic delay system
become stable by an appropriate power of noise. The main
results are illustrated by several numerical solutions of the
stochastic delay model.

Index Terms— Time delay, Stochastic, Stabilization.

I. INTRODUCTION

Analysis and control for stochastic delay differential sys-
tems have been intensively studied in the control com-
munity during the past decade. Among them, the study
of the fluctuations in the center of pressure during quiet
standing shows two remarkable properties in human motor
control mechanism, the existence of time delays and random
fluctuations [1][2]. Generally, time delay and noise make
more difficult to control of machine systems. Therefore, it is
important to give an answer of how humans can compensate
the large time delay.

Complex fluctuations are ubiquitous for real systems in
nature. The Ito’s formula is widely used in stability analysis
of stochastic differential equations. The system can be sta-
bilized by noise in the sense of probability one but not in
the p-th moment stability. On the other hand, time delay is
also negative factor for the stability of control system. The
stochastic differential delay equations represent a relatively
new field of the qualitative theory of differential equations
[3]. Even for a simple linear stochastic differential delay
equation

dx(t) = (ax(t)+bx(t−τ))dt+(dx(t)+cx(t−τ))dw, (1)

stability analysis is not derived yet, where τ > 0 denotes
time delay and w(t) ∈ R is a standard Wiener process.
Our interesting focuses on the relationship between noise and
time delay in the sense of asymptotic p-th moment stability
with d = 0.
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Several conditions for determining the asymptotic sta-
bility regions in the controller parameter space have been
studied[4][5]. These approaches are based on the Lyapunov
theory and LMI (Linear Matrix Inequality)[6] [7]. An alter-
native approach to the problem of stabilizing plants with time
delay was described in [8]. By using the classical domain
subdivision (D-subdivision) method, simple and efficient
computational methods are presented for determining the
asymptotic stability and computing D-stability region in the
parameter space are presented.

For a given time delay, the stability region for a stochastic
delay differential equation is studied in this paper. In Section
II, the mathematical preliminaries, Ito’s formula and D-
subdivision, will be reviewed in Section II. In Section III,
our main result will be derived. Section IV illustrates several
examples.

II. MATHEMATICAL PRELIMINARIES

We denote a stationary Gaussian white noise process
by ξ(t) and assume that the expectation of ξ(t) satisfies
E(ξ(t)) = 0. Our approach will be taken in this paper
is based on the Ito’s formula and D-subdivision which are
summarized in the following subsections.

A. Ito’s formula

Definition 1 (stochastic integral): A stochastic integral
for a stochastic process x is defined by

x(t) = x(0) +

∫ t

0

u(x(s), w)ds+

∫ t

0

v(x(s), w)dw, (2)

where v satisfies the integrability condition

E

{∫ T

0

v2(x(t), w)dt

}
< +∞. (3)

Equivalently, the stochastic integral (2) is also written as a
stochastic differential equation of the form

dx = udt+ vdw. (4)
In the following, we state the Ito’s formula which is the

fundamental theorem for computing Ito integrals[8].
Lemma 1 (Ito formula): Let x satisfies a stochastic dif-

ferential equation (4) and g(t, x) be a twice continuously
differentiable function on [0, T ] × R. Then the stochastic
process y = g(t, x) has a stochastic integral with

dy =
∂

∂t
g(t, x)dt+

∂

∂x
g(t, x)dx+

1

2

∂2

∂x2
g(t, x)(dx)2 (5)

where (dx)2 is given by the following rules

(dt)2 = dtdw = dwdt = 0 and (dw)2 = dt. (6)
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Fig. 1. D-Subdivision for the transcendental function (9) assuming τ = 2

Next, we compute the integral form of (5). By (6) we have

(dx)2 = (udt+ vdw)(udt+ vdw) = v2dt. (7)

Therefore, (5) is written in the form

dy =

[
∂

∂t
g(t, x) +

∂

∂x
g(t, x)u+

1

2

∂2

∂x2
g(t, x)v2

]
dt

+

[
∂g

∂x
(t, x)v(t)

]
dw. (8)

B. D-subdivision

Given a transcendental function like, for example,

λ+ a+ be−λτ = 0. (9)

The so-called D-subdivision method is able to determine the
number of roots having positive real part in accordance with
the value of its parameters[9]. It is possible because the zeros
of a transcendental function are continuous functions of their
parameters. D-subdivision divides the space of coefficients
into regions by hypersurfaces, which corresponds to quasi-
polynomial parameters having at least one zero on the
imaginary axis. For continuous variation of the trascendental
function parameters, the number of zeros of the transcen-
dental function, defined by the points of this region. Finally
in order to clarify how the number of roots with positive
real parts changes as some boundary of the D-subdivision
is crossed, the differential of the real part of the root is
computed, and the decrease or increase of the number of
p-zeros is determined from its algebraic sign.

III. EXPONENTIAL STABILITY OF SCALAR LINEAR

DIFFERENTIAL DELAY EQUATION

Consider the following scalar linear stochastic differential
delay equation with Gaussian white noise

dx(t) = (ax(t) + bx(t− τ)) dt+ cx(t− τ)dw,

x(0 + h) = x0, h ∈ [−τ, 0], (10)

where τ > 0 is a constant delay.
Our interest is the stability of the trivial solution of the

stochastic differential delay equation(10)

A stochastic process x(t) is called a solution of the
stochastic differential equation (10) when it satisfies, with
probability one, the integral equation

x(t) =x(0) + a

∫ t

0

x(s)ds+ b

∫ t

0

x(s− τ)ds

+ c

∫ t

0

x(s− τ)dw (11)

where the third integral is Ito’s stochastic integral.
We introduce the following definition of stability for

stochastic differential delay equations.
Definition 2 (asymptotically p-th moment stable): The

trivial solution of (10) is called to be asymptotically p-th
moment stable if for any initial function φ,

lim
t→∞

E{‖x(t, φ)‖p} = 0. (12)

In particular, it is said to be mean square stable when p = 2.
Using the idea of mean square stable, we study the

behavior of the second moment stability of a kind of the
stochastic diferential delay equation. Our main result is given
as the following.

Theorem 1: The stochastic delay equation (10) with 2a+
2b+ c2 �= 0 is mean square stable if

a < a and b < b < b, (13)

where for a minimal positive solution ω0 of c2 sin(ω0τ) =
ω0,

a =

⎧⎪⎪⎨
⎪⎪⎩

c2

2
+

1

τ
for c ∈ [0,

1√
τ
]

c2

2
+ ω0

cos(ω0τ)

sin(ω0τ)
for c ∈ (

1√
τ
,+∞),

(14)

b = −a− c2

2
,

and for any solution ω of ω cot(ωτ) = a − c2

2
, by using

ω ∈ (0, π/τ) for c ∈ [0, 1/
√
τ ], or ω ∈ (ω0, π/τ) for c ∈

(1/
√
τ ,+∞), we define

b = −c2 cos(ωτ)− ω

sin(ωτ)
.

Proof: By using the Ito’s differential rule, we obtain

dx2(t) =(2ax2(t) + 2bx(t)x(t− τ) + c2x2(t− τ))dt

+ 2cx(t)x(t− τ)dw. (15)

Integrating from 0 to t, taking the mathematical expectation
and differentiating with respect to t, since E(

∫ t

0
2cx(t)x(t−

τ)dw) = 0, we obtain

d

dt
E(x2(t)) =2aE(x2(t)) + 2bE(x(t)x(t− τ)

+ c2E(x2(t− τ)). (16)

By introducing the notation K(t, s) := E [x(t)x(s)], from
equation (16) we have

d

dt
K(t, t) =2aK(t, t) + 2bK(t, t− τ)

+ c2K(t− τ, t− τ). (17)
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We assume the existence of the steady state solution K∗ of
(17),

lim
t→∞

K(t, t) = lim
t→∞

K(t, t− τ)

= lim
t→∞

K(t− τ, t− τ) := K∗ (18)

which satisfies 0 = 2aK∗ + 2bK∗ + c2K∗. Hence, if 2a +
2b+ c2 �= 0, then

lim
t→∞

E
[
x2(t)

]
= K∗ = 0. (19)

For a solution K(t, s) = K(0, 0)eλteλs to (17)[2], we
obtain the characteristic function as

2λ = 2a+ 2be−λτ + c2e−2λτ . (20)

The trivial solution of (17) is exponentially asymptotically
stable in the Lyapunov sense if and only if all the infinitely
many characteristic roots of the characteristic equation (20)
have negative real parts. Clearly, there exists a pure imag-
inary characteristic root λ = jω, ω > 0 at the limit
of asymptotic stability. Substitute this root into (20) and
separate the real and imaginary parts of the resulting complex
equation⎧⎨

⎩
ω + b sin(ωτ) + c2 sin(ωτ) cos(ωτ) = 0

a+ b cos(ωτ) + c2 cos2(ωτ)− c2

2
= 0.

(21)

They are equivalent to

for ω = 0 : a+ b+
c2

2
= 0, (22)

for ω �= 0 :

⎧⎪⎨
⎪⎩
a =

c2

2
+ ω

cos(ωτ)

sin(ωτ)

b = −c2 cos(ωτ)− ω

sin(ωτ)
.

(23)

The equations in parametric form (21) identify all the other
D-subdivision boundaries. To be precise, there exists one
boundary for any of the following interval of ω:

(0, π/τ) , (π/τ, 2π/τ) , (2π/τ, 3π/τ) , · · · . (24)

In particular, we focus on the interval 0 ≤ ω < π/τ .
We shall show how zeros rises as following. By (21), the
stable boundaries are illustrated in Fig. 2. Let ω → 0, the
asymptotical intersection is obtained as (1/τ+c2/2,−1/τ−
c2/2). The parameters plant is divided into two parts by
the curves C1 and C2. Taking the left part as Γ1, the right
part as Γ2, see Fig. 2. To study how the Re(λ) invariance
when parametric invaries from Γ1 to Γ2, the differential of
dRe(λ)/db is computed for ω = 0 and ω ∈ (0, π/τ) as
following.

From (20), we obtain

d

db
Re(λ) = Re

e−λτ

1 + bτe−λτ + c2τe−2λτ
. (25)

To consider the boundaries, by substituting λ = jω into
(25) and defining function

Φ(ω) = (1 + bτ cos(ωτ) + c2τ cos 2ωτ)2

+(bτ sin(ωτ) + c2τ sin(2ωτ))2, (26)

a

b

0

Γ
2

Γ
1 −1/τ

−1/τ−c2/2

1/τ

1/τ+c2/2

C
2

C
1

Fig. 2. D-Subdivision for (20) with different c. Two regions Γ1 and
Γ2 show the stable and unstable parameters region for the system (10)
respectively. C1 and C2 are the boundaries of stable for ω = 0 and
ω ∈ (0, π/τ).

we obtain(
d

db
Re(λ)

)
λ=jω

=
1

Φ(ω)
(bτ + (1 + c2τ) cos(ωτ)). (27)

Since Φ(ω) > 0, we just need to consider the sign of f(ω) :=
bτ + (1 + c2τ) cos(ωτ) to find the invariance of the sign of
Re(λ).

At first, for curve C1 in Fig. 2, it is easy to see

f(ω)|ω=0
= bτ + (1 + c2τ) =

c2τ

2
> 0 (28)

with b > −1/τ − c2/2. So, by the D-subdivision approach,
the number of roots of equation (20) with positive real part
will increase as the boundaries C1 are crossed from down to
the up side. That is to say, below C1 is the stable region.

Then, for curve C2 in Fig. 2, i.e., ω ∈ (0, π/τ), by (23),
we have

a <
1

τ
+

c2

2
or cos(ωτ) <

sin(ωτ)

ωτ
. (29)

So,

f(ω) =bτ + cos(ωτ) + c2τ cos(ωτ)

=

(
−c2 cos(ωτ)− ω

sin(ωτ)

)
τ + cos(ωτ)

+ c2τ cos(ωτ)

<− ωτ

sin(ωτ)
+

sin(ωτ)

ωτ

<0. (30)

The number of roots of (20) with positive real part will
decrease as the boundaries C2 are crossed from down to
the up side.

Substituting (23) into (22), for c �= 0, we have(
c2 − ω

sin(ωτ)

)
(1− cos(ωτ)) = 0. (31)

An asymptotic intersection is found as (c2/2 +
1/τ,−c2/2−1/τ) for ω = 0. We can say the second crossing
point will not appears until c > 1/

√
τ . So, the asymptotic
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Fig. 3. Solutions of (10) with a = 0.3, b = −0.65, c = 0.0 and c = 0.7,
respectively.
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Fig. 4. Solutions of (10) with a = −0.3, b = −0.65, c = 0.5 and c = 1.0,
respectively.

intersection is the only one crossing point of the two curves
for c ∈ [0, 1/

√
τ ].

For ω �= 0, if c > 0 is big enough then the crossing
point could be found for a given ω. By (31), considering
the crossing point, there is sin(ωτ) = ω/c2, because of
d sin(ωτ) = τdω for ω = 0, then the second crossing point
appears if and only if

c2 > 1/τ or c > 1/
√
τ . (32)

By equation (31), for the two curves in the plant a, b have
two crossing points for c > 1/

√
τ . One of them is got for

ω = 0, and the other one is⎧⎪⎨
⎪⎩
a =

c2

2
+ ω0

cos(ω0τ)

sin(ω0τ)

b = −c2 cos(ω0τ)− ω0

sin(ω0τ)
,

(33)

where ω0 is the single solution of c2 sin(ω0τ) = ω0.
The stable condition (13) and (14) are derived from

boundaries C1 and C2 then the proof is complete.

IV. NUMERICAL EXAMPLES

To illustrate our result developed in Section III, we con-
sider the several numerical examples in this section. Apply

the Euler-Maruyama method [10] to the stochastic delay
differential equation (10), we obtain

xj = xj−1 + (axj−1 + bxj−m)Δt+ cxj−mΔwj , (34)

where Δt = T/N,m = τ/Δt, and T,N denote sample time
length and steps, respectively, Δwj = wj − wj−1 which is
generated from a discretized brownian path.

From the inequality (32), a critical value 1/
√
τ can be

found for c. The stable region can not be enlarged if c >
1/
√
τ . Here, we take τ = 2 for the time delay and then

c < 0.707 can stabilize the stochastic delay system (10). An
example illustrated in Fig. 3 shows this result. But if c > 0
is bigger than this critical, the stochastic item of the system
still play an bad role in the stability analysis, see Fig. 4.

V. CONCLUSION

For a kind of stochastic delay differential equation (10),
applying the Ito’s formula and D-subdivision approach, we
compute the stable region of parametric in the sense of mean
square stability. The main results were given in Theorem 1
of Section III. An interesting result was shown by the result
that appropriate power of noise will make some unstable
areas become to stable in the parametric plant as shown in
Fig. 2. That is to say, the time delay and noise are usually
exist and could never been cleared, but we don’t need to
get rid of all kinds of noise. The exist of white noise with
appropriate power can stabilize the stochastic delay system.
But we have to say that the noise can not stabilize a stochastic
differential equation without time delay under the definition
of mean square.
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