
Distributed connectivity control in a dynamic
network

言語: eng

出版者:

公開日: 2017-10-03

キーワード (Ja):

キーワード (En):

作成者:

メールアドレス:

所属:

メタデータ

https://doi.org/10.24517/00008384URL
This work is licensed under a Creative Commons
Attribution-NonCommercial-ShareAlike 3.0
International License.

http://creativecommons.org/licenses/by-nc-nd/3.0/

Distributed Connectivity Control in A Dynamic Network

Ren Zhong and Shigeru Yamamoto

Abstract— In this paper, we propose a distributed algorithm
to control connectivity of mobile agents in a constrained
dynamic network. The connectivity property of the multi-agent
system is quantified by the second smallest eigenvalue of the
state dependent Laplacian of the proximity graph of agents.
Motivated by k-regular graph characteristics, we consider a
discrete-time model for autonomous agents. We explore an
approach based on tentative overlay as a condition mapping
from interrelation and interaction between each agent, which
equipped with local sensing and wireless communication capa-
bilities. It thereby shows that load balancing can be controlled
with network’s connectivity, while other than nearest neighbor
information, our approach assumes no knowledge of global
network topology. Simultaneously, a new collision avoidance
method motivated by vertex coloring is presented for our
distributed approach. In addition, simulations are provided
that demonstrate the effectiveness of our theoretical results, for
which we show a distributed dynamic programming of multi-
agent system.

Index Terms— Distributed control, Dynamic networks, Multi-
agent systems

I. INTRODUCTION

The advances of distributed coordination in dynamic multi
agents have attracted several researchers in recent years.
Particularly, achieving a global coordinated objective while
only using local information gives us a great new challenge
that relies on algebraic graph theory, matrix theory, and
control theory. The broad applications of multi agents include
formation control [1], flocking [2]-[4], consensus problems
[5]-[9], mobile peer-to-peer networks [10], and so on. Com-
paring to conventional centralized control, distributed control
of multi-agent systems provide increased efficiency, perfor-
mance, scalability, and robustness.

A control mechanism of a group of mobile agents to form
a designated formation while flocking within a constrained
environment is seen in [1]. It is motivated by Reynolds’
flocking model [2], which has a mechanism for achieving
velocity synchronization and regulation of relative distances
within a group of agents. In [2], the aggregate motion of a
flock of birds was simulated for animation industry. In [3],
a discrete-time model of agents was proposed. Each agent’s
heading is updated using a local rule based on the average of
its own heading plus the headings of its neighbors. Moreover,
there has been a tremendous amount of renewed attracting
on flocking like [4]. Since the aggregate motion is applied
in many different areas, the emphasis in this note is not only

Ren Zhong is with Graduate School of Natural Science and Technol-
ogy, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa, 920-1192
JAPAN renzhong@moccos.ec.t.kanazawa-u.ac.jp

Shigeru Yamamoto is with Faculty of Electrical and Computer Engineer-
ing, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa, 920-1192
JAPAN shigeru@t.kanazawa-u.ac.jp

on decentralized coordination method, but also interesting in
consensus problems and avoided collision.

Closely related to the topics discussed in this paper is
also work in solving consensus problems. Two consensus
protocols are introduced by [5], in which disagreement
functions are also introduced for convergence analysis of
consensus protocols that a Lyapunov function for the dis-
agreement network dynamics. From [6], the authors provide
a convergence analysis of linear and nonlinear protocols for
undirected networks in presence or lack of communication
time-delays. The work in [7] focuses on attitude alignment on
undirected graphs in which the agents have simple dynamics
motivated by the model used in [3].

Following the above footsteps, a distributed algorithms
that can be used by multiple agents to align their estimates
with a particular value over a network with time-varying
connectivity is investigated in [8]. To highlight the effects of
constraints, a constrained consensus problem is considered
and a distributed algorithm is presented in which agents
combine their local averaging operation with projection
on their individual constraint sets. Furthermore, in [9], a
semidefinite programming approach is used for reaching
average-consensus, which partially relies on the work in
[6]. And especially, the recent rise of mobile peer to peer
networks as [10] in which builds up a common applicable
theoretical framework can relied on our research and get
more challenges.

In this paper, our analysis relies on several tools mainly
coming from algebraic graph theory [11]-[13]. Especially,
[14] and [15] give us a great deal of motivation for our
intensive study. We coordinate connectivity, performance and
dispersion of agents by using distributed control in network.
The outline of this paper is as follows. In Section II, we give
our model under algebraic graph theory and our problem for-
mulation. In Section III, a topological distributed algorithm
is given in our constrained dynamic network and we also
give our proof for connectivity and load balancing. Section
IV shows our simulation results. In Section V, concluding
remarks are stated.

II. GRAPH REPRESENTATION AND PROBLEM
FORMULATION

We consider a dynamic multi-agent network with n agents
described by a weighted undirected graph G = (V,E,A),
where a finite set of vertices V = {v1, v2, ..., vn|v ∈ S},
a set of ordered edges E ⊆ V × V , and a adjacency
matrix A = [aij] whose entries aij = 1 if (vi, vj) ∈ E
and aij = 0 otherwise. Since we do not allow self-loops,
for each i we define aii = 0. The ith agent is assigned

2212978-1-4244-8736-3/11/$26.00 c©2011 IEEE

to node vi. The edges eij = (vi, vj) among each pair of
agents is assumed to be dependent on the communication
links. The communication capabilities give agents a potential
communication bound, which is denoted by a circle centered
on the agent i and given radius ri. The ri depends on
communication capability of agent i. In practical application,
every agent has a different radius probably. However, it is
more complex. In our condition, we make an assumption for
the communication capacities.

Assumption 2.1: Each agent has equivalent communica-
tion capability as ri ≡ R, (i ∈ n and R ∈ R

+ is a positive
scalar), while R

+ is a set of positive real numbers.
Let di ∈ R denote the degree of node vi. Suppose each

node of the graph is a dynamic agent with dynamics

di(t+ 1) = f(di(t), ui(t)) (1)

for some function f with di denoting the degree of agent i.
The choice of f is not only guided by particular applications,
but also by numerical considerations. Our Algorithms take
the place of the input control ui(t). We refer to Gd = (G, d)
with d = (d1, d2, ..., dn)

T as a network or algebraic graph
with d ∈ R

n and topology G. A dynamic graph is a
dynamical system with a state (G, d) in which the value d
evolves according to the network dynamics

d(t+ 1) = F (d(t), u(t)). (2)

Here, the ith element of F (d, u) is f(di, ui).
The graph G can be also represented using the graph

Laplacian matrix:

L(G) = D(G)−A(G) (3)

where D = diag(d1, d2, ..., dn) is a diagonal matrix with
elements di. Let di =

∑
j aij denote the degree of agent i.

Obviously, the network is in spectral properties of complex
networks with symmetric weights A = AT . It is known that
L is positive semi-definite and symmetric, its eigenvalues are
all nonnegative. Let us denote the eigenvalues of L by

0 = λ1 ≤ λ2 ≤ ... ≤ λn (4)

in a increasing way. The eigenvector corresponding to the
first eigenvalue is always 1. The second eigenvalue λ2 is
called algebraic connectivity of the network, and it is an
indicator of how much the graph is connected. The value
of λ2 is zero if the graph is not connected, and it increases
when the connectivity of the graph increases. In other words,
λ2 > 0 if and only if the graph G is connected. Generally
speaking, λ2 is function of the state of the entire system,
thus we can write it as λ2(L(t)).

In a dynamic network with switching topology the infor-
mation flow G is a discrete-state of the system that changes
in time. The collective dynamics of n agents applying this
consensus mechanism is

d(t+ 1) = −Ld(t). (5)

The main objective of this paper is to find a self-organizing
mechanism to control the connectivity of dynamic network

Fig. 1. Neighbor-subgraph

with a decentralized control action, in which each agent
knows only information about its neighbors, while it doesn’t
know the current value of λ2 because it is function of the
entire Laplacian matrix. The optimization problem to solve
is:

lim
t→∞

λ2(L(t)) > 0, and lim
t→∞

(di(t)− dj(t)) = 0. (6)

The average degree of G denoted d̄ = 1
n

∑
i di is a

measure of density of graphs. A graph G is called k-regular if
all of its nodes have degree k. The size of a graph |E| = nd̄/

2
is directly determined by its average degree and scale n. A
graph is called a complex network for large n’s. In many
practical applications, for example, in computer networking,
it is necessary to discuss the degree k as load capacity.
Technique to distribute workload evenly across two or more
computers, network links, or other resources, in order to get
optimal resource utilization, maximize throughput, minimize
response time, and avoid overload is called load balancing.
Theoretically, a equal bandwidth network with optimality
load balancing looks like a k-regular graph.

III. A SELF-ORGANIZING MECHANISM ON
DYNAMIC NETWORK

In this section, we present our algorithm for each agent.
We ultimately obtain an stable state that will characterize
connectivity of the network in terms of relative positions
and broadcast ranges. We define dij as the pairwise distance
between vi and vj to express multi-agents equipped with
sensors whose resolution is decaying exponentially with the
distance to the object to observe. If the distance is at most
equal to the fixed connection radius R, then the agents are
said to be neighbors. The set of neighbors of the agent i is
denoted by

Ni = {vj ∈ V |0 ≤ dij ≤ R}. (7)

We give our definition of subgraph associated with neighbor
agents, named neighbor-subgraph.

Definition 3.1 (Neighbor-Subgraph): A neighor-subgraph
with agent i of graph G is a graph Gs

i = (V s
i , E

s
i , A

s
i) such

that V s
i = {vi} ∪ Ni, Es

i = {(vj , vk)|vj ∈ V s
i , vk ∈ Nj ∩

V s
i }, and As

i = [aij]i ∈ R
s×s, where aij = 1 if i ∈ Nj and

aij = 0 otherwise.
Fig.1 is a simple example of a neighbor-subgraph. In this

diagram, the subgragh of ith agent is denoted in a dashed

2011 Chinese Control and Decision Conference (CCDC) 2213

circle with agent i as the centre of this circle. The radius
of this circle is determined by communication capability of
the agent i which is limited by Assumption 2.1. Let Cn be
the set of all connected graphs include n agents. The graph,
which is connected at time instant t, is expressed as Ĝ ∈ Cn.
Then, we have the second restricted condition as:

Assumption 3.1: The graph G(0) and Gs
i (0) for all i ∈ n

is initially connected, i.e., G(0) = (V (0), E(0), A(0)) ∈ Cn,
Gs

i (0) = (V s
i (0), E

s
i (0), A

s
i (0)) ∈ Cn.

A. Initial Synchronization and Collision Avoidance

The presence of time delays in the network, as well as
the network topology that imposes multihop communication
patterns between agents, can result in the agents reaching
a decision on an asynchronously. This imply that network
processing could result in mixing of information between two
agents and preventing all agents from reaching a common
outcome. Hence, our mechanism based on distributed control
framework relies on some notion of synchronization and
asynchronization of all agents. For the active agent, faster
agents are forced to wait for their slower neighbors, which
guarantees synchronization of all agents to the same time
interval. Furthermore, if there are two agents of mutually
neighborhood create connection or destroy connection at the
same time, it must exist a collision. Avoiding this collision,
agent i and its neighbors should execute Algorithm 3.1
asynchronously. Here, we give our assumption for this as:

Assumption 3.2 (Synchronization): All agents are initial
asynchronized. And an agent always asynchronize with its
neighbors.

Motivated by graph coloring in graph theory, we use same
color to display synchronized nodes. By graph coloring, the
collision avoidance problem is simplified as a vertex coloring
problem such that no two vertices sharing the same edge
have the same color. The Welch-Powell Algorithm [19] for
a coloring of a graph G is presented. It doesn’t always
yield a minimal coloring of G. The main idea of Welch-
Powell Algorithm is to order the vertices of G according to
decreasing degrees and assign one color to each vertex which
is not adjacent to a previous vertex which was assigned.

Considering under our situation, we do not need order the
whole vertices cause of just knowing information between
neighbors. Let different color be denoted by different RGB
color number. We give Algorithm 3.1 involved in the inital
synchoronced set si for each agent i. This algorithm is a
distributed algorithm. Firstly, we define a vector Ci with n
binary numbers as estimated queue using 0 or 1. We denote
by 0 that the agent i is asynchronized by agent j, where
j := argmin{k|Ci(k) = 1}. On the other hand, we denote
by 1 that the agent i is synchronised with the agent j. Let
agent i’s neighbor set Ni also translate into this 0,1 Beanlen
calculating form set N∗

i , i.e., n = 4, i = 1, Ni = {2, 3} so
N∗

i = [0, 1, 1, 0]. Then, we present our algorithm follow the
function

Ci = N∗
i . (8)

Then, we put agent i itself into set si. When it contains 1 in
Ci, we get j := argmin{k|Ci(k) = 1} as a synchronous

Algorithm 3.1: The flag set si for collision avoidance.
Input:
Neighbor-Subgraph Gs

i = (V s
i , E

s
i , A

s
i) for all

i ∈ {1, 2, . . . , n}.
Output:
A flag set si for all i ∈ {1, 2, . . . , n}.
First, we should give initial si = φ for all agent i.
1. si = {i}, Ci = N∗

i .
2. Ci(si) = 0.
3. if

⋃
Ci 	= 0

4. j := argmin{k|Ci(k) = 1}.
5. end if;
6. if Cj ⊇ si.
7. Ci = Ci ∩ Cj , Cj = Ci.
8. end if;
9. si ← j, sj ← i

agent for agent i. The major view and methods of the algo-
rithm design adopted in constructing synchronism sequence
si throngh an alternative set Ci. Furthermore, i and j should
be synchronized as:

Ci = Ci ∩ Cj , Cj = Ci. (9)

Theorem 3.1 (Brook’s Theorem[18]): For any connected
undirected graph G with maximum degree Δ, the chromatic
number of G is at most Δ unless G is a clique or an odd
cycle, in which case the chromatic number is Δ+ 1.

Bounds on the chromatic number is mentioned by
Theorem.3.1 as above. It is proofed for graph theory and
tell us our algorithm is certainly convergent.

B. An Algorithm by Using Neighbor Estimation

Under the assumptions, we present an algorithm to derive
the multi-agent network topology indicated by a graph G =
(V,E,A) using neighbor estimation in the time t. Actually,
this algorithm is a local distributed algorithm and each agent
i run it independently with its subgraph expressed by Gs

i =
(V s

i , E
s
i , A

s
i) and its state flag set si which is used to sign

synchronous working group of agent i. In the algorithm, we
start with

V s
i = {i,Ni}, Es

i = φ,As
i = φ. (10)

According to maximum connected agents, we give Es
i an

initial value
Es

i = {(vj , vk)|vj ∈ Nvk
} (11)

and As
i as

As
i = [aij]

s
i =

{
aij = 1 if i ∈ Nj

aij = 0 otherwise
. (12)

Let the maximum and minimum degrees are Δmax and Δmin.
The difference Δg = Δmax −Δmin ≥ 0 will be called the
degree gap. The symbol |.| is denoted to count to the number
of inside elements. When the flag si 	= φ, we compute the
average degree of agents as

Δd =
1

|Ni|
∑

k=i,Ni

dk. (13)

2214 2011 Chinese Control and Decision Conference (CCDC)

Algorithm 3.2: The Distributed Control for Each Agent i.

Input:
Neighbor-Subgraph Gs

i = (V s
i , E

s
i , A

s
i) of agent i and

status set si of agent i at time t.
Output:
Real connected neighbor-subgraph Gs′

i = (V s′

i , Es′

i , As′

i)
of agent i.
01. for time → ∞ then
02. V s′

i = V s
i

03. if si > 0 then
04. Δd = 1

|Ni|

∑
k=i,Ni

dk

05. if Δd < di then
06. ϑ(vsi) = {vsi ∈ Ni|λ2(L

s
i (E

s
i /(v

s
i , v

s
j)) > 0}

07. if |ϑ(vsi)| > 0 do
08. vmax = argmax |Ni∈ϑ(vs

i
)|

09. Es′

i = Es
i /(v

s
i , vmax)

10. Es′

vmax
= Es

vmax
/(vsi , vmax)

%Remove agent vmax from network.
11. end if;
12. if Δd > di and |ENi

| − |Ei| 	= φ
13. vmin = argmin |Ni|
14. Es′

i = Es
i ∪ (vsi , vmin)

15. Es′

vmin
= Es

vmin
∪ (vsi , vmin)

%Add agent vmin into network.
16. end if;
17. Ni = {vsj ∈ V |0 ≤ dij ≤ R}
18. end if;

Then, we compare the degree di of the agent i with the
average degree Δd. When di > Δ, we obtain the eligible
neighbors firstly by

ϑ(vsi) = {vsi ∈ Ni|λ2(L
s
i (E

s
i /(v

s
i , v

s
j)) > 0}. (14)

Then, we use this ϑ(vsi) to limit the connected edges for the
agent i. Oppositely, when Δd > di, we extend a new edge
when the connected edges are not maximum, where |ENi

|−
|Ei| 	= φ. We designed Algorithm 3.2 of distributed control
for each agent in every time. We guarantee the connectivity
all the time and approach the degree of agents closer and
closer. We give an algorithm for the agent i to establish the
connected graph Gs′

i = (V s′

i , Es′

i , As′

i) as Algorithm 3.2.

C. Connectivity and Consensus Analysis

Lemma 3.1 (Algebraic Connectivity[17]): Let λ1(G) ≤
λ2(G) ≤ ... ≤ λn(G) be the ordered eigenvalues of the
Laplacian matrix L(G). Then, λ1(G) = 0, with correspond-
ing eigenvector 1. Furthermore, λ2(G) > 0 if and only if
graph G is connected and hence λ2(G) is called the algebraic
connectivity of G.

Proposition 3.1: Under the assumptions, G(0) and Gs
i (0)

is connected at the initial time. Algorithm 3.2 ensures that
Gs

i (t) is connected for all agent i ∈ {1, 2, . . . , n} and t ≥ 0.

Proof: According to Lemma 3.1, Gs
i (0) and Gs

i (t)
are connected for all agent i and t ≥ 0, if and only if

λ2(G
s
i (t)) > 0 for all t ≥ 0. Moreover, λ2(G(0)) > 0.

We define the union graph Gs
ij(V

s
ij , E

s
ij) = Gs

i (V
s
i , E

s
i) ∪

Gs
j(V

s
j , E

s
j) by including all edges and the vertices in Gs

i

and Gs
j , as V s

ij = V s
i ∪ V s

j , Es
ij = Es

i ∪ Es
j . Accoding to

matrix theory and graph theory, we calculate the adjacency
matrix As

ij as:

As
ij = PijA

s
iP

T
ij + PjiA

s
jP

T
ji , (15)

where P is denoted by unit matrix I(As
i) and some zero row

vector. We rearrange the As
i and As

j . The depended row of
As

i is component of I(As
i) and the other row dependent on

As
j use zero to built. i.e.,

As
i =

a1·−
a2·−
a3·−

⎡
⎣ 0 1 1

1 0 0
1 0 0

⎤
⎦ , As

j =
a2·−
a3·−
a4·−

⎡
⎣ 0 0 1

0 0 0
1 0 0

⎤
⎦ ,

Pij =

a1·−
a2·−
a3·−
a4·−

⎡
⎢⎢⎣

1 0 0
0 1 0
0 0 1
0 0 0

⎤
⎥⎥⎦ , Pji =

a1·−
a2·−
a3·−
a4·−

⎡
⎢⎢⎣

0 0 0
1 0 0
0 1 0
0 0 1

⎤
⎥⎥⎦ .

From (15), we can derive that

Ls
ij = PijL

s
iP

T
ij + PjiL

s
jP

T
ji . (16)

Moreover, λ2(L
s
i) > 0 and λ2(L

s
j) > 0 have been given.

And then, λ2(L
s
ij) > 0 if and only if |Ls

ij | < |Ls
i |+ |Ls

j |. It
is also said that ∃k ∈ Gs

i and one of its neighbors l ∈ Gs
j ,

where l ∈ Nk.
(i) If Gs

i (t) = G(t), obviously λ2(G
s
i (t)) > 0 iff

λ2(G(t)) > 0.
(ii) If Gs

i (t) ⊂ G(t), we union the whole neighbor-
subgraph set Gs = {Gs

1, G
s
2, . . . , G

s
n} as:

G = Gs
1 ∪Gs

2 ∪ · · · ∪Gs
n. (17)

We divide this union into two parts S1 and S2, which is
denoted by

G = (Gs
1 ∪Gs

2 ∪ · · · ∪Gs
i) ∪ (Gs

j ∪ · · · ∪Gs
n) (18)

while

S1 = Gs
1 ∪Gs

2 ∪ · · · ∪Gs
i , S2 = Gs

j ∪ · · · ∪Gs
n. (19)

Obviously, for G(0) = S1(0) ∪ S2(0), ∃g ∈ S1 and one
of its neighbors l ∈ S2, l ∈ Ng . Assume that G(t) is not
connected and then there is G(t) = S1(t) ∪ S2(t), ∀k ∈ S1

and its neighbors are not in S2. It is contradictory such that
exists an agent g in graph S1 has a neighbor in graph S2 as
well as hasn’t any neighbor in graph S2. The proof is then
easily completed.

Networks with hubs having very large degrees that are
commonly known as scale-free networks are fragile to time-
delays. In contrast, random graphs and small-world networks
are fairly robust to time-delays since they do not have hubs.
In addition, construction of engineering networks with nodes
that have high degrees is not a good idea for reaching a
consensus.

2011 Chinese Control and Decision Conference (CCDC) 2215

Proposition 3.2: By Algorithm 3.2, the degree of every
agents converges to the same value.

Proof: We set that

x(0) =

⎡
⎢⎢⎢⎢⎣

1
TA11

eT
1
A11

1
TA21

eT
2
A21

...
1
TAn1

eT
n
An1

⎤
⎥⎥⎥⎥⎦ , x(1) =

⎡
⎢⎢⎢⎢⎣

eT
1
A1x1(0)

eT
1
A11

eT
2
A2x2(0)

eT
2
A21

...
eT
n
Anxn(0)
eT
n
An1

⎤
⎥⎥⎥⎥⎦ . (20)

The system can be represented as

x(t+ 1) = (I +D)−1(I +A)x(t)

= (I +D)−1((I +D)− L)x(t)

= {I − (I +D)−1L}x(t). (21)

By defining M = I − (I + D)−1L, the system can be
rewritten as

x(t+ 1) = Mx(t). (22)

Then, our goal is to show

lim
t→∞

M tx(0) = x∗. (23)

To show (23), the eigenvalue of the matrix M should satisfy

λ(M)| ≤ 1, or λ(M) = 1, (24)

that is, there exists x∗ such that x∗ = Mx∗. Here, we
introduce Lyapunov inequality

MPTM − P ≤ 0. (25)

We can show that P = I +D > 0 satisfies (25) as

(I − L(I +D)−1)(I +D)(I − (I +D)−1L)− (I +D)

= ((I +D)− L)(I − (I +D)−1L)− I −D

= −2L− L(I +D)−1L ≤ 0. (26)

Define V (x) � xTPx. Then, V (x) > 0 for all x 	= 0, or
V (x) = 0, x = 0.

V (x(t+ 1)) ≤ V (x(t))

⇔ x(t+ 1)TPx(t+ 1)− x(t)TPx(t) ≤ 0

⇔ x(t)TMTPMx(t)− x(t)Px(t) ≤ 0. (27)

From (27), we can show that x(t) will converge to a certain
value x∗. Furthermore, it is easy to see that the eigenvector
x∗ satisfies Lx∗ = 0, x(t) = x∗. Because have L1 = 0, x∗ =
α1.

IV. SIMULATION AND ANALYSIS

In this section, we provide some simulation results by
our method. We applied Algorithm 3.1 to 10 agents in
Fig. 2. The agents are initially asynchronized and marked
with the different 10 colors. Fig. 2(a) shows the 10 agents
network in a plane with the domain of coordinates axis
X = [0, 1] and Y = [0, 1]. By Algorithm 3.1, some of
the 10 agents are synchronized which are illustrated with
the some color. For example in Fig. 2(b), the agents 1, 2,
10 are synchronized with color blue, the agents 3, 9 are
synchronized with color pink, and the agents 5, 6, 8 are

0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1

2

3
4

5

6
7

8
9

10

Initialize Synchronization

X

Y

(a)

0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1

2

3
4

5

6
7

8
9

10

Initialize Synchronization

X

Y

(b)

Fig. 2. Collision avoidance motivated by vertex coloring

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
1

2
3

4

5

6

7

8

9

10

11

12
13

14

15
16

17

18
19

20

21

22

23

24

25

26

27

28

2930

31

32

33

34

35

36

37
38

39

40

41

42

4344

45

46

47

48

49

50

X

Y

Before Algorithm

(a)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
1

2
3

4

5

6

7

8

9

10

11

12
13

14

15
16

17

18
19

20

21

22

23

24

25

26

27

28

2930

31

32

33

34

35

36

37
38

39

40

41

42

4344

45

46

47

48

49

50

X

Y

After Algorithm

(b)

Fig. 3. Our mechanism simulation.

synchronized with color green. Meanwhile, Algorithm 3.1
guarantees neighbors asynchronization for all agents.

Fig. 3 shows a network with n = 50 agents having
difference connectivity. All agents are fixed(i.e., they do
not move their position). The lines between two agents are
assumed as communication connection. Fig. 3(a) shows an
initial network at t = 0 before Algotithm 3.2 is applied.
Each agent has the maximal connection. In Fig. 3(b), the
result of Algorithm 3.2 is represented the network at t = 100
with degree balanced topology. Clearly, Fig. 3(b) is strongly
connected and more balance.

Fig. 4 shows the degree of agents for Fig. 3 on Algorithm
3.2 with 50 agents. The topologies are shown in Fig. 3
and corresponded to every single agent’s ID. Fig. 4(a) is
related to Fig. 3(a) and Fig. 4(b) is related to Fig. 3(b). In
the figures, we know the maximum degree is 15 and the
minimum degree is 3 before applying Algorithm 3.2. Then,
we get the maximum 9 and minimum 1 through our way.
Comparing to in Fig. 4(a), Fig. 4(b) is more balanced.

Fig. 5 shows convergence representing the discrete-states
of network with our algorithm. Fig. 5(a) is shown with 7
agents randomly and Fig. 5(b) is shown with 50 agents which

10 20 30 40 50
0

5

10

15

Time

D
eg

re
e

Before Algorithm

(a)

10 20 30 40 50
0

1

2

3

4

5

6

7

8

9

Time

D
eg

re
e

After Algorithm

(b)

Fig. 4. The degree of agents

2216 2011 Chinese Control and Decision Conference (CCDC)

0 20 40 60 80 100
3.8

3.9

4

4.1

4.2

4.3

4.4

4.5

Time

D
eg

re
e

Seven Agents Trajectory

(a)

20 40 60 80 100
4

6

8

10

12

14

16

Time

D
eg

re
e

Theoretical Average Degree

(b)

Fig. 5. Trajectory of the local average degree for all agents

states trajectories of all agents corresponding to the network
with topology in Fig. 3. They are both starting with a random
initial state and the state trajectories of the system are stable.
Furthermore, it is clear that as the number of the edges of
the graph decreases, algebraic connectivity (or λ2) will be
always bigger than 0 which is embodied in no 0 degree of
Fig. 4, and the balance of agents are tried to struggle to be
better.

V. CONCLUSIONS AND FUTURE WORKS

The experimental results are revealed superior process to
execute our solution. We propose a distributed control mech-
anism to drive agents in a constrained dynamic network in
this paper. Motivated by k-regular graph and vertex coloring,
we explore an approach based on tentative overlay as condi-
tion mapping from interrelation and interaction between with
each agent, which equipped with local sensing and wireless
communication capabilities. It thereby shows that connected
balance can be controlled with network’s connectivity just
using nearest neighbor information. Furthermore, a designed
method is presented for helping us avoid collision. For the
future, we will be absorbed in moving agents on the multi-
agents system.

REFERENCES

[1] L. Yao, G. Yi, and D. Zhaoyang, “Multiagent flocking with forma-
tion in a constrained environment,” Journal of Control Theory and
Applications, (2), pp. 151-159, 2010.

[2] C. W. Reynolds and S. G. Division, “Flocks, herds, and schools: a
distributed behavioral model,” Computer Graphics (ACM), 21 (4), pp.
25-34, 1987.

[3] T. Vicsek, A. Czirk, E. Ben-Jacob, I. Cohen, and O. Shochet, “Novel
type of phase transition in a system of self-driven particles,” Physical
Review Letters, 75 (6), pp. 1226-1229, 1995.

[4] H. G. Tanner, A. Jadbabaie, and G. J. Pappas, “Flocking in fixed and
switching networks,” IEEE Transactions on Automatic Control, 52 (5),
pp. 863-868, 2007.

[5] R. Olfati-Saber and R. M. Murray, “Consensus problems in networks
of agents with switching topology and time-delays,” IEEE Transac-
tions on Automatic Control, 49 (9), pp. 1520-1533, 2004.

[6] R. Olfati-Saber and R. M. Murray, “Consensus protocols for networks
of dynamic agents,” Proceedings of the American Control Conference,
pp. 951-956, 2003.

[7] A. Jadbabaie, J. Lin, and A. S. Morse, “Coordination of groups
of mobile autonomous agents using nearest neighbor rules,” IEEE
Transactions on Automatic Control, 48(6), pp. 988-1001, 2003.

[8] A. Nedic, A. Ozdaglar, and P. A. Parrilo, “Constrained consensus
and optimization in multi-agent networks,” IEEE Transactions on
Automatic Control 55 (4), no. 5404774, pp. 922-938, 2010.

[9] L. Xiao and S. Boyd, “Fast linear iterations for distributed averaging,”
Proceedings of the IEEE Conference on Decision and Control, pp.
4997-5002, 2003.

[10] Y. Liang, “Mobile intelligence sharing based on agents in mobile
peer-to-peer environment,” 3rd International Symposium on Intelligent
Information Technology and Security Informatics, IITSI 2010 , art. no.
5453713, pp. 667-670, 2010.

[11] C. Godsil and G. Royle, Algebraic graph theory, New York:
SpringerVerlag, 2001.

[12] G. Chartrand and L. Lesniak, Graphs and digraphs. Chapman and
Hall/CRC, 2005.

[13] B. Bela, Modern graph theory. New York: SpringerVerlag, 1998
[14] M. Liu and B. Liu, “Some results on the Laplacian spectrum,”

Computers and Mathematics with Applications 59 (11), pp. 3612-
3616, 2010.

[15] N. M. M. DeAbreu, “Old and new results on algebraic connectivity
of graphs,” Linear Algebra and Its Applications, 423 (1), pp. 53-73,
2007.

[16] M. M. Zavlanos and G. J. Pappas, “Distributed connectivity control of
mobile networks,” IEEE Transactions on ICE, 24 (6), pp. 1416-1428,
2008.

[17] M. Fiedler, “A property of eigenvectors of nonnegative symmetric ma-
trices and its application to graph theory,” Czechoslovak Mathematical
Journal, Vol.25, pp. 619-633, 1975.

[18] R. L. Brooks, “On colouring the nodes of a network,” Proc. Cambridge
Philos. Soc., 37, pp. 194-197, 1941.

[19] D. J. A. Welsh and M. B. Powell, “An upper bound for the chromatic
number of a graph and its application to timetabling problems,” The
Computer Journal 10(1), pp. 85-86, 1967.

2011 Chinese Control and Decision Conference (CCDC) 2217

