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ABSTRACT 

Vehicle-related countermeasures to sustain driver’s alertness might improve traffic safety. 

The purpose of this study was to investigate the effects of somatosensory 20 Hz mechanical 

vibration, applied to driver’s right heel during prolonged, simulated, monotonous driving, on 

their cardiovascular hemodynamic behavior. In 12 healthy young male volunteers, during 90-

min periods of simulated monotonous driving, we compared cardiovascular variables during 

application of 20 Hz mechanical vibration with 1.5 Hz as a control and with no vibration. The 

parameters recorded were indices of key cardiovascular hemodynamic phenomena, i.e., blood 

pressure as an indicator of stress, cardiac output, and total peripheral-vascular resistance. The 

principle results were that all conditions increased the mean blood pressure, and elicited a 

vascular-dominant reaction pattern typically observed in monotonous driving tasks. However, 

mean blood pressure and total peripheral-vascular resistance during the monotonous task 

were significantly decreased in those receiving the 20 Hz vibration as compared with 1.5 Hz 

and with no vibration. The observed differences indicate the cardiovascular system being 

more relieved from monotonous driving stress with the 20 Hz vibration. The major 

conclusion is that applying 20 Hz mechanical vibration to the right heel during long-distance 

driving in non-sleepy drivers could facilitate more physiologically appropriate status for 

vehicle operation and could be a potential vehicular countermeasure technology. (210 words) 

 

Keywords: foot; hemodynamics; sleep countermeasures; vibratory stimulus; vehicle 

accidents.
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1. Introduction 
In the industrialized nations, driver sleepiness and fatigue have been reported to be 

major causes of serious traffic accidents, leading to major injuries or death (Horne and 

Reyner, 1995; McCartt et al., 1996; Philip et al., 2001; Sagberg, 1999). It has been reported 

that falling asleep while driving accounts for approximately 20% of all motor vehicle 

accidents on motorways and other monotonous roads (Horne and Reyner, 1995). To prevent 

this type of sleep-related traffic accident, drivers usually take countermeasures themselves 

against sleepiness before driving, such as taking a short (<15 min) nap, and/or during driving, 

such as opening a window, increasing the radio volume, drinking hot or cold caffeinated 

beverages, getting out to stretch and/or exercise, changing drivers, eating, and singing or 

talking to themselves or passengers (Asaoka et al., 2012; Horne and Reyner, 1999; Oron-

Gilad and Shinar, 2000; Royal, 2003). In fact, research studies have shown that some of these 

simple driver-related actions or combined actions are effective at warding off sleepiness 

during prolonged driving (Horne and Reyner, 2001; Mets et al., 2011; Philip et al., 2006; 

Yamakoshi et al., 2013). However, there is a case to be made for countermeasures that do not 

require conscious participation by the driver. This approach would involve installing in the 

road or vehicle technology that functions automatically without hampering the driver’s own 

actions and without interfering with the correct operation of the vehicle. Efforts are already 

being made to explore and develop such technological solutions in order to reduce the 

incidence of, or prevent, fatigue-/sleep-related vehicle accidents (Balkin et al., 2011). 

In relation to road-related countermeasures, the best known and most widely used 

interventions are edge or center line rumble techniques (Anund et al., 2008) which can alert 

drivers by causing audio-tactile vibrations, as the vehicle tires pass over them. Other research 

studies have shown that roadside visual stimulation including various non-standard (i.e., 

interesting) message signs for drivers have an impact on driving fatigue, which may promote 

alertness in drivers and reduce the likelihood of fatigue-/sleep-related accidents (Merat and 

Jamson, 2013; Thiffault and Bergeron, 2003). 

Regarding vehicle-related emerging countermeasures, three examples are, firstly, a 

system to increase the fraction of the inspired oxygen available to the driver as a stimulus, 

which has been reported to increase driver activation state (Yamakoshi et al., 2005), 

secondly, state-of-the-art lane change support systems (Ren et al., 2010; Tideman et al., 

2010) and, thirdly, cooperative vehicle-to-vehicle and/or infrastructure-to-vehicle 

3 



communication systems (Ammoun and Nashashibi, 2010; Farah et al., 2012; Sepulcre et al., 

2013). 

Alertness, which is closely related to vigilance, fatigue, arousal, and sleepiness, is 

strongly associated with brain activity and to its control of cardiovascular hemodynamic 

activity (Lang et al., 1997; Yamakoshi et al., 2009b). There are different brain waves, as 

recorded in the electroencephalogram (EEG), associated with alertness (beta-frequency 

range; 16–24 Hz) and sleep (delta/theta-frequency range; 1.5–4 Hz). Accumulated evidence 

shows that it is possible to stimulate brain activity in those ranges by auditory (Karino et al., 

2006; Lane et al., 1998), visual (Herrmann, 2001), and somatosensory vibration (Tobimatsu 

et al., 1999) stimuli with the same frequencies. Thus, the key to enhancing alertness is not 

simply the application of a stimulus, but recognizing how to attune the action of the stimulus 

by observing its effect on brain waves. 
Driving is essentially a repetitive cycle of perceptions, judgments and operations. 

Therefore, it is undesirable to apply stimuli that interfere with these actions while driving. 

Taking this into consideration, vibratory stimuli could be prime candidates for influencing 

driver’s alertness. Interestingly, it has been reported that drowsiness worsens when the 

vibrations of a moving vehicle are mainly in the low-frequency range (1–2 Hz) (Kimura et 

al., 2008). This frequency range is consistent with that of the delta brain wave in the EEG 

(usually associated with the deepest stages of sleep), which may have implications for the 

effect of applying vibration stimuli to the driver. 

There are two kinds of vibrations that humans can perceive—amplitude modulated 

mechanical vibration and electrically-induced vibration. The latter is an uncomfortable 

stimulation for humans (Snyder, 1992). Furthermore, it has been reported that the hand and 

foot areas are effective sites for application of vibratory stimuli because of the abundance of 

sensory receptors in these areas, and the EEG is synchronized with the vibratory frequency 

applied to these sites (Tobimatsu et al., 2000). Therefore, taking these factors into 

consideration, mechanical vibration in the beta-frequency range (approximately 20 Hz) 

applied to the right heel (the side with the acceleration pedal) might be an appropriate 

strategy for enhancing the driver’s performance and, if proven to have a physiological basis, 

could have potential as a countermeasure technology for achieving safer driving. 

The cardiovascular hemodynamic (i.e., blood pressure, cardiac output, and total 

peripheral-vascular resistance) reactivity is known to reflect clearly and sensitively the state 

of alertness or stress or driver’s activation (Lang et al., 1997; Yamakoshi et al., 2009b). 

Blood pressure in particular is a key parameter for reflecting the driver’s stress. It has been 
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shown that, during simulated monotonous driving, the blood pressure gradually increases. We 

have conjectured that this is in accordance with the acceleration of sympathetic activity, due 

to the demanding mental workload resulting from the effort to remain alert to ‘keep an eye on 

surroundings’ and to ‘shake off inevitable drowsiness’ (Yamakoshi et al., 2009b). It is 

therefore considered that the vibration has some influence on this behavior. In the present 

study we therefore focused on its reactivity to the vibratory stimulus, assessed during an 

experiment using a driving simulator. An experimental paradigm was developed in which 1.5 

Hz vibration, as control, or 20 Hz vibration was applied to the right heel, during 90 min of 

monotonous driving. In a third condition, the same subjects drove for 90 min without 

receiving any test vibration. Based on the previous findings described above, we 

hypothesized that, compared with the control vibration or no vibration, 20 Hz vibration 

would have a significant effect on cardiovascular hemodynamic behavior. 
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2. Materials and methods 
 This study was a double-blind, controlled, crossover trial with a three-stage, within-

subjects design. The study safeguards and protocols were approved by the ethics commission 

of the Faculty of Medicine of Kanazawa University, and the study was performed in 

accordance with the ethical standards laid down in the 1964 Declaration of Helsinki and its 

later amendments. All subjects agreed to take part in the study voluntarily and signed an 

informed consent statement before participating. 

2.1 Subjects 

To minimize inter-individual variability, a total of 12 healthy undergraduate male 

volunteer students, with a mean age of 21.7 ± 0.8 years, participated in the study. The sample 

size n = 12 was determined arbitrarily so that it should be multiples of the number of 

counterbalancing orders within the same age and gender group. The subjects were regular 

drivers (more than 5,000 km/year), had been in the possession of a driver’s license for at least 

one year, were non-smokers, and had regular sleeping hours. The Japanese version of the 

Epworth sleepiness scale was applied to assess general levels of daytime sleepiness 

(Takegami et al., 2009). Subjects who’s scores exceeded 10 were excluded from the study, 

and all participants abstained from alcohol consumption at least 24 h before the start of the 

test day. 

2.2 Experimental design 

The study comprised one training day and three test days for each subject. On the 

training day, participants were screened and familiarized with the test procedures using a 

driving simulator, which is described below. Participants were assigned at random to a 

protocol in which each of the following conditions including a 2- or 3-day reversal period 

were applied in the order shown in Table 1: 1) 20 Hz mechanical vibration applied to the 

right heel (20Hz); 2) 1.5 Hz mechanical vibration applied to the right heel as control (1.5Hz); 

and 3) no vibration applied (0Hz). The order of the conditions was counterbalanced across 

subjects. 

On each of the test days, after checking all of the above-mentioned criteria, the three 

stages of the experiment were performed with subjects sitting in a quiet, temperature-

controlled, driving simulator in the following order: (a) sensors were attached in the 

appropriate positions, which took at least 15 min; (b) subjects were given a rest period of 15 
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min; and (c) a simulated monotonous driving period was conducted for 90 min. Each test was 

performed over a 120-min period. In order to simulate an actual monotonous driving 

situation, each subject was previously informed that they had to continue driving safely as 

though they were actually driving, that they should maintain a speed of 80–120 km/h, and 

that they should drive within a specified lane. Test sessions were performed either in the 

morning (10:00–12:00 AM) or in the afternoon (13:00–15:00 PM) in a balanced manner. 

Each subject started each test day at the same time. 

2.3 Test vibrations 

Test vibrations were 20 Hz or 1.5 Hz mechanical vibration (control vibration), 

administered to the bare foot throughout the driving period. As mentioned above, the reason 

for the selection of 1.5 Hz vibration as control is that the frequency is consistent with the 

delta brain wave of the EEG (usually associated with the deepest stages of sleep), and the 

frequency contains that of the moving vehicle vibration. As shown in Fig. 1, each vibration 

was made by amplitude modulation according to Tobimatsu et al.’s method (Tobimatsu et al., 

1999) using the Portable VISIC® System (Acouve Laboratory Inc., Tokyo, Japan). The 

carrier frequency was fixed at 128 Hz. The treatment code was revealed by a third person at 

Kanazawa University after the study was completed and data were analyzed. 

2.4 Measurement quantities and apparatus 

Driving tests were performed using a driving simulator, which had previously been 

constructed at Kanazawa University and validated in terms of usefulness as a simulator 

(Yamakoshi et al., 2009a; Yamakoshi et al., 2009b). The simulator consists of an adjustable 

car seat, steering wheel, gear lever, clutch, brake, and accelerator pedals for vehicle control. 

The system generates realistic monotonous roadway scenery, which is projected on a 1219 × 

1626-mm screen, placed 1.3 m in front of the midpoint between the driver’s eyes. The screen 

provided the driver with a 65° horizontal field of view. Auditory feedback, including the 

sound of an engine, is provided by speakers. In addition, the road condition is transmitted 

through the steering wheel by mechanical vibration where appropriate. 

We measured the following cardiovascular variables during the experiment: systolic, 

mean, and diastolic blood pressure (SBP, MBP, and DBP, respectively) in the proximal 

phalanx of the left index finger; cardiac output (CO); and total peripheral-vascular resistance 

(TPR; = MBP/CO). These variables were all acquired on a beat-by-beat basis. The BP and 

CO monitoring systems were developed as experimental instruments and have been described 
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fully elsewhere (Ito et al., 1976; Yamakoshi, 2004; Yamakoshi et al., 1980). The BP system, 

utilizing the volume-compensation principle (Yamakoshi et al., 1980), is capable of 

measuring instantaneous BP in the finger, and the admittance cardiograph (Ito et al., 1976) 

provides an instantaneous indication of CO. Concerning blood pressure, we used MBP as a 

representative value in the present analysis. 

Driving performance was measured by a single-axis inclinometer (FAS-A®, 

Microstrain Inc., Williston, VT, USA) attached to the center of the steering wheel. We 

adopted the steering wheel reversal rate (SRR) (McLean and Hoffmann, 1975) as an index of 

driving performance. SRR is defined as the number, per minute, of changes in steering wheel 

reversals larger than a certain angular value referred to as the gap size. In order to facilitate 

the determination of the reversals, the steering wheel angle signal is low-pass filtered (cut off 

frequency 2 Hz was applied in this study), which eliminates noise in the signal. An extrema 

detection algorithm developed by us is employed to find minimum and maximum values in 

the signal. When the angle between two neighbouring extrema points is greater than the gap 

size, a reversal is counted. Typically, gap sizes between a half and ten degrees are arbitrarily 

selected (MacDonald and Hoffmann, 1980). In this study, a 3 degrees threshold was used. 

Increased SRR indicates that the steering task has become more difficult. 

In this experiment, the level of sleepiness, as estimated from the verbal answers to a 

questionnaire read to subjects by an investigator at 10-min intervals during the driving task, 

was also measured. Subjects reported their perceived sleepiness on a 9-level scale from 

Level-1 (very alert) to Level-9 (very sleepy, an effort to stay awake, fighting sleep); this is 

referred to as the Japanese version of the Karolinska sleepiness scale (KSS-J) (Kaida et al., 

2006). 

In addition, the contact force and pressure to the right heel were measured in a driving 

position after the experiment using a digital platform scale (FG-150KBM, A&D Co. Ltd., 

Tokyo, Japan: Resolution 20 g, weighing capacity 150 kg) and a digital pressure gauge (PG-

200-102GH-P, Copal Electronics Corp., Tokyo, Japan: Pressure range 0–98 kPa), 

respectively. 

2.5 Data reduction and analyses 

The data for each condition (20Hz, 1.5Hz, and 0Hz) and period (0–30, 30–60, and 60–

90 min) were compared statistically by means of two-way repeated-measures analysis of 

variance (ANOVAs). The Greenhouse-Geisser correction was applied to the degree of 

freedom where appropriate. Bonferroni tests for post hoc comparison, and the standardized 
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mean differences of Cohen’s d (Cohen, 1992) for the effect size were used. To exclude 

individual differences in the absolute value, the delta change (Δ) in reactivity was calculated 

by subtracting averaged rest period (5-min) values from each value during the experiment, 

and then these values were averaged over 30 min. Statistical analyses and extrema detection 

for SRR were performed using IBM SPSS Statistics 19.0 for MacOS (IBM Inc., Tokyo, 

Japan) and/or Microsoft Excel for Mac 2011. 
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3. Results 
Summarized results of the condition (20Hz, 1.5Hz, and 0Hz) in each of the three 

periods (0–30, 30–60, and 60–90 min) in terms of cardiovascular variables and SRR, and 

KSS-J are shown in Figs. 2 and 3, respectively. The results of a series of separate ANOVAs 

are summarized in Table 2. In addition, the effect sizes (Cohen’s ds) between conditions (0Hz 

vs. 1.5Hz, 0Hz vs. 20Hz, and 1.5Hz vs. 20Hz) against the periods for each variable are 

summarized in Table 3 and 4. 

3.1 Mean blood pressure: MBP 

The interaction between condition and period was significant. There was a significant 

main effect of period. MBP gradually increased over time especially in 1.5Hz and 0Hz. 

Among the conditions, post-hoc tests were significant for 20Hz vs. 1.5Hz (p < 0.05) for the 

last 60–90 period, and MBP tended to be smaller for 20Hz than for 0Hz for the last 60–90 

period, but this trend did not reach a significance level of 5% (20Hz vs. 1.5Hz, p = 0.08); 20 

Hz vibration decreased MBP significantly more than the 1.5 Hz vibration, and tended to 

decrease MBP more than ‘no vibration’ condition in the last period. 

3.2 Cardiac output: CO 

We observed no significant interaction between condition and period, and no 

significant main effect of either condition or period. In terms of the effect size, CO has low 

potential for a Type II error. All conditions did not measurably affect CO. 

3.3 Total peripheral-vascular resistance: TPR 

The interaction between condition and period was significant. There was a significant 

main effect of both condition and period. TPR gradually increased over time in 1.5Hz and 

0Hz. Among the conditions, post-hoc tests were significant for 20Hz vs. 1.5Hz (p < 0.01) and 

20Hz vs. 0Hz (p < 0.05) for the last 60–90 period; 20 Hz vibration decreased TPR 

significantly more than the other two conditions in the last period. 

3.4 Steering wheel reversal rate: SRR 

We observed no significant interaction between condition and period, and no 

significant main effect of either condition or period. In terms of the effect size, SRR has small 
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or medium potential for a Type II error in some combinations (e.g., 1.5Hz vs. 20Hz at 30-60 

min). All conditions did not measurably affect SRR. 

3.5 Japanese version of the Karolinska sleepiness scale: KSS-J 

We observed no significant interaction between condition and period. However, it 

should be noted that KSS-J has a high potential for a Type II error in the interaction, because 

the effect sizes of Cohen’s d are small at the first period and large at the later periods of the 

experiment between 20Hz and two controls and ηP
2 is relatively large (= 0.13). We observed 

a significant main effect of both condition and period. KSS-J gradually increased over time in 

all conditions. Among the conditions, post hoc tests were significant for 20Hz vs. 1.5Hz (p < 

0.001) and 20Hz vs. 0Hz (p < 0.001) for the whole period; 20 Hz vibration decreased the 

perceived sleepiness, as assessed by the KSS-J, significantly more than the other two 

conditions. 

3.6 Contact force and pressure to the right heel 

The mean contact intensity and mean pressure to the right heel were 36.86 ± 10.45 N 

(Newton) and 21.03 ± 4.43 kPa, respectively. 
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4. Discussion 
In previous studies, the effects of vibratory stimulation to the hand and foot area were 

assessed in terms of somatosensory evoked potentials in a laboratory environment (Snyder, 

1992; Tobimatsu et al., 2000). The purpose of the present study was to examine the 

cardiovascular hemodynamic effects of 20 Hz mechanical vibration applied to the right heel 

during long-distance driving. To this end, we conducted a laboratory experiment using 

simulated monotonous driving, and measured key hemodynamic parameters under double-

blind counter-balanced crossover experimental conditions. As hypothesized, the findings 

clearly indicated that 20 Hz mechanical vibration applied to the right heel significantly 

changed cardiovascular variables towards normal physiological conditions as compared with 

the control vibration or no vibration. These results suggest that 20 Hz mechanical vibration 

applied to the right heel positively affects individuals undertaking prolonged driving and may 

improve physiological status in this situation. 

BP is generally known as the final output of the cardiovascular system through the 

circulatory regulation system, and is known for reflecting human stresses. According to the 

simplified circulatory regulation model (deBoer et al., 1987; Yamakoshi et al., 2013), BP is 

fed back by the heart and/or the peripheral vessels through the autonomic nervous system so 

as to maintain the BP at a desired level. In this model, the heart modifies CO and the 

peripheral vessels modify TPR. The controlled BP is therefore calculated as “BP = CO × 

TPR”. As described above, if BP is elevated, the mechanism responsible could be described 

as having two patterns. One is via an increase in cardiac function (the cardiac-dominant 

reaction pattern; the rise in BP is mainly due to increased CO). The other is via an increase in 

vascular function (the vascular-dominant reaction pattern; the rise in BP is mainly due to 

increased TPR). Typically, the former is observed in active coping (coping exerted under the 

presence of response-reinforcement contingency; it enables individuals to work on a stressful 

task in a successful manner). The latter is observed in passive coping (coping exerted under 

the absence of response-reinforcement contingency; it forces individuals to tolerate only 

passively) (Obrist, 1981; Sawada et al., 2002). As shown in Fig. 2, MBP gradually increased 

in all groups with time because of the stress associated with monotonous driving, particularly 

the effort involved in fighting against drowsiness and the hard mental workload of 

monotonous driving itself (Warm et al., 2008; Yamakoshi et al., 2009b), and the underlying 

mechanism of MBP elevation appeared to be the same in each group. That is, all conditions 

exhibited the vascular-dominant reaction pattern, as indicated by the rise in TPR, which 
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means that vasoconstriction occurred. In fact, this passive coping is a distinctive response in 

monotonous driving situations (Yamakoshi et al., 2013; Yamakoshi et al., 2009a; Yamakoshi 

et al., 2009b). However, compared with the two controls, MBP and TPR elevation is 

inhibited in 20Hz. This could be because the 20 Hz mechanical vibration applied to the right 

heel had a positive physiological effect (possibly relaxation effect) on the body during 

prolonged, simulated, monotonous driving. Because the cardiovascular hemodynamic 

reactivity is known to reflect clearly and sensitively the state of driver’s alertness (Lang et al., 

1997; Yamakoshi et al., 2009b), in this study we did not focus on brain waves (EEG) or 

blinking duration as a conventional measure, or eye movements which has attracted a lot of 

attention recently as a predictor of driver’s alertness (Ahlstrom et al., 2013; Di Stasi et al., 

2012); however, it will be interesting to explore the reactivity of these during the driving 

scenario used here in further studies. 

Subjective sleepiness, as assessed by the KSS-J, showed a significant tendency to be 

higher in the two control conditions as compared with 20Hz (see Fig. 3). Meanwhile, the SRR 

as a possible indicator of driver performance showed the effectiveness of 20Hz relative to the 

two control conditions, which did not differ significantly from each other in this study. This 

is at odds with the positive results of cardiovascular hemodynamic reactivity. We can think of 

three reasons for this result. Firstly, the monotonous driving time, i.e., a 90-min monotonous 

driving task, given to the non-sleepy subjects in this study is relatively short. Simulated 

monotonous driving tasks in other studies exceeded 120-min, and the relevant performance 

parameters were statistically significant (Horne and Reyner, 2001; Mets et al., 2011). It 

should therefore be examined in the long-distance scenario and/or using sleepy subjects in 

further studies. Secondly, the reliability of the performance index applied in this study, SRR, 

for monotonous driving may not be adequate. It has been reported that there are other indices 

of driving performance from the vehicle system (Liu et al., 2009); the standard deviation of 

lane (lateral) position as lateral control ability, the speed deviation calculated as the 

difference in speed of the vehicle from the posted speed limit and the speed variability 

calculated as the standard deviation of speed deviation as longitudinal control ability, and the 

off-road incidents calculated as the number of times that the simulated vehicle left the road. 

As we could not apply all of these indices in the present experimental setup, all alternatives 

for measuring a driver’s performance will need to be explored. Thirdly, the statistical power 

for the arbitrarily obtained sample size (n = 12) in this study, is not sufficient. Thus, in future 

research, adopting a more appropriate sample size, including a variety of subjects, will be 

needed to clarify this behavioral statistical result. However, we might at least emphasize that 
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our physiological and subjective positive results were more than being merely safe, because 

in this study there were not active efforts by the driver’s themselves to stay awake (e.g., 

listening to music, having caffeinated beverages, and so on). 

It is pertinent here to consider the matter of whether or not a method based on heel 

vibration would be acceptable to potential users, such as the long-distance driver, and there 

are several aspects that will require closer examination in the future. Firstly, if it is eventually 

concluded that the physiological basis of a vibratory stimulus is proven, almost certainly 

following further extensive studies, then a practical system would need to be engineered. 

Such a system would need to be convenient, unencumbering and comfortable for the user as 

well as being, reliable, and of appropriate cost. Acceptance by potential users could then be 

more realistically assessed with a fully operational system. This assessment would need to 

explore operational system characteristics, such as the relationship between time duration, 

timing, and intensity of the applied vibration as well as the subjective perceptions by users. 

These important practical aspects need to be investigated fully in future studies. 

There are some limitations in our study. Firstly, the tests were conducted in a driving 

simulator environment. The development of sleepiness and the experience of monotony may 

differ between simulated and actual driving. The absence of actual risk and vehicle vibrations 

in the driving simulator also differs from on-the-road driving experience. The effect of 

applying 20 Hz mechanical vibration to the right heel on driving performance should 

therefore preferably be replicated in real driving situations. Secondly, with a mean age of 

21.7 years, the population of only male drivers was relatively young. It will be important to 

examine the effects of 20 Hz mechanical vibration in women, and in older and more 

experienced drivers including long-distance drivers in order to be able to generalize our 

results to a broader and more representative driving population. Thirdly, we used morning 

and afternoon periods to carry out the tests and these times may not be representative for the 

circumstances of some drivers, for example, long-distance truck drivers. Further study will be 

needed using sleepy subjects or during the night and early morning hours. Finally, we applied 

the vibrations throughout the simulated driving period in this first study. However, the time 

duration of the applied vibration is likely to be relevant due to the possible occurrence of 

desensitization. This methodological aspect together with the practical aspects mentioned 

above, needs to be investigated fully in future studies. 
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5. Conclusions 
 As compared with the controls, applying 20 Hz mechanical vibration to the right heel 

significantly decreased the mean blood pressure, MBP, known for reflecting the stress, total 

peripheral-vascular resistance, TPR, and subjective sleepiness elevations in simulated 

monotonous driving situations. These results suggest that 20 Hz mechanical vibration applied 

to the right heel of non-sleepy drivers during prolonged driving could help to reduce the hard 

mental workload of monotonous driving, possibly leading to an appropriate driving status or 

sustaining driver’s alertness. This could form the basis of a potential emerging technology 

with which to achieve safer driving. 
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Figure captions 
Fig. 1. Schematic representation of the vibration waveforms applied to the right heel at two 

modulation frequencies. The carrier frequency is 128 Hz. The stimulus intensity is arbitrarily 

plotted against the time axis. 

Fig. 2. Summarized results of the effects of condition (20Hz, 1.5Hz, and 0Hz) and period (0–

30, 30−60, and 60−90 min) on cardiovascular variables and SRR. SD = standard deviation; 

SEM = standard error of the mean; MBP = mean blood pressure; CO = cardiac output; TPR = 

total peripheral-vascular resistance; SRR = steering wheel reversal rate. 

Fig. 3. Summarized results of the effects of condition (20Hz, 1.5Hz, and 0Hz) and period (0–

30, 30–60, and 60–90 min) on KSS-J. KSS-J = Japanese version of the Karolinska sleepiness 

scale.
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Tables 

Table 1. Summary of the study design. The study was a double-blind, controlled, 2 × 6 

crossover trial with a three-stage, within-subjects design. 

Group 
Number of 

Subjects 
1st Stage 

Reversal 

period 
2nd Stage 

Reversal 

period 
3rd Stage 

A 2 0Hz 

2 or 3 days 

1.5Hz 

2 or 3 days 

20Hz 

B 2 0Hz 20Hz 1.5Hz 

C 2 1.5Hz 0Hz 20Hz 

D 2 1.5Hz 20Hz 0Hz 

E 2 20Hz 0Hz 1.5Hz 

F 2 20Hz 1.5Hz 0Hz 

 
0Hz = no vibration administered, 1.5Hz = 1.5 Hz vibration, 20Hz = 20 Hz vibration.

22 



Table 2. Summary of results of two-way repeated-measure analysis of variance. 

Measures 

Main Effect  Interaction 

Condition  Period  Condition × Period 

F2, 22 p ηP
2  F2, 22 p ηP

2  F4, 44 p ηP
2 

Hemody

namics 
            

 
MB

P 
2.43 0.11 0.18  32.53 0.00 0.75  4.61 0.00 0.30 

 CO 0.01 0.99 0.00  0.30 0.74 0.03  0.16 0.96 0.01 

 TPR 3.66 0.04 0.25  22.76 0.00 0.67  5.37 0.00 0.33 

Performa

nce 
            

 SRR 1.55 0.24 0.12  0.50 0.92 0.00  0.59 0.59 0.05 

  
F10, 

100 
p ηP

2  
F10, 

110 
p ηP

2  
F20, 

220 
p ηP

2 

Subjectiv

e 
            

 
KSS

-J 
3.67 0.04 0.25  49.52 0.00 0.82  1.57 0.06 0.13 

 
MBP = mean blood pressure, CO = cardiac output, TPR = total peripheral-vascular resistance, 
SRR = steering wheel reversal rate, KSS-J = Japanese version of the Karolinska sleepiness 
scale. 
Each condition n = 12. 
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Table 3. Summary of results of effect size for cardiovascular variables and SRR. 

Measures  0−30 min 30−60 min 60−90 min 

MBP 0Hz vs. 1.5Hz 0.44 0.64 0.31 

 0Hz vs. 20Hz 0.09 0.01 0.30 

 1.5Hz vs. 20Hz 0.47 0.51 0.59 

CO 0Hz vs. 1.5Hz 0.01 0.14 0.00 

 0Hz vs. 20Hz 0.02 0.11 0.06 

 1.5Hz vs. 20Hz 0.02 0.00 0.09 

TPR 0Hz vs. 1.5Hz 0.07 0.13 0.16 

 0Hz vs. 20Hz 0.21 0.65 0.84 

 1.5Hz vs. 20Hz 0.14 0.76 1.14 

SRR 0Hz vs. 1.5Hz 0.04 0.30 0.09 

 0Hz vs. 20Hz 0.17 0.10 0.17 

 1.5Hz vs. 20Hz 0.15 0.42 0.24 

Note. d = 0.2: small effect size, d = 0.5: medium effect size, d = 0.8: large effect size (Cohen 

1992). 

MBP = mean blood pressure, CO = cardiac output, TPR = total peripheral-vascular resistance, 

SRR = steering wheel reversal rate. 
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Table 4. Summary of results of effect size for KSS-J. 

 Rest 0 10 20 30 40 50 60 70 80 90 
0Hz vs. 1.5Hz 0.11 0.46 0.06 0.26 0.13 0.32 0.25 0.25 0.36 0.33 0.21 
0Hz vs. 20Hz 0.00 0.00 0.24 0.05 0.55 0.40 0.39 0.48 0.79 0.81 0.90 
1.5Hz vs. 20Hz 0.14 0.47 0.20 0.31 0.69 0.70 0.62 0.69 0.26 0.33 0.58 

Note. d = 0.2: small effect size, d = 0.5: medium effect size, d = 0.8: large effect size (Cohen 

1992). 

KSS-J = Japanese version of the Karolinska sleepiness scale. 
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