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Abstract— Adiabatic charging of a capacitor with a step down 

converter by changing the duty ratio is considered.  First, for a 

profound understanding of the circuit, the general analytical 

solution of step down converter is considered.  It is confirmed 

that the system can be resolved analytically and that the 

equilibrium state of current and voltage are consistent with 

SPICE simulation.  Next, adiabatic charging by changing the 

duty ratio is investigated.  From SPICE simulation, it is 

confirmed that energy dissipation is reduced to one-fourth when 

four-step charging is used.  By increasing the step number, 

energy dissipation decreases to zero and dissipationless 

operation is achieved. 

I. INTRODUCTION 

Recently, renewable energy is considered to be very 
important for achieving a sustainable society.  In this area, 
energy storage is very important because the renewable 
energy from sources, such as wind power and solar power, is 
not continuously output.  There are several ways to store the 
energy, such as lead-acid batteries, NiMH batteries, Li ion 
batteries, and supercapacitors.  Among them, we believe that 
supercapacitors will become more important in future.  
Supercapacitors can be charged and discharged more than 
100,000 times.  Moreover, they can operate in the wide 
temperature region of -25 to 70 

o
C, which is wider than that 

of Li ion batteries.  Further, supercapacitors exhibit 
significant higher volumetric power density.    However, 
circuits for charging and discharging supercapacitors have not 
been well studied yet. 

In this article, we demonstrate that adiabatic stepwise 
charging [1-5] is effective for reducing the energy dissipation 
when using a step down converter.  We have already 
introduced an effective technique for both charging and 
discharging a capacitor in the same circuit [6].  As shown in 
Fig. 1, when charging, the circuit operates as a step down 
converter and current flows from X to Y.  When discharging, 
it operates as a step up converter and current flows from Y to 
X.  Charging and discharging are performed by changing the 
duty ratio stepwise.  This means that the capacitor is charged 
stepwise during charging and energy is recovered (or 
discharged) stepwise to power supply E gradually. 

However, in the circuit in Fig. 1, the reduction of energy 
dissipation has not yet been confirmed.  In this article, we 
investigate this point in detail using SPICE simulation. 

First, for a profound understanding of the circuit in Fig. 1, 
we analyze the general LCR circuit.  The voltage and current 
values after the circuit reaches the equilibrium state are 
discussed analytically in Sec. II and discussed using SPICE 
simulation in Sec. III.  Next, using the LCR circuit analysis, 
we perform the SPICE simulation of the adiabatic charging.  

The energy dissipation is calculated when the capacitor is 
charged stepwise.  It is clarified that, for four-step charging, 
energy dissipation decreases to one-fourth compared to the 
conventional constant voltage charging.  This is described in 
Sec. IV. 

II. LCR CIRCUIT ANALYSIS  

For a more profound understanding of the circuit behavior 
in Fig. 1, we consider the general LCR circuit shown in Fig. 
2(a).  The Eex(t) is the external voltage.  I is the current 
through the inductor and V is the voltage of capacitor.  Here, 
we consider a periodic square wave as Eex(t).  Using the duty 
ratio d, a period T, and a constant voltage E, we express Eex(t) 
in a period as 
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This Eex(t) is considered to be the same as the left part of the 
step down converter in Fig. 2(b).  Therefore, analyzing a 
square wave means analyzing the step down circuit in Fig. 
2(b).  When 0≤t<dT (mode 1) and dT≤t<T (mode 2), the 
circuit equations are written as  

 EVRI
dt

dI
L =++  and 0=++ VRI

dt

dI
L , (2) 

respectively.  By connecting the solutions of (2), we can 
resolve these differential equations.  The derivation will be 
discussed in detail elsewhere.  Then, we have the expression 
of the current at the beginning of mode 1, In, as 
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where n is the number of square waves from t=0, c1 and c2 are 

constant, and c3(n) is a function of n.  k1 and k2 are 
characteristic solutions of (2) and are written as 
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The real part of k1 and k2 is always negative so that e
nk1T

 and 
e

nk2T
 become zero when n is large.  Therefore, the converged 

value of In, If, is written as 
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Fig. 1.  A circuit that can charge and discharge a load capacitor adiabatically.  



In power electronics circuit, the switching frequency is 
sufficiently faster than the resonant frequency.  Therefore, we 
have the relations k1T<<1 and k2T<<1.  Then, using (5), we 
have 
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Regarding the converged current at the beginning of mode 2, 

I′f, we can derive the relation I′f = −If . 

Regarding the voltage, we define Vn and V′n as the voltage 
at the beginning of modes 1 and 2, respectively.  Then, we 

define Vf and V′f as Vf =
∞→n

lim Vn and V′f =
∞→n

lim V′n.  Then, 

using k1T<<1 and k2T<<1, we have 

 dEVV ff =′= . (7) 

Equation (7) is consistent with formula in power 
electronics.  Regarding the current, the average current in the 

equilibrium state is zero so that the relation I′f = −If is 

reasonable.   

III. SIMULATION OF EQUIRIBRIUM STATE  

In this section, to verify (6), we investigate the If and I′f of 
the circuit in Fig. 2(b) with SPICE.  We used the 180-nm 

design rule.  The transistor gate length Lg is 0.18 µm and gate 

widths of pMOS and nMOS Wp and Wn are 200 and 100 µm, 
respectively.  E is 2 V.  The gate voltage of SW1 and SW2 is 
changed from 0 to 3.3 V.  Threshold voltages VT’s are 0.43 

and −0.33 V in nMOS and pMOS, respectively.  The body 
biases of nMOS and pMOS are GND and VDD, respectively.   

The simulation result is shown in Fig. 3.  L is 1, 10, or 20 

µH.  T, which corresponds to the switching period, is set to 

0.1 µs.  The duty ratio is changed as 0.2, 0.4, 0.6, and 0.8.  It 
is clarified that the capacitance voltage V(t) increases 
stepwise as 0.4, 0.8, 1.2, and 1.6 V, which are consistent with 
dE.  Regarding the current, the current flows largely at the 
beginning of each step.  After large flows of current, the 
circuit reaches the equilibrium state.  This is common with 

L=1, 10, and 20 µH.  The equilibrium current oscillates 
between two values.  It is confirmed from Fig. 3 that the 
oscillation amplitude decreases when L increases.  Fig. 4 is a 

magnification of Fig. 3 at t=154 µs.  When L=1 µH, the 
current oscillates linearly between -23.9 and 23 mA.  When 

L=10 and 20 µH, it oscillates between -2.4 and 2.4 mA and 

between -1.2 and 1.2 mA, respectively.  With d(1− d)TE/2L, 
the theoretical values are 24, 2.4, and 1.2 mA, which are 
perfectly consistent with the SPICE simulation results.  
Therefore, the analytical formula is correct.  

IV. SIMULATION OF ADIABATIC CHARGING 

Here, we discuss the effectiveness of stepwise adiabatic 

charging.  We set L to 800 µH in order to make the 

equilibrium current oscillation almost zero.  By making If and 

I′f zero, we can decrease the Joule heat at the equilibrium 

state.  After setting L to 800 µH, we set C to 1, 20, 40, or 50 

µF to investigate the adiabatic charging in detail.  We discuss 
the change of the voltage and current in each case.  In the 

following simulations, we set T to 1 µs. 

Fig. 5 shows the simulation results for C=1 µF.  The time 
period for each step charging is 1 ms.  The average voltage 
almost changes stepwise.  However, the voltage oscillates 
until it converges to the step value.  Also, the current 
oscillates according to the I=CdV/dt.  Due to the voltage 
oscillation, the voltage increases more than the expected step 
voltage.  In particular, this voltage increase at the final step is 
not good for a device.  We should decrease the voltage 
overshoot due to the oscillation.  The oscillation occurs 
because k1 and k2 in (3) are complex.  If k1 and k2 are real 
numbers, oscillation does not occur.  To make k1 and k2 real 

numbers, the value of R
2−4L/C should be positive, so the C 

value should be increased.  

Fig. 6 shows the simulation results for C=50 µF.  The 
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Fig. 2.  (a) The general LCR circuit with external voltage Eex(t).  (b) Step 

down converter. A switch is composed of nMOS and pMOS transistors. 
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Fig. 3.  V and I of step down converter when the duty ratio is changed 

stepwise.   
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Fig. 4.  Magnification of current in Fig. 3 at t=154 µs. 



time period for each step charging is 10 ms.  In this case, the 
oscillation and the overshoot completely disappear.  
Regarding the current, it increases largely at the beginning 
and then decreases monotonically.  This behavior is close to 
conventional RC circuit charging. 

Due to the disappearance of the oscillation, when C=50 

µF, R
2−4L/C=0 should be satisfied.  Then, R is estimated to 

be 8 Ω.  This value is consistent with the resistance of the 
switching transistor. 

In the equilibrium state at t=19 ms, the current changes 

linearly between −0.3 and 0.3 mA.  The −0.3 mA is also quite 
consistent with (6). 

Now, we discuss the energy dissipation.  Table I shows 
the power consumption P and the injected energy for 

charging the capacitor Einj by the simulation.  L is 800 µH and 

C is 20, 40, or 50 µF.  The duty ratio is changed as 0.2, 0.4, 
0.6, or 0.8.  First, we discuss the situation when d=0.2 and 

C=20 µF.  The average power consumption for t=0 to 10 ms 
is 0.342 mW.  This value includes the power consumption of 
charging the capacitor and the steady power consumption of 
the circuit.  The average power consumption for t=9 to 10 ms 
is 0.023 mW.  We can confirm that the average power 
consumption for t=8 to 9 ms is also 0.023 mW.  Therefore, it 
is concluded that 0.023 mW corresponds to the steady power 
consumption of the circuit.  Then, we can estimate the 
injected energy for charging the capacitor Einj during the first 
step.  Einj is consistent with the work done by the power 
supply.  The total energy consumption during the first step is 
3420 nJ.  The steady energy consumption of the circuit during 
the first step is 230 nJ.  Therefore, Einj for charging the 
capacitor is 3190 nJ.  The theoretical Einj for charging the 

capacitor with constant power supply voltage dE is dE∆Q, 

where ∆Q is the stored charge difference in the capacitor.  

Then, when d=0.2, ∆Q is written as 0.2EC.  Therefore, dE∆Q 
is calculated as 3200 nJ, which is consistent with the 
simulated value. 

The simulated values for d=0.4, 0.6, and 0.8 are shown in 
Table I.  Then, Einj values for charging the capacitor are 
similarly calculated as 6390, 9600, and 12800 nJ for d=0.4, 

0.6, and 0.8, respectively.  The theoretical dE∆Q values are 
6400, 9600, and 12800 nJ, which are consistent with the 
simulated ones.  Now, we consider the energy efficiency of 
stepwise adiabatic charging.  The total Einj for charging the 
capacitor is the sum of 3190, 6390, 9600, and 12800 nJ, 
which is 31980 nJ.  The static electric energy of the capacitor 

is CV
2
/2, which is calculated as 1/2·20µF·(1.6V)

2
=25600 nJ.  

The energy dissipation is the difference between the total Einj 
for charging the capacitor and the capacitor’s static electric 
energy.  Therefore, the energy dissipation is 

31980−25600=6380 nJ.  In the conventional constant voltage 
charging, the energy dissipation is equal to CV

2
/2, 25600 nJ.  

Then, the energy dissipation decreases to 6380/25600=24.9 %, 
which is consistent with the theoretical value of one-fourth 
for four-step charging.  We can also confirm that energy 

dissipation decreases to one-fourth when C=40 and 50 µF. 
Next, we consider the circuit with large load capacitance 

C1 as shown in Fig. 7.  Large capacitance of 100 µF is 
connected to the output voltage of the step down converter 
via resistor R1.  This circuit topology is conventionally used 
for the step down converter.  The simulation of voltage and 

current is shown in Fig. 8.  Here, C is set to 1 µF.  While the 
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Fig. 5.  V and I of step down converter when L=800 µH and C=1 µF. 
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Fig. 6.  V and I of step down converter when L=800 µH and C=50 µF. 

Table I.  Power consumption and injected energy for charging the capacitor 

of step down converter when the duty ratio is changed stepwise. 
 

0.4

0.6

0.8

Ave. P [mW] 0～10ms

d

Einj for charging C [nJ]

P and Einj

Simulation value

0.2

800µH

20 µF

L

C 40 µF

Ave. P [mW] 9～10ms

Ave. P [mW] 10～20ms

Ave. P [mW] 19～20ms

Ave. P [mW] 20～30ms

Ave. P [mW] 29～30ms

Ave. P [mW] 30～40ms

Ave. P [mW] 39～40ms

Einj for charging C [nJ]

Einj for charging C [nJ]

Einj for charging C [nJ]

0.342

0.023

0.663

0.024

0.983

0.023

1.303

0.023

3190

6390

9600

12800

0.660

0.023

1.302

0.024

1.942

0.023

2.582

0.023

6370

12780

19190

25590

0.819

0.023

1.622

0.024

2.422

0.023

3.222

0.023

7960

15980

23990

31900

50 µF

0.4

0.6

0.8

Ave. P [mW] 0～10ms

d

Einj for charging C [nJ]

P and Einj

Simulation value

0.2

800µH

20 µF

L

C 40 µF

Ave. P [mW] 9～10ms

Ave. P [mW] 10～20ms

Ave. P [mW] 19～20ms

Ave. P [mW] 20～30ms

Ave. P [mW] 29～30ms

Ave. P [mW] 30～40ms

Ave. P [mW] 39～40ms

Einj for charging C [nJ]

Einj for charging C [nJ]

Einj for charging C [nJ]

0.342

0.023

0.663

0.024

0.983

0.023

1.303

0.023

3190

6390

9600

12800

0.660

0.023

1.302

0.024

1.942

0.023

2.582

0.023

6370

12780

19190

25590

0.819

0.023

1.622

0.024

2.422

0.023

3.222

0.023

7960

15980

23990

31900

50 µF

0.4

0.6

0.8

Ave. P [mW] 0～10ms

d

Einj for charging C [nJ]

P and Einj

Simulation value

0.2

800µH

20 µF

L

C 40 µF

Ave. P [mW] 9～10ms

Ave. P [mW] 10～20ms

Ave. P [mW] 19～20ms

Ave. P [mW] 20～30ms

Ave. P [mW] 29～30ms

Ave. P [mW] 30～40ms

Ave. P [mW] 39～40ms

Einj for charging C [nJ]

Einj for charging C [nJ]

Einj for charging C [nJ]

0.342

0.023

0.663

0.024

0.983

0.023

1.303

0.023

3190

6390

9600

12800

0.660

0.023

1.302

0.024

1.942

0.023

2.582

0.023

6370

12780

19190

25590

0.819

0.023

1.622

0.024

2.422

0.023

3.222

0.023

7960

15980

23990

31900

50 µF

0.4

0.6

0.8

Ave. P [mW] 0～10ms

d

Einj for charging C [nJ]

P and Einj

Simulation value

0.2

800µH

20 µF

L

C 40 µF

Ave. P [mW] 9～10ms

Ave. P [mW] 10～20ms

Ave. P [mW] 19～20ms

Ave. P [mW] 20～30ms

Ave. P [mW] 29～30ms

Ave. P [mW] 30～40ms

Ave. P [mW] 39～40ms

Einj for charging C [nJ]

Einj for charging C [nJ]

Einj for charging C [nJ]

0.342

0.023

0.663

0.024

0.983

0.023

1.303

0.023

3190

6390

9600

12800

0.660

0.023

1.302

0.024

1.942

0.023

2.582

0.023

6370

12780

19190

25590

0.819

0.023

1.622

0.024

2.422

0.023

3.222

0.023

7960

15980

23990

31900

50 µF

 
 



voltage in Fig. 5 oscillates largely, the voltage in Fig. 8 does 
not oscillate due to the large load capacitance, although these 

circuits have the same C of 1 µF. 
Now, we consider the energy efficiency.  Table II shows 

the simulation results in Fig. 8.  When C=1 µF, Einj values for 
charging the load capacitor are 16010, 32140, 48300, and 
64360 nJ for d=0.2, 0.4, 0.6, and 0.8, respectively.  The 
theoretical values are 16160, 32320, 48480, and 64640 nJ, 
which are consistent with the simulated ones.  Now, we 
consider the energy efficiency of stepwise adiabatic charging.  
The total Einj for charging the load capacitor is 160810 nJ.  
The CV

2
/2 is calculated as 129280 nJ.  Therefore, the energy 

dissipation of stepwise charging is 31530 nJ.  As a result, the 
energy dissipation decreases to 31530/129280=24.4 %, which 
is consistent with the theoretical value of one-fourth.  

Similarly, we can confirm that, when C=10 µF, the energy 
dissipation decreases to 24.2 %, which is also consistent with 
the theoretical value. 

In stepwise charging, energy efficiency is related to the 
number of steps.  When we increase n, energy dissipation 
would become zero. 

Here, we consider Einj for charging the gate capacitance of 
SW1 and SW2 in Fig. 2(b) or Fig. 7.  The simulation results 

are 0.7, 0.6, 0.6, 0.7 µW for d=0.2, 0.4, 0.6, and 0.8, 

respectively.  The gate capacitance per area is 1 fF/ µm
2
 so 

that the gate capacitance of SW1 is estimated to be 
0.18·(100+200) fF=54 fF.  Then, power consumption fCV

2
 is 

calculated as 10
6
·54×10

−15
·(3.3)

2
=0.59 µW.  This value is 

consistent with the simulated value.  From t=0 to 10 ms, the 
energy consumption of the SW1 gate is 5.9 nJ.  This value is 

negligible compared with the 3190 nJ at C=20 µF in Table I 

or 16010 nJ at C=1 µF in Table II so that we can neglect Einj 
of the gate capacitance. 

In Fig. 8, the period of the current peak is 10 ms so that 
the region of zero current is long.  Of course, we can shorten 
the time period to 2 ms, in which the current does not 
decrease to zero and would go to the next peak.  This 
charging method is good for high-speed operation.  By 
decreasing the time period for step charging and increasing 
the step number, the stepwise charging becomes something 
close to constant current charging. 

V. CONCLUSION 

We investigated a step down converter with an inductor 
and capacitor analytically.  From the analytical solution, it is 
derived that the voltage and current in the equilibrium state is 

dE and d(1−d)TE/2L, where d, E, T, and L are the duty ratio, 
power supply voltage, switching period, and inductance.  
Next, we discussed adiabatic stepwise charging, which is 
achieved by changing the duty ratio stepwise in the step down 
converter.  Simulations clarified that the energy dissipation 
decreases to one-fourth when four-step charging is performed.  
The situation when there is large load capacitance was also 
simulated, and it is clarified that the energy dissipation 
decreases to one-fourth.    
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Fig. 7.  Step down circuit with large load capacitance C1. 
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Fig. 8.  V, V1, and I of the circuit in Fig. 7.  C and C1 are 1 and 100 µF, 

respectively.  

Table II.  Power consumption and injected energy for charging the capacitor 

in the circuit with large load capacitance of 100 µF. 
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