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N-body systems, II: Influence of instability
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Abstract

We investigate the fundamental characteristics of numerical irreversibility appear-
ing in self-gravitating small N-body systems by means of a molecular dynamics
method from the viewpoint of time-reversible dynamics. We reconsider a closed
spherical system consisting of 250 point-particles interacting through the Plummer
softened potential. To investigate the characteristics of numerical irreversibility, we
examine the influence of the instability affected by the softening parameter for the
softened potential (the instability considered here is the instability of a dynamical
system in chaos theory, e.g., a separation rate of the distance between two nearby
trajectories in phase space or speed space). To this end, under the restriction of
constant initial energy, the softening parameter for the Plummer softened potential
is varied from 0.005R to 0.050R, where R is the radius of the spherical container.
We first confirm that the size of the softening parameter, i.e., the deviation of the
potential from a pure gravitational potential, influences the virial ratio, the density,
the pressure on the spherical container, etc., during an early stage of the relaxation
process. Through a time-reversible simulation based on a velocity inversion tech-
nique, we demonstrate that numerical irreversibility due to round-off errors appears
more rapidly with decreasing softening parameter. This means that the higher the
instability of the system or the higher the separation rate of the distance between
two nearby trajectories, the earlier the memory of the initial conditions is lost.
We show that the memory loss time ¢,,, when the simulated trajectory completely
forgets its initial conditions, increases approximately linearly with the timescale of
the chaotic system, i.e., the Lyapunov time ¢y. In a small self-gravitating system,
propagation of numerical irreversibility or loss of reversibility depends on both the
energy state of the system and the instability affected by the softening parameter.
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N-body simulation
PACS: 04.40.-b, 05.70.Ln, 05.40.Ca, 02.70.Ns, 05.45.Pq

1 Introduction

Stellar self-gravitating N-body systems have attracted considerable research
attention due to the fact that they exhibit properties quite different from
short-range interacting systems, e.g., negative specific heat, violent relaxation
and non-equilibrium nonextensive statistical mechanics [1-7]. Since N-body
problems cannot be solved analytically, numerical simulations are important
for studying N-body systems [8,9]. For example, in 1963, Aarseth simulated
dynamical evolution of clusters of galaxies using the Plummer softened poten-
tial ~ —1/(r? +12)'/2, where ry and r represent the softening parameter and
the distance between particles, respectively [10]. However, it is known that
numerical simulations inherently include round-off errors and that numerical
irreversibility arises from the round-off errors, even in time-reversible systems.

In the 1960s, Miller [11,12] examined irreversibility in small stellar dynamical
systems and showed that numerical errors grow exponentially with time. Sub-
sequently, many researchers, e.g., Lecar [13], Standish [14], Gurzadyan et al.
[15], Kandrup [16], have investigated self-gravitating systems from the view-
point of instability [17-29]. The instability discussed by them is the instability
of a dynamical system in chaos theory, e.g., a separation rate of the distance
between two nearby trajectories in phase space. However, irreversibility ap-
pearing in self-gravitating N-body systems has not yet been clarified from the
viewpoint of time-reversible dynamics. In fact, even in short-range interacting
systems [30-32], the influence of round-off errors or numerical irreversibility
has not been investigated quantitatively, except for a few simple models [33—-
35] or for the works by the present authors [36-38].

Accordingly, to bridge the gap between short-range and long-range interact-
ing systems, we investigated the numerical irreversibility appearing in self-
gravitating N-body systems through a time-reversible simulation [39]. In a
previous paper (Physica A 387 (2008) 2267; hereafter Paper I), we examined
the influence of energy states and the integration step size At. In particular,
in Paper I, to investigate the fundamental characteristics of numerical irre-
versibility, the softening parameter ry for the Plummer softened potential was
fixed, since ry affects the instability of the system. That is, we have not ex-
amined the influence of the instability affected by the softening parameter on
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the numerical irreversibility. However, we can expect that the instability of a
system, as suggested by Krylov [40], is closely related to irreversibility or loss
of reversibility [31].

In most self-gravitating N-body simulations, in order to avoid noisy force es-
timates due to close encounters between particles or to simulate collisionless
systems, the true potential ~ —1/r is replaced by an artificially softened po-
tential, e.g., ~ —1/(r? + r2)"/2. The influence of such softening parameters
on N-body simulations has been investigated by Standish [14], Suto [19] and
many other researchers [41-46]. In particular, the influence of the softening
parameter on instability was examined in detail by Kandrup et al. [21] and
Goodman et al. [22]. Recently, optimal softening for N-body simulations has
been examined and discussed in an effort to minimize average errors in force
calculations [47-51]. However, numerical irreversibility or loss of reversibil-
ity has not been investigated from the viewpoint of time-reversible dynamics.
Moreover, although the instability affected by the softening parameter has
been generally studied using phase trajectories, a relationship between the
instability and numerical irreversibility has not been clear and not been in-
vestigated quantitatively. This is because the instability of the system isn’t
irreversibility itself, even if they could be closely related to each other. There-
fore, we can expect that it is worthwhile to study numerical irreversibility and
to examine the relationship between them quantitatively.

In this context, to clarify the relationship between irreversibility and instability
affected by the softening parameter, we investigate numerical irreversibility
appearing in a self-gravitating system through a time-reversible simulation.
We consider a system consisting of N point-particles enclosed in a spherical
container of radius R with reflecting walls [52-57]. To simulate an unstable
system, the softening parameter r( is varied between 0.005R and 0.050 R, under
a restriction of constant initial energy. That is, we examine the influence of
the instability affected by the softening parameter on numerical irreversibility
for a deeper understanding of simulations of self-gravitating N-body systems;
i.e., through the simulation, we investigate numerical irreversibility appearing
in those unstable systems.

The present paper is organized as follows. In Section 2, we give a brief review
of numerical techniques for simulating a self-gravitating system enclosed in a
spherical container with a reflecting wall. We describe the initial conditions
for the simulation and a velocity inversion technique for time-reversible sim-
ulations. We also define several parameters for observing the unstable and
irreversible behavior of a system. In Section 3, the simulation results are pre-
sented. Through a typical relaxation process, we first examine the influence
of the softening parameter in Section 3.1. In Section 3.2, based on the time-
reversible simulation, the relationship between the numerical irreversibility
and instability of the system is investigated and discussed. In Section 3.3, the



influence of the time step or the integration step size At is examined. Finally,
we present our conclusions.

2 Methods

We consider a system consisting of N point-particles enclosed in a spheri-
cal container of radius R with reflecting (adiabatic) walls, i.e., the Antonov
problem [1]. Although a method to simulate the Antonov problem has been
described in Paper I, the details in the present simulation are slightly different.
Therefore, in this section, we briefly review the present method.

2.1 Numerical models

To simulate a self-gravitating system, we integrate the set of classical equations
of motion for the particles interacting through the Plummer softened potential.
The Plummer softened potential ® is given by

S (1)
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where r and ry represent the distance between particles and the softening pa-
rameter, respectively. It is well-known that variations in the softening parame-
ter o influence the instability of a self-gravitating system [19-24]. Accordingly,
in order to examine several systems, r( is varied from 0.005R to 0.050R. In
particular, ry is set to be 0.005R, 0.010R, 0.020R and 0.050R, respectively.

In the present system, the total energy E is defined as

mﬂ)2

N > N
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where Exg, Epg and m; represent kinetic energy, potential energy and the mass
of the i-th point-particle, respectively. G, v; and r;; represent the gravitational
constant, the speed of the i-th particle and the distance between the i-th and
J-th particles, respectively. In this study, we set the mass of each particle to
m. So that we can apply traditional conventions for self-gravitating systems,
we define the total rescaled energy ¢ as
R R
ce=cexp+epp=F—s =F———, 3

KETEPETE M2 T T G(mN)? 3)
where M, ki and epp represent the total mass m/V, rescaled kinetic and
potential energies, respectively. In our simulations, the unit of time is chosen



so that the gravitational constant is unity; i.e., G x [M][L]®[T]* = 1, where
[M], [L] and [T] represent the units of mass, length and time, respectively.

Therefore, the unit of time is y/R3/(Gm), since the units of mass and length

are m and R in the present paper [58]. To ensure generality of the system, we
set the units such that G = R = m =1 [54].

The set of equations of motion is integrated using Verlet’s algorithm (i.e.,
the leapfrog algorithm), since the scheme of this algorithm is time-reversible.
Through the simulations, the interparticle forces are calculated directly at
each time step, to avoid irreversibility due to the simulation procedure. In
the spherical container, to mimic a reflecting wall, the radial component of
the velocity of a particle is reversed when it reaches the reflecting wall [57].
In our simulations, when the position of the particle is located outside of the
spherical container, the position is reversed to mimic the reflecting wall (the
detail is summarized in Appendix A). Accordingly, we can avoid irreversibility
appearing in the simulations apart from that due to round-off errors.

In this study, we consider a small system consisting of N = 250 point-particles
in a spherical container of radius R = 1. In particular, to observe the averaged
behavior of the system, all the results are averaged over 100 simulations with
identically prepared initial setups [59]. In the present system, the crossing
time 7, and the relaxation time 7, are evaluated as 7. ~ 1/1/Gp = 1/,/p and
7, ~ (0.1N/In N)7., respectively, where p represents the density of the system
[3]. In our units, the crossing and relaxation times are 7. ~ 0.1 and 7, ~ 0.6,
respectively. It should be noted that this approximation for the relaxation
time depends on an assumption that the system is in an approximate virial
equilibrium state.

For simulating a self-gravitating system, a double precision floating point real
number is used. In order to keep the total energy variation within 0.01% of
its initial value, we set the time step or the integration step size At to 1075,
However, in Section 3.3, to examine an influence of the integration step size,
At is varied from 10™* to 107°, for ry = 0.005R.

Note that we employ the fixed-time-step integrator, i.e., Verlet’s algorithm,
in order to study the present self-gravitating system from the viewpoint of
time-reversible dynamics. In the system, the initial velocity distribution ap-
proaches approximately the Maxwell-Boltzmann one, during an early stage
of the relaxation process (i.e., several relaxation times). However, during this
stage, several particles affected by strong collisions (i.e., close encounters) can
influence trajectories of the particles significantly, even if we observe an av-
eraged behavior of the system. That is, we could expect that the integration
step size by the fixed-time-step integrator influences the trajectory, since a
smaller integration step size can simulate such a rapid change of the trajec-
tory. Therefore, we investigate the influence of the integration step size for



the present system, although we have examined the influence for the similar
system in Paper I.

2.2 Initial setup and parameters for simulations

To simulate time evolution of a system, the system is initially set to be in
a highly non-equilibrium state with all the particles initially distributed ran-
domly in the spherical container, based on a spherically symmetric uniform
density profile. Moreover, the initial velocity distribution is assumed to be that
of a non-equilibrium state. That is, for an initial setup, all the particles are set
to have a velocity of |vg| but with a random direction. The initial velocities
vy are set to keep the initial virial ratio as

2EKE0 . 25KE0

|Epol  |epr| b @
Thereafter, to keep the total momentum and the total angular momentum 0,
the velocities of the particles are slightly modified, taking into account the
spherically symmetric uniform density profile. The details for the initial setup
are summarized in Table 1. The total rescaled energy ¢ is fixed at ¢ =~ —0.47,
and could be lower than the collapse energy .o [60].

It should be noted that, in this paper, we consider the system consisting of
N point-particles enclosed in a spherical container with the reflecting wall.
Accordingly, the virial theorem for the present system is given as

2Fkg + Epp = 47 R? Py, (5)

where Py, represents the pressure on the reflecting wall [54,56]. That is, unlike
a system without the wall, 2Ekg + Fpg isn’t 0, because of the reflecting wall.
The pressure on the reflecting wall at time ¢ can be evaluated as

i=t+t'" /2 . t=t+t"/2 N
X 2mu(t) X mu(t)
T T ©

Table 1
Technical details for the initial setup.
ro/R 5 EKEq €PEy
0.005 —0.4718 £ 0.0097 0.1573 £+ 0.0007 —0.6291 £ 0.0098
0.010 —0.4715 £ 0.0096 0.1571 £ 0.0007 —0.6286 £ 0.0096
0.020 —0.4705 £ 0.0094 0.1568 £+ 0.0007 —0.6274 £ 0.0094
0.050 —0.4662 £ 0.0087 0.1554 £+ 0.0007 —0.6216 £ 0.0087

The errors indicate the 68% confidence level in terms of the normal error distribution
from 100 simulations.
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Fig. 1. Sketch of the trajectory distance in speed space.

where v,() is the summation of the radial components of the velocities of all
particles which are reflected by the wall, at each time step ¢ [54]. In general,
fluctuations in the instantaneous pressure are larger than those in other macro-
scopic parameters. Therefore, to reduce the large fluctuation in the pressure,
the interval ¢ in Eq. (6) is set to be 1000A¢ steps.

To study numerical irreversibility due to round-off errors, we consider a typi-
cal problem including a time-reversal operation. For this purpose, the system
is initially in a highly non-equilibrium state. During the time evolution of the
system, the time-reversal operation is applied at a certain time, i.e., all the
particles reverse their velocities instantaneously at a certain time t¢.,, and
the system then evolves reversibly. If the system is reversible, the initial state
should appear again at 2t..,. However, if the system contains any irreversibil-
ity, such as numerical irreversibility, the initial state appears only incompletely
or doesn’t appear at all.

As in Paper I, we investigate the irreversible behavior through the time-
reversible simulation by observing the distance between two nearby trajec-
tories in speed space, namely, the original and reversed trajectories. As shown
in Fig. 1, the original trajectory is taken as the trajectory before the time-
reversal operation, i.e., from ¢ = 0 to t = t.,. The reversed trajectory is
taken as the trajectory after the time-reversal operation, i.e., from t = t,e, to
t = 2tey. The trajectory distance is given by

(original) (reverse)
Au(t/) _ \/% Zf\il (Uio ginal) o everse )2
< U(O) >

: (7)

where o8 and v are the speeds of the i-th particle at time ¢’ for the

original trajectory and for the reversed trajectory, respectively. The origin of
t' is the time t,, of the time-reversal operation. Note that < v(0) > represents



the averaged speed at the time of the time-reversal operation, since the bracket
< X > represents the mean of X. From the trajectory distance at the final
time t' = .oy, the final trajectory distance is given by

Avf - Av(tl - trev)- (8)

For an overview of the loss of reversibility, we define a recovery rate Rp of the
normalized ratio of velocity moments VM as

 VM(26r) = VM(trey)

= TM0) — VM) ?)
where .
VM(t) = IE((O)) — gx‘; (10)
and 02 2
vm(t) = % (11)

Note that vm(t) is the ratio of velocity moments at time ¢ and vy repre-
sents the specific value of the ratio of velocity moments corresponding to the
Maxwell-Boltzmann velocity distribution. By using the recovery rate Rz, we
can measure the loss of reversibility in the system. In other words, the smaller
the recovery rate Rg, the more irreversible the system is.

In this paper, we observe an early stage of the relaxation process. That is, our
simulation time ¢ ~ 1 is sufficiently shorter than the time scale for a core-halo
or a collapse state. For example, according to Ispolatov and Karttunen [55],
a collapse time in the system with N = 125 — 250 particles and ry = 0.005R
is approximately ~ 10? relaxation times; i.e., in our units, the collapse time is
approximately ~ 600.

3 Results

To study the influence of instability on numerical irreversibility, the softening
parameter 7 is varied from 0.005R to 0.050R (hereafter, from 0.005 to 0.050,
since R = 1). In this section, the results are averaged over 100 simulations
with identically prepared initial setups [59].

3.1 Early stage of the relazation process

In order to investigate the influence of the softening parameter ry, we observe
the early stage of the relaxation process. For this purpose, we first examine
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Fig. 2. (Color online) Time evolutions of the virial ratio 2Ekg/|Epg|, without the
time-reversal operation.
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Fig. 3. (Color online) Time evolutions of the corrected virial ratio «
(=(2Ekg — 47 R?Pyan) /| EpE|), without the time-reversal operation. The values are
plotted every 1000A¢ steps, i.e., 0.01 (see the text).

the time evolution of the virial ratio 2Eky/|Epr|, without the time-reversal
operation. As shown in Fig. 2, each virial ratio increases quickly from the
initial value 0.5 during the crossing time 7. =~ 0.1. Then, the value oscillates
slightly and after 7. &= 0.6 it gradually tends towards a certain quasi-steady
state. Note that, since the relaxation time 7, considered here depends on an
assumption that the system is in an approximate virial equilibrium state, the
present initial condition is different from this assumption. However, it seems
that the behavior of the virial ratio is consistent with the two time scales of



the present self-gravitating system.

The values of 2Fkg /| Epg| are larger than 1, at a quasi-steady state, e.g., at t =
0.9 ~ 1.0. We can expect that this deviation from 1 depends on the reflecting
wall and the softening parameter, i.e., the deviation of the Plummer softened
potential from the true potential, ~ —1/r. Therefore, to observe the influence
of the softening parameter more clearly, we examine the corrected virial ratio,
taking into account the pressure Py, on the reflecting wall. For the present
self-gravitating system, the corrected virial ratio « is given by

a = (2Bxp — 41 R*Pyan) /| Epg). (12)

At the virial equilibrium state with the true potential or with a pure gravita-
tional potential, the value of « is 1. Figure 3 shows the time evolution of the
corrected virial ratio «, without the time-reversal operation. In this figure, the
values are plotted every 1000At steps, since the pressure is averaged not only
over 100 simulations but also over 1000A¢ steps, to reduce large fluctuations
in the pressure. As shown in Fig. 3, the behaviors of « are similar to those of
2Fkg/|Epg|, although the values are different. As expected, at ¢t = 0.9 ~ 1.0,
the values of o approximately approach 1. That is, the present system is in
an approximate virial equilibrium state at t = 0.9 ~ 1.0. However, it seems
that, at £ = 0.9 ~ 1.0, the deviation from 1 increases with increasing softening

5000 B3 LU\ o 1.0
Po.1R i a 1«
4000 1 0.8
/aKE
3000 ¢ 1 0.6
F)wall I 1 Eke
2000 r / 404
r Po.1r i
1000 [ ¢ o 4 {02
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Pwall
O 1 1 1 1 1 OO
0.000 0.020 0.040 0.060
lo

Fig. 4. Macroscopic parameters at the quasi-steady state. The open squares (OJ),
diamonds (¢) and circles(o) represent the corrected virial ratio «, pressure Py,
on the reflecting wall and density pg.1g in the inner region, respectively. The closed
triangles (A) represent the rescaled kinetic energy exg. The values are averaged over
100 simulations and over ¢t = 0.9-1.0. As for a and Py,j1, the values are additionally
averaged over 1000At steps. The error bars indicate the 68% confidence level in
terms of the normal error distribution. The density pp.1r represents an averaged
density within a concentric sphere of radius 0.1R.
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parameter. This deviation depends on the size of the softening parameter, i.e.,
the deviation of the potential from —1/r.

To examine the influence of the softening parameter ry at the quasi-steady
state, Fig. 4 shows the corrected virial ratio «, the pressure Py, on the re-
flecting wall, the density pgir in the inner region and the rescaled kinetic
energy exg. As a result, we can confirm that the deviation of « from 1 in-
creases with increasing softening parameter; i.e., o decreases with increasing
ro. Similarly, the pressure Py, the density pg.ir and the rescaled kinetic en-
ergy exg decrease with increasing ry. This is because strong collisions or close
encounters could occur less frequently due to larger ry. Accordingly, as shown
in Fig. 2, 2Fkxg/|Epe| = 2exg/|e — eki| decreases with ry, because of the
decrease in gy at the quasi-steady state.

3.2 Instability and numerical irreversibility in time-reversible simulations

We now consider the time-reversible simulation of the present system. For
this purpose, we examine time evolutions of the trajectory distance A, (t') for
tey = 1.0; that is, the time-reversal operation is executed at ¢ = 1.0 shown in
Fig. 2. As a result, as shown in Fig. 5, all the curves increase exponentially
with time ¢’ at the early stage, where the origin of ¢’ is the time t,, of the time-
reversal operation. In fact, in chaotic and unstable systems such as N-body
systems, the trajectory distance grows exponentially with time as follows:

Ay (1) = A, (0)eM (13)

where A,(0) and A represent the initial displacement and the maximum Lya-
punov exponent in chaos theory [31,61], respectively. That is, at the early stage
shown in Fig. 5, the slope of the trajectory distance corresponds to A, i.e., the
extent of the instability of the system. Therefore, as expected, the instability
of the system increases with decreasing ry. It should be noted that in this
simulation A,(0) arises from round-off errors. Based on A, we can evaluate
the Lyapunov time as

th=1/A\ (14)
The Lyapunov time ¢y, which is calculated from Eq. (14), is summarized in
Table 2. The table shows that ¢, increases monotonically with the softening
parameter and, therefore, our result agrees well with previous studies [21,22].
We discuss the details below, including the memory loss time newly defined
in this paper.

Through the time-reversible simulation, we examine numerical irreversibility
appearing in the present self-gravitating system. To this end, Fig. 6 shows the
relationship between the final trajectory distance A, and time ¢, of the time-
reversal operation, for various softening parameters. The figure shows that A

11



Table 2
Lyapunov time ty for tye, = 1.0.
70 0.005 0.010 0.020 0.050

t 0.005 % 0.002 0.011 £+ 0.002 0.022 £+ 0.004 0.056 £ 0.006

To calculate the Lyapunov time ¢y, the maximum Lyapunov exponent A\ was com-
puted from an exponential part of each curve shown in Fig. 5. For ry = 0.005, 0.010,
0.020 and 0.050, we employed the exponential parts of t' = 0.05-0.08, 0.05-0.15,
0.05-0.25 and 0.05-0.40, respectively.

r, = 0.005
fy = 0.010
104 ¢ r, = 0.020
106 ¢
r, = 0.050
108 ¢
g — 1,=0.005
— 1,=0.010
— 1,=0.020
1012 £ — 1,=0.050
10 -14
0.0 0.5 1.0

Fig. 5. (Color online) Time evolutions of the trajectory distance A,(t') for various
softening parameters ry with t,, = 1.0. The origin of ¢ is the time t., of the
time-reversal operation.

increases with t.,. Moreover, as expected, A, increases with decreasing soft-
ening parameter 7, since the extent of the instability of the system increases
with decreasing ry. That is, under the restriction of constant initial energy,
both the instability and the propagation of numerical irreversibility due to
round-off errors depend on the softening parameter ry in the same way.

In Paper I, to observe the behavior of numerical irreversibility universally,
we proposed the use of a propagation time 7, based on the normalized ratio
of velocity moments VM which was appropriate because we were considering
the system at various energy states. However, in the present study, since the
initial energy is approximately fixed, the time evolutions of VM are not very
different from each other. That is, 7, is not suitable for the present case.
Therefore, using the Lyapunov time ¢, we re-plot the final trajectory distance
Ay against tpe,/ty. Note that although ¢, described in Table 2 is calculated
from the result for t,, = 1.0, we have confirmed that ¢, does not greatly
depend on %, in the present study.

As shown in Fig. 7, for smaller values of the final trajectory distance (A,

QA
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Fig. 6. Final trajectory distance A, for various softening parameters rg. The error
bars indicate the 68% confidence level in terms of the normal error distribution for
approximately 100 simulations.
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Fig. 7. Influence of the softening parameter on the final trajectory distance Ay¢. The
results shown in Fig. 6 are re-plotted against the time normalized by the Lyapunov
time ty.

1073), the results for all the various softening parameters agree well with each
other. Accordingly, for A,s < 1073, the behavior of the numerical irreversibility
is dominated by the Lyapunov time ¢, or the instability of the system. On the
other hand, for A, Z 1073, the results are not on a common curve. This is
because, as shown Fig. 6, for A, 2 1072, the final trajectory distance does
not increase exponentially with the time ¢, of the time-reversal operation.
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Fig. 8. Final trajectory distance A,¢ and recovery rate Rp. For simplicity, the error
bars for ryp = 0.020 are taken to be typical.

In order to examine the characteristics of the numerical irreversibility appear-
ing in the region A, Z 1072, we investigate the relationship between the final
trajectory distance A, and the recovery rate Rg. As mentioned previously,
the recovery rate measures the loss of reversibility in the present simulation;
i.e., the smaller Rg, the more irreversible the system is. As shown in Fig. 8, Rg
starts to decrease at A, ~ 1073, although the numerical irreversibility due to
round-off errors starts generating at the first time step of the time-reversible
simulation. This is because the recovery rate measures the macroscopic behav-
ior of the system, through the velocity distribution. After the final trajectory
distance grows sufficiently large, we can observe the loss of reversibility or
numerical irreversibility clearly. Moreover, we found that after A, ~ 1073,
all the results for various ry were on a common curve. This means that for
Ay Z 1072, the final trajectory distance A, and the loss of reversibility
measured by Rp are closely related to each other.

By using the recovery rate Rg, we define a new quantity, the memory loss time
tm, representing the time when the simulated trajectory completely forgets its
initial conditions. That is, t,, represents the time required for R = 0. Figure
9 shows the influence of the softening parameter ry on ¢, and the Lyapunov
time ). As shown in Fig. 9, not only ¢, but also ¢, increases monotonically
with rg. In the present simulation, ¢, is shorter than the crossing time 7, &~ 0.1.

According to Kandrup et al. [21], the mean e-folding time for individual par-
ticle perturbations or the e-folding time for the total 3/N-dimensional configu-
ration space perturbation can be fitted by a simple power law. We apply this
idea to our simulation result, considering the Lyapunov time ¢, calculated
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from the trajectory distance in velocity speed space. t) can be given as
ta(ro) = A1 X (ro)" + Bu, (15)

where py, A; and B; are constant values. The best-fit value obtained from
Fig. 9 is py =~ 1.0 and therefore we can expect that ¢, increases approximately
linearly with the softening parameter ry. Similarly, the memory loss time ¢,,
could be given as

tm(r0) = Ag X (r9)P™ + B, (16)

where p,, A; and Bs are constant values. Since the best-fit value is p,, ~ 1.0,
., defined here also seems to increase approximately linearly with r,. However,
as shown in Fig. 9, £, is longer than both the crossing time 7. and t¢). This
is because, as mentioned previously, ¢, is based on the recovery rate Rpg,
which measures the macroscopic behavior of the system through the velocity
distribution.

In order to examine the memory loss time ¢, more clearly, we re-plot ¢, against
the Lyapunov time ¢). As shown in Fig. 10, ¢,, increases approximately linearly
with ¢, in the present small self-gravitating system. However, we note that,
as discussed in Paper I, if the instability affected by the softening parameter
is fixed, the propagation of numerical irreversibility is dominated by early
relaxation processes or energy states. Therefore, we can conclude that both
the energy state of the system and the instability affected by the softening
parameter influence the loss of reversibility or the propagation of numerical
irreversibility appearing in the self-gravitating system.

10.000
At
o 4 x
1000
3
) = T mmmmmmmm g m s oo
E a
= 0100 L-1,
§ @
@) t
0.010 @
0.001 S
0.001 0.010 0.100

o

Fig. 9. Influence of the softening parameter ry on the memory loss time ¢, and the
Lyapunov time ty. The horizontal broken lines represent the crossing time 7, =~ 0.1
and the relaxation time 7, = 0.6. The error bars for t,,, are evaluated from those for
trev—RR plots.
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Fig. 10. Memory loss time ¢, and Lyapunov time ).

The N-dependence of the e-folding time ¢, has been discussed in detail in pre-
vious studies [8,20,22,26]. For example, ¢, is estimated to be t, ~ 1/In(In N)
for N &~ 10% [22] and ¢, ~ 1/In N for N = 10° [26]. Accordingly, by using
these results, we can predict the N-dependence of the memory loss time.

3.3 Influence of the integration step size

To study the influence of the integration step size (i.e., the time step), At
is varied ranging from 10~* to 1075, for ry = 0.005 and t,,=0.1. In this
subsection, for simulating more unstable systems, the softening parameter
ro is set to be 0.005. The other specifications are the same as those in Sections
3.1 and 3.2.

As shown in Fig. 11, we can confirm that global errors |Aeya,/co| in total
energy increase with At, where ¢y and Ae ., represent the initial total energy
and the difference between the maximum and minimum total energies, €. —
€min, during the simulation, respectively. This simulation result is consistent
with the result in Paper I. On the other hand, the final trajectory distance
A,r seems to increase with decreasing At, because strong collisions or close
encounters could occur more frequently when At is small. However, since the
values of A,¢ fluctuate widely, the influence of the time step isn’t clear. (Note
that all the recovery rates Rg are approximately 1.0 and don’t depend on the
integration step size in the present simulation. This is because t.,,=0.1 is too
short for Ry to start decreasing, since Ry starts to decrease at A, ~ 1073.)

In order to examine the influence of the integration step size in detail, we
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Fig. 11. Influence of the integration step size At, for ry = 0.005 and tye,=0.1. The
closed circles and the open triangles represent the final trajectory distance A, and
global errors |Aemax /o] in total energy, respectively.
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Fig. 12. (Color online) Time evolutions of the trajectory distance A, (t') with various
integration step sizes, for rg = 0.005 and t,y=0.1. The trajectory distance is plotted
every 10At steps. The horizontal axis, ', is indicated by a logarithmic axis.

observe time evolutions of the trajectory distance A, ('), where the origin of
t' is the time t,0, of the time-reversal operation. As shown in Fig. 12, the initial
values of the trajectory distance are the common one at the first time step,
i.e., at t' =1At. After the first time step, all the curves increase gradually with
time and then they increase exponentially (1072 5 ¢'). Although the curves
fluctuate, the slope of the curves is approximately comparable to each other.
The above fact is similar to the result in Paper I. However, the trajectory
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distance doesn’t grow sufficiently large at ¢ =0.1, since the time is short. In
particular, for 1072 < #/, A,(¢') fluctuates widely. Similarly, as shown in Fig.
11, the final trajectory distance A, fluctuates in the present simulation.

4 Conclusions

In the present paper, we investigated the fundamental characteristics of numer-
ical irreversibility in self-gravitating small N-body systems, from the viewpoint
of time-reversible dynamics. In this study, we considered a closed spherical
system consisting of 250 point-particles, which interact through the Plummer
softened potential. In order to investigate the influence of instability on nu-
merical irreversibility, the softening parameter ry for the Plummer softened
potential was varied from 0.005R to 0.050R, under the restriction of constant
initial energy or constant initial virial ratio 2Fkg, /| Ep,|-

To examine the influence of the softening parameter ry, we first investigated
the time evolutions of both the virial ratio 2FEkg/|Epg| and the corrected
virial ratio a (=(2Fkg — 47 R? Pyan)/| Epi|), without the time-reversal opera-
tion. We confirmed that the behaviors of these ratios were consistent with two
time scales, the crossing time 7, and the relaxation time 7,. At the quasi-steady
state, the deviation of a from 1 increased with increasing softening parame-
ter. Then, through a time-reversible simulation based on a velocity inversion
technique, we demonstrated that the numerical irreversibility due to round-off
errors appeared more rapidly with decreasing softening parameter ry. In other
words, the higher the instability of the system, the earlier the memory of the
initial conditions is lost. For smaller values of the final trajectory distance
(At 1073), the final trajectory distance depends on the Lyapunov time ¢y
in chaos theory. (Note that, in our simulation, A, seemed to increase with
decreasing the integration step size At, for ro = 0.005R and t,,,=0.1.) On the
other hand, for A, 2 1073, i.e., after the final trajectory distance grows suffi-
ciently large, numerical irreversibility measured by the recovery rate is clearly
visible. In particular, for A, Z 1073, the recovery rate Ry is closely related
to the final trajectory distance A,s. We also found that the memory loss time
tm, which was defined by the recovery rate, increased approximately linearly
with ¢, in the present small self-gravitating system.

It should be noted that, as discussed in Paper I, if the instability affected by the
softening parameter is fixed, the propagation of the numerical irreversibility
is dominated by early relaxation processes or energy states. Therefore, we
concluded that both the energy state of the system and the instability affected
by the softening parameter influence the loss of reversibility or the propagation
of numerical irreversibility appearing in the self-gravitating system.
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A Reflecting wall

In the present study, to simulate a self-gravitating /N-body system enclosed
in a spherical container with a reflecting wall, the set of equations of motion
is integrated using Verlet’s algorithm. Accordingly, a position of a particle at
time ¢ + At is given by x(t + At) = 2x(t) — x(t — At) + X f;(t) (At)?, where
f;(t) is a partial force from the j-th particle on the particle, located at position
x at time ¢. When the position x(¢ + At) of the particle is located outside of
the spherical container or the reflecting wall, the position is reversed to mimic
the reflecting wall. The method is summarized as follows.

Let us consider the motion of a single particle, as shown in Fig. A.1. In this
figure, x; and x, represent the positions x(¢) and x(¢ + At), respectively. In
other words, the single particle moves from x; to x, (This is the trajectory
before the reflection.). When the position x; is located outside of the reflecting
wall, the reflected position xs, is given as

L, @ a
0Xg, = OXhy — 2 |£| ><|(¥|, (A.1)

where o and s represent the center of the sphere and the point at the inter-
section of the reflecting wall with the trajectory, as shown in Fig. A.1. The
notation a_>b represents a vector from position a to b. Since the reflected posi-
tions, e.g., Xy, can be similarly calculated, the radial component of the velocity
of the particle is reversed. The position s of the intersection is calculated, as-
suming that the line X;X; is a straight line. Therefore, if the particle moves
from x5, to Xy, the reflected positions are x; and x;, respectively; i.e., the

Fig. A.1. Reflecting wall and trajectory of the single particle.
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radial component of the velocity of the particle is reversed similarly. Through
several simulations with and without the reflecting wall, we have confirmed
that our main result, e.g., the relationship between numerical irreversibility
and instability, does not greatly depend on the above operation.

References

[1] V.A. Antonov, in Dynamics of Globular Clusters, edited by J. Goodman and P.
Hut, TAU Symposium No. 113, (Reidel, Dordrecht, 1985); Vestn. Lening. Gos.
Univ. 7 (1962) 135.

[2] D. Lynden-Bell, R. Wood, Mon. Not. R. Astron. Soc. 138 (1968) 495.

3] J. Binney, S. Tremaine, Galactic Dynamics, Princeton University Press,
Princeton, 1987.

[4] T.Padmanabhan, Phys. Rep. 188 (1990) 285.

[5] D. Lynden-Bell, Physica A 263 (1999) 293.

[6] C. Tsallis, J. Stat. Phys. 52 (1988) 479.

[7] V. Latora, A. Rapisarda, C. Tsallis, Phys. Rev. E 64 (2001) 056134.

8] S.J. Aarseth, Gravitational N-Body Simulations: Tools and Algorithms,
Cambridge University press, Cambridge, 2003.

9] D.C. Heggie, P. Hut, The gravitational million-body problem, Cambridge
University press, Cambridge, 2003.

[10] S.J. Aarseth, Mon. Not. R. Astron. Soc. 126 (1963) 223.

[11] R.H. Miller, Astrophys. J. 140 (1964) 250.

[12] R.H. Miller, J. Comput. Phys. 2 (1967) 1.

[13] M. Lecar, Bull. Astron. 3 (1968) 91.

[14] E.M. Standish, Ph. D. thesis, Yale Univ., 1968.

[15] V.G. Gurzadyan, G.K. Savvidy, Astron. Astrophys. 160 (1986) 203.
[16] H.E. Kandrup, Phys. Lett. A 140 (1989) 97.

[17] H.E. Kandrup, Physica A 169 (1990) 73.

[18] S.J. Aarseth, M. Lecar, Ann. Rev. Astron. Astrophys. 13 (1975) 1.
[19] Y. Suto, PASJ. 43 (1991) LY.

[20] H.E. Kandrup, H. Smith, Astrophys. J. 374 (1991) 255.

[21] H.E. Kandrup, H. Smith, D.E. Willmes, Astrophys. J. 399 (1992) 627.

20



[22] J. Goodman, D.C. Heggie, P. Hut, Astrophys. J. 415 (1993) 715.

[23] A.A. El-Zant, Astro. Astrophys. 326 (1997) 113.

[24] A.A. El-Zant, Astro. Astrophys. 331 (1998) 782.

[25] M. Cerruti-Sola, M. Pettini, Phys. Rev. E 51 (1995) 53.

[26] M. Hemsendorf, D. Merritt, Astrophys. J. 580 (2002) 606.

[27] D. Huber, D. Pfenniger, Astron. Astrophys. 386 (2002) 359.

[28] H.L. Wright, B.N. Miller, W.E. Stein, Astrophys. Space Sci. 84 (1982) 421.
[29] H.L. Wright, B.N. Miller, Phys. Rev. A 29 (1984) 1411.

[30] H.A. Posch, W.G. Hoover, Phys. Rev. A 38 (1988) 473.

[31] W.G. Hoover, Time reversibility, Computer simulation, and Chaos, World
Scientific Publishing Co., 1999.

[32] Ch. Dellago, H.A. Posch, W.G. Hoover, Phys. Rev. E 53 (1996) 1485.
[33] J. Orban, A. Bellemans, Phys. Lett. 24A (1967) 620.

[34] Ch. Dellago, W.G. Hoover, Phys. Rev. E 62 (2000) 6275.

[35] G.E. Norman, V.V. Stegailov, Comput. Phys. Comm. 147 (2002) 678.
36] N. Komatsu, T. Abe, Physica D 195 (2004) 391.

[37] N. Komatsu, T. Abe, Comput. Phys. Commun. 171 (2005) 187.

[38] N. Komatsu, T. Abe, Phys. Fluids 19 (2007) 056103.

[39] N. Komatsu, T. Kiwata, S. Kimura, Physica A 387 (2008) 2267.

[40] N.S. Krylov, Works on the Foundations of Statistical Physics, Princeton
University Press, 1979.

[41] L. Hernquist, J.E. Barnes, Astrophysical Journal 349 (1990) 562.

[42] R.A. Gerber, Astrophysical Journal 466 (1996) 724.

[43] A.B. Romeo, Astronomy and Astrophysics 324 (1997) 523.

[44] H.E. Kandrup, LV. Sideris, Phys. Rev. E 64 (2001) 056200.

[45] A.A. El-Zant, Mon. Not. R. Astron. Soc. 331 (2002) 23.

[46] D.J. Price, J.J. Monaghan, Mon. Not. R. Astron. Soc. 374 (2007) 1347.
[47] D. Merritt, Astronomical Journal 111 (1996) 2462.

[48] A.B. Romeo, Astronomy and Astrophysics 335 (1998) 922.

[49] E. Athanassoula, E. Fady, J.C. Lambert, A. Bosma, Mon. Not. R. Astron. Soc.
314 (2000) 475.

21



[50] W. Dehnen, Mon. Not. R. Astron. Soc. 324 (2001) 273.

[51] S. A. Rodionov, N. Ya. Sotnikova, Astronomy Reports 49 (2005) 470.

[52] H. Endoh, T. Fukushige, J. Makino, Publ. Astron. Soc. Japan 49 (1997) 345.
[53] A.A. El-Zant, Phys. Rev. E 58 (1998) 4152.

[54] I. Ispolatov, M. Karttunen, Phys. Rev. E. 68 (2003) 036117.

[55] L. Ispolatov, M. Karttunen, Phys. Rev. E. 70 (2004) 026102.

[56] A. Taruya, M. Sakagami, Physica A 307 (2002) 185.

[57] A. Taruya, M. Sakagami, Mon. Not. R. Astron. Soc. 364 (2005) 990.

[58] The unit of time in the present paper is the same as that for the figures and
parameters (e.g., the integration step size, the crossing time, etc.) shown in
Paper 1.

[59] In several cases, the results are averaged over approximately 100 simulations,
at least more than 95 simulations.

[60] If € of the uniform state becomes lower than €., the system should undergo a
collapse to a core-halo state. The collapse energy e.o is not greatly influenced
by r¢: for example, for ro/R = 0 and 0.005, the collapse energy is .,y = —0.335
and —0.339 [54], respectively.

[61] G.M. Zaslavsky, Chaos in dynamic systems, translated by V.I. Kisin, Harwood
Academic Publishers, 1985.

22



