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Abstract
This paper presents an analysis of H∞ Filter(HF) for Robotics Mapping and Localiza-
tion with unknown noise statistics. HF which is also known as the minimax filter is
proposed in this paper to estimate the robot and landmarks location while robot moves
through an unknown environment. Some of the conditions are proposed to ensure that
the state covariance in HF is converging to a steady state value. Furthermore, the anal-
ysis of HF convergence for a robot observing landmarks are presented to examine its
behavior through the observations. From the experimental results, HF gives a suffi-
cient estimation about the environment. Subsequently, such a result can provide other
available estimation methods with the capability to ensure and improved estimation in
robotic mapping and localization problem.
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1. Introduction

The robotic mapping and localization problem has gained researcher’s attention over
some past decades. This problem illustrates an application of a mobile robot whose observing
an environment and collecting information efficiently while it is moving through the environ-
ment. From its observations, the robot then attempts to build a map. In 1980’s, Smith and
Cheeseman et.al(1) initiated the robotic mapping problem based on the relationship between
landmarks and a robot. Since then, a sequential of interesting developments dramatically has
evolved its name to Simultaneous Localization and Mapping problem(SLAM)(2). See Fig.1
for the illustration of SLAM problem which consists of a mobile robot observing some land-
marks.

SLAM has been applied in a wide range of applications, indoors or outdoors such as
satellite, mining, space exploration, rescue and military. The development of SLAM continues
in 2D(3) or 3D applications(4)(5) and amazingly expanded to home-based robot applications.

Fig. 1 SLAM problem
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SLAM has enhanced from Topological and Metric approaches to Behavioral approach,
Mathematical-based model approach and Probabilistic approach(2). However, between these
three techniques, the probabilistic approach has made a significant achievement. In spite of
probabilistic approach remarkable achievement, such a technique suffers from some shortcom-
ings such as computational complexity. Nevertheless, with modern development of software
and research, a considerable support and solution to this problem may exist, thus inspire the
development of probabilistic SLAM.

Recently, many approaches using the probabilistic whether parametric or non-parametric
methods have been proposed to solve the SLAM problems e.g Kalman Filter, UKF, Particle
Filter, etc. Currently, a non-parametric method called Fast-SLAM approach(2), efficiently con-
structs the unknown map by utilizing an amount of particle whose behaves as the uncertainty
to the whole system. If more particles are used, then the estimation result will be better. Un-
fortunately, this method require higher computational cost. Due to such deficiencies, such a
wonderful technique does not deter some classical methods. The readers are encouraged to
look at the review about SLAM development explained by S.Thrun et.al(6), which is purposely
discussed regarding the SLAM problem from various aspects.

It is a wise decision to model a system that can take into account for the worst case of
noises or when the noise statistics are unknown but bounded. Hence, HF can be a complement
estimator to tolerate such a robust system. The development of HF for SLAM is proposed
herein and its performance has been briefly compared to Kalman Filter(7)(8), (12) – (19) approach
in some conditions. HF(9) is one of the set-membership approaches, which assumed that the
noise is known in a bounded energy(10), (11). The energy gain from the noise inputs to the
estimation errors is guaranteed to be less than a certain level.

Throughout this paper, we examine the HF about its convergence properties. To guaran-
tee the convergence of state covariance, some conditions are provided. If these conditions are
not satisfied, then the estimation have erroneous results. Moreover, we investigate the con-
vergence properties of a robot observing landmarks in an unknown environment. We study
the results using a constant motion and sensors uncertainties with a perfect data association
considering two cases of gaussian and unknown noise statistics but bounded. To this extent,
H∞ Filter is still new in the robotic mapping problem solution schemes, although it has a de-
sirable property and is competitive compared to Kalman Filter. West et.al(12) showed that HF
was competent with other well-known approaches such as Kalman Filter and Particle Filter for
SLAM problem. However, no theoretical explanation or contribution about HF properties was
discussed. In this paper, HF convergence properties are analyzed to understand its behavior in
SLAM.

This paper is organized as follows. In Section 2, HF-Based SLAM is presented with
a brief comparison to the Kalman Filter, while Section 3 demonstrates the main results of
convergence properties of H∞ SLAM problem. Next, Section 4 shows the experimental results
of SLAM about both filters performance. Finally, Section 5 concludes the paper.

2. H∞ Filter Based-SLAM

2.1. SLAM Mathematical Model
SLAM consists of two general models which are the process model that explains how

the robot move through the unknown environment and the measurement model that calculates
and measures the relative distance and angle between robot and landmarks for each respective
time. This section analyzes both models to describe how a map can be built using both models
information. Fig.2 explains about these two models. An assumption of stationary landmarks
is made for convenience. The process model is presented as follows.

Xk+1 = f (Xk, ωk, vk, δωk, δvk), Xk = [θk xk yk Li
k]T (1)

where θk is the robot angle and xk, yk are robot x, y positions. Li
k is the ith landmarks containing

its xi, yi positions. Note that we assume the landmarks are stationary and therefore is time
invariant unlike the robot location. vk and ωk are representing the robot velocity and turning
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Fig. 2 Process model(left) and measurement model(right) of mobile robot localization

rate respectively. δvk, δωk are the correlated noises for each vk, and ωk. T is the transpose of
the matrix. On the other hand, the measurement model has the following equation.

zk =

⎡⎢⎢⎢⎢⎣
ri

φi

⎤⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎣

√
(yi − yk)2 + (xi − xk)2 + νri

arctan
(
yi−yk

xi−xk

)
− θk + νφi

⎤⎥⎥⎥⎥⎥⎦→ ∇HiXk+1 + νk (2)

where ri, φi are the relative distance and angle between robot and ithlandmark while other
variables hold the same definitions as described before. νri and νφi are the associated noises
to the measurements of relative distance and angle respectively. ∇Hi and νk are defined as the
measurement model in Jacobian representation and the measurement noise with covariance
Rk, respectively. Both terms are shown by the following notations.

∇Hi =

⎡⎢⎢⎢⎢⎣
0 − dx

r − dy
r

dx
r

dy
r

−1 dy
r2 − dx

r2 − dy
r2

dx
r2

⎤⎥⎥⎥⎥⎦ , νk =

⎡⎢⎢⎢⎢⎣
νri

νφi

⎤⎥⎥⎥⎥⎦ (3)

where r =
√

(xi − xk)2 + (yi − yk)2, dx = xi − xk and dy = yi − yk. The prediction step yield
the following equations.

X̂k+1 = f (X̂k, ωk, vk, 0, 0) (4)

Pk+1 = ∇ fXPkψ
−1
k ∇ f T

X + ∇ fωvΣk∇ f T
ωv (5)

where X̂k is a predicted augmented state and Pk is a state error covariance of the system. As
shown above, Σk acts as a control noise (δωk, δvk) covariance.

∇ fX =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0
−vt sin θ 1 0 0
vt cos θ 0 1 0

0 0 0 I

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, ∇ fωv =

⎡⎢⎢⎢⎢⎣
∇gωv

0

⎤⎥⎥⎥⎥⎦ (6)

where t is a sampling time and I is an identity matrix with an appropriate dimension. ∇ fX

is the Jacobian transformation of robot motions and ∇ fωv is the linearized process noise. We
assume no process noise for landmarks. Therefore the linearized process noise for robot
motion is ∇gωv. ψk is shown by the following expression.

ψk = (I + ∇HiR
−1
k ∇Hi

T Pk − γ−2IPk) (7)

where γ > 0. In H∞ Filter(7), the ratio of estimation error to the noise errors must be less
than γ2. We show this characteristics later. Using the Jacobian notation for a case of a robot
observing one landmark at point A, we use the following notation.

∇HA = [−e − A A] (8)

The following abbreviation for Eq.(8) is used and is restated as below.

HA =
[
e A

]
, e =

[
0 −1

]T
=⇒ ∇HA = [−HA A] (9)

where

A =

⎡⎢⎢⎢⎢⎢⎢⎣
xi−xA√

xi−xA
2+yi−yA

2

yi−yA√
xi−xA

2+yi−yA
2

yi−yA

xi−xA
2+yi−yA

2
xi−xA

xi−xA
2+yi−yA

2

⎤⎥⎥⎥⎥⎥⎥⎦ (10)

(xi, yi) and (xA, yA) are the ith landmark coordinate and robot position at point A respectively.
The initial state covariance P0 > 0(P0 ∈ R(3+2N)×(3+2N)) is presented by

P0 =

⎡⎢⎢⎢⎢⎣
P0v 0
0 P0m

⎤⎥⎥⎥⎥⎦ (11)

where P0v is the robot initial covariance and P0m is the landmarks initial covariance. N is the
number of landmarks.
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2.2. H∞ Filter Properties
This subsection presents the development of HF-Based SLAM considering about its con-

vergence properties. Its algorithm is also included in some literatures(21), (22). The comparison
between H∞ Filter and Kalman Filter convergence(23) for a robot observing landmarks is eval-
uated based on some experiments. Hamzah et.al(24) – (26) studied the HF convergence and its
application with Covariance Inflation to decrease SLAM computation cost. Katayama(7) and
D.Simon(9) have presented satisfactory explanations about HF. Referring to them, we first
make some assumptions about the noise characteristics.

Assumption 1. Rk
Δ
= DkDT

k > 0

Assumption 2. Bounded noise energy;
∑N

t=0 ‖ζk‖2 < ∞,∑N
t=0 ‖ξk‖2 < ∞

From Eq.(1)-(2), we can derive Dk = [0 I]. Assumption 1 defines that the measurement
noise are not correlated to process noise during robot observations. Above assumptions are
similar to the standard Kalman Filter assumptions where all components of the measurement
vectors are assumed to be corrupted by temporally uncorrelated noise, Rk. Both process noise
ζk with covariance Qk and the measurement noise ξk with covariance Rk are assumed to be
bounded as described by Assumption 2. For details of H∞ Filter, refer to Katayama(7) and
Lewis et.al(21).

The differences between Kalman Filter and H∞ Filter appears in its form of gain, Kk and
its state covariance Pk, which integrates both the prediction and updates process. For Kalman
Filter, the equation for its gain and covariance are given by,

Kk = Pk(I + ∇HT
i R−1

k ∇HiPk)−1 (12)

Pk+1 = ∇FkPk(I + ∇HT
i R−1

k ∇HiPk)−1∇FT
k + Qk (13)

On the other hand, H∞ Filter gain and covariance are expressed by Eqs.(14)-(15).
Kk = Pk(I − γ−2Pk + ∇HT

i R−1
k ∇HiPk)−1 (14)

Pk+1 = ∇FkPk(I − γ−2Pk + ∇HT
i R−1

k ∇HiPk)−1∇FT
k + Qk (15)

where γ is an H∞ norm of the closed-loop system. H∞ Filter depends on the covariance matrix
of error signals, Qk ≥ 0,Rk > 0 which are chosen and designed such that to achieve a desired
performance. It is observable that if γ becomes bigger in (14) and (15), then these equation
are the same as (12), (13) of Kalman Filter.

An H∞ Filtering problem is defined as following. Given that for P0 > 0(P0 ∈ R3+2N), the
state covariance yields

Pk+1 = ∇ fXPkψ
−1
k ∇ f T

X + ∇ fωvΣk∇ f T
ωv, P0 = Σ0 (16)

ψk = I + (∇HT
i R−1

k ∇Hi − γ−2LT
k Lk)Pk (17)

In our case Lk is an identity matrix with an appropriate dimension. The above equations holds
a positive definite solution if it satisfies the following equation.

Pk = P̂−1
k − γ−2LT

k Lk > 0, k = 0, 1, . . . ,N (18)

where
P̂k = (P−1

k + ∇HT
i R−1

k ∇Hi)
−1 > 0 (19)

For γ > 0, the suboptimal HF is given by below expressions.
ĉ∗k = Lk x̂k, x̂−k+1 = ∇Fk x̂k (20)

x̂+k+1 = x̂k + Kk[zk − ∇Hix̂k], x̂0 = x̄0 (21)

Kk = Pk∇Hi(∇HiPk∇HT
i + Rk)−1 (22)

where ĉ∗k is the interested state output estimation, x̂−k+1 and x̂+k+1 are the priori and posteriori
estimated state, and X̄0 is the estimated initial state with its associated initial state covariance,
P0. In other words, given γ > 0, an H∞ Filter attempts to find a solution for x̂k that satisfies
the following equation.

sup
x0,ζ,ξ

∑N
k=0 ||xk − x̂k ||

||x0 − x̄0||2P−1
0
+
∑N

k=0 ||ζk ||2R−1
k

+
∑N

k=0 ||ξk ||2Q−1
k

< γ2
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3. Main Results

To obtain a successful estimation using H∞ Filter, a solution to the H∞ Filter must be
available(22). If else, a faulty estimations and finite escape time problem is observable. The
finite escape time states that an estimation suddenly goes to infinity in finite time horizon.

Assumption 3. (∇Fk,∇Hi) is observable and (∇Fk,∇Gk) is controllable.

From Eqs.(1)-(2), we can derive∇Gk = [I 0]. This setting is suggested to guarantee that
the process noise is uncorrelated to the measurement noise. With respect to Calleja et.al[8],
we present the following lemma for the stability of H∞ Filter. Note that from now on we
change ∇Hi to Hi unless stated.

Lemma 1. The filtering error dynamics for an HF is converging to a zero mean steady state
if and only if the matrix I − KkHi is stable and Eq.(18) is satisfied. Hi and Kk are defined by
Eq.(3) and Eq.(22) respectively.

Proof. We begin the proof by showing that (I−KkHi) is marginally stable in robotic mapping
problem. Given that the initial state covariance matrix given by,

P0 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

σ2
θ 0 0

0 σ2
xy ∗ I2 0

0 0 σ2
m ∗ I2N

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (23)

where σθ, σxy, and σm are the robot pose angle, robot xk, yk positions and landmarks xi, yi

initial covariance respectively. I is an identity matrix with an appropriate dimension. For a
stationary robot whose observing a landmark, the measurement model yields

Hi =

⎡⎢⎢⎢⎢⎣
ri

φi

⎤⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎣

0 −1 1
−1 0 0

⎤⎥⎥⎥⎥⎦ (24)

If Eq.(19) is satisfied, and by using Eq.(22) about the filter gain, then the following equation
is derived as

Kk = P0HT
i (HiPkHT

i + Rk)−1

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 −σ2
θ sθ

−(σ2
xy ∗ I2)s 0

(σ2
m ∗ I2N)s 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (25)

where s, sθ are the innovation variances and s = ((σ2
xy∗I2)+(σ2

m∗I2N)+Rk)−1, sθ = (σ2
θ+Rk)−1.

Hence,
(I − KkHi)

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

I − σ2
θ sθ 0 0

0 I2 − (σ2
xy ∗ I2)s σ2

xys
0 −σ2

ms I2N − (σ2
m ∗ I2N)s

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (26)

The eigenvalues of the above matrix is obtained as⎡⎢⎢⎢⎢⎣
1

1 − σθvm
2 ∓ 1

2 [σ2
θm − σθ(σ2

xy ∗ I2) − σθ(σ2
m ∗ I2N)]

1
2

⎤⎥⎥⎥⎥⎦ (27)

where σθvm = σ2
θ + (σ2

xy ∗ I2) + (σ2
m ∗ I2N) and s, sθ � 0. Shown above, there exist at least

an eigenvalue leading to partial stability and there are two other solutions for each sign of
the second term. In addition, (I − KkHi) secure that there exist a steady state solution for the
Differential Riccati Equation(DRE). �

Lewis et.al(21) guaranteed that if I − KkHi is stable, then the DRE of HF is converging.
This result shows the same structure to Calleja et.al(8) analysis. We also found that most of
the results from Dissayanake et.al(3) in linear cases are applicable for HF. These are due to the
preceding explanations of both filters stated in Eqs.(12)-(15). The system gain and covariance
characteristics explicitly shows HF behavior towards SLAM. To determine this, we investigate

74



Journal of System
Design and
Dynamics

Vol.5, No.1, 2011

its properties especially about its the convergence characteristics. From this point forward, we
present those results consisting about HF convergence properties.

Theorem 1. Assumes that Assumptions 1∼3 are satisfied. For γ > 0, the predicted state error
of a robot observing landmarks is gradually decreasing if observations are frequently made
by a robot. Moreover, this is achieved if and only if Rk < γ

2.

Proof. This property is analyze using Eqs.(18)-(19). Consider a linear case SLAM problem.
Let ∇ fX = I and the observation noise covariance, Rk > 0. As the initial state covariance is
P0 = PT

0 > 0, from both equations, it shows that if Rk < γ
2, then HT

i R−1
k Hi − γ−2I ≥ 0. Hence,

Pk = (P−1
0 + HT

i R−1
k Hi − γ−2I)−1 ≤ P0 (28)

Pk+1 = (P−1
k + HT

i R−1
k Hi − γ−2I)−1 ≤ Pk (29)

If the robot observes a landmark for some time, then the updated Eq.(29) simultaneously
become smaller and therefore result in nearer estimation to the true value. From the positive
semidefinite(PsD) properties, it is known that the map state covariance Pkmm also exhibits the
same properties.

Pkmm = (P−1
0mm

k + HT
i R−1

k Hi − γ−2I)−1 ≤ P0mm (30)

Pk+1mm = (P−1
kmm
+ HT

i R−1
k Hi − γ−2I)−1 ≤ Pkmm (31)

Subsequently, the map state covariance is also decreasing. Therefore, as presented above, the
whole state covariance matrix becomes smaller after a sufficient observations if and only if,
HT

i R−1
k Hi − γ−2I ≥ 0. This condition plays an important role in HF -SLAM. �

Theorem 1 had demonstrated that the whole state covariance matrix is decreasing if it is
satisfying HT

i R−1
k Hi − γ−2I ≥ 0. This expression describes its importance in HF estimation.

Bolzern et.al(22) suggested some requirements to guarantee HF convergence in some condi-
tions. In Theorem 6(22), HF is converging only if for some given positive scalar ε such that the
initial state covariance P0 satisfies the following.

0 ≤ P0 ≤ Ps + (Y + εI)−1

where Y = YT is the solution of Lyapunov function and Ps is the stabilizing solution. However,
technically it is difficult to determine ε. Even more, this equation equivalently means that if
no solution is available, then we should increase γ. By increasing γ, a solution is guaranteed
to exist as it closer to EKF behavior. Besides that, by calculating Ps online, the equation leads
to computational cost. As a result designer must first compute the stabilizing solution with
consideration of the noises parameters, initial state covariance while at the same guaranteeing
the ratio of estimation error to the noises distribution is less than γ. Thereby, we suggest very
general requirements to apply HF-based SLAM which require perceiving only the behavior
of updates via Eq.(28) and satisfying Rk < γ

2 in the system(26).

Corollary 1. Given that P0 = PT
0 > 0. For each observation, if Rk > γ2I, the whole state

covariance becomes a negative definite matrix or indefinite and lead to unstable estimations.

Proof. Assume that in each observation, HT
i R−1

k Hi − γ−2I < 0. For P0 > 0, especially in a
case when the robot is stationary, then for Rk > γ

2, the following can be obtained.
Pk = (P−1

0 k + HT
i R−1

k Hi − γ−2I)−1 < 0 (32)

Pk+1 = (P−1
k + HT

i R−1
k Hi − γ−2I)−1 > Pk (33)

Subsequently, the whole state covariance matrix becomes a negative definite matrix and con-
tinues to increase to negative value that is unacceptable behavior in SLAM. �

Corollary 1 generally verifies that the estimation may turn out to be insufficient if
Theorem 1 is not satisfied and become worst if P0 >> 0 as stated in Eq.(32). Besides,
Corollary 1 explains that HF requires the designer to carefully choose the observation noise
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and some other parameters. Moreover, γ must be tuned properly to ensure that a PsD matrix
is preserved in each robot observation updates. Finite Escape Time is one of the problems of
HF. To avoid this problem, some conditions are proposed as follows.

Theorem 2. There exists a solution to HF-SLAM problem if and only if the followings are
achieved.
• The observation noise, Rk << γ

2I.
• Theorem 1 is satisfied.
• State covariance matrix is always a PsD in each observation.

If else, the estimation is unreliable and exhibits Finite Escape Time phenomena.

Proof. To examine these conditions, the HF-SLAM algorithm in Section 2.2 is referred. The
observation noise must satisfied Rk < γ2I, as this will guarantee that Eq.(18) exhibit a PsD
matrix. To demonstrate this, we consider a uni-dimensional robot case which is a robot with
single position information observing a single landmark coordinate to show that the solution
for HF-SLAM is exist. From Eq.(17), for P0 > 0 and γ2 > Rk, we obtained the following
equations.

ψk = I +

⎡⎢⎢⎢⎢⎣
−1
1

⎤⎥⎥⎥⎥⎦
[
R−1

k

] [
−1 1

]
−
⎡⎢⎢⎢⎢⎣
γ−2 0
0 γ−2

⎤⎥⎥⎥⎥⎦ P0 (34)

=

⎡⎢⎢⎢⎢⎣
1 + (R−1

k − γ−2)Pvv −R−1
k Pmm

−R−1
k Pvv 1 + (R−1

k − γ−2)Pmm

⎤⎥⎥⎥⎥⎦ (35)

Pvv and Pmm are the robot and landmarks state covariance respectively. From the properties of
a PsD matrix, a determinant of its matrix is non-negative. Therefore, it is sufficient to show
that Eq.(35) determinant is non-negative. The determinant of Eq.(35) yields

ψk = PvvPmm + [2(R−1
k − γ−2) − 2R−1

k γ−2 + γ−4]PvvPmm (36)

To ease calculation, choose γ2 >> Rk. Then we obtained that

ψk → PvvPmm + 2R−1
k PvvPmm ≥ 0 (37)

As a result, ψk is always a PsD. Hence, the linearized state covariance yield
ψk = I + (HT

i R−1
k Hi − γ−2I)Pk ≥ 0 (38)

Pk+1 = FkPkψk
−1Fk +GQkG

T ≥ 0 (39)

Note that, γ2I >> Rk is a general condition that must be selected to achieve a reliable estima-
tion. If else, it exhibits a non PsD matrix. Theorem 1 has shown that if HT

i R−1
k Hi − γ−2I ≥ 0,

then the state covariance is decreasing. Finally the state covariance matrix is converging to
some steady state value. If Eq.(17) exhibits a non PsD matrix, then the estimation becomes
inaccurate as shown by Corollary 1. This is also a sign of finite escape time. �

We now moves to investigate the convergence behavior of HF when a robot is observing
some landmarks. It is often useful to examine the state covariance matrix since it stands for the
whole uncertainties characteristics about a system. S.Huang et.al(3), (23) have analyzed Kalman
Filter-Based SLAM convergence properties. In HF, the convergence properties of a robot
observing landmarks are still unavailable. This is due to HF is a new approach in SLAM and
a very few researchers have applied the filter as a solution to the problem. Hence we obtained
the following theorem to understand the HF estimation behavior in SLAM problem especially
in unknown noise statistics but bounded.

Theorem 3. For a stationary robot observing a stationary ithlandmark, we assume more than
n-times(n > 0) observations are made. For a given γ > 0, if n goes to infinity, the whole
covariance matrix is converging to

P∞m →
⎡⎢⎢⎢⎢⎣
0 0
0 0

⎤⎥⎥⎥⎥⎦ (40)
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Proof. 2D robot with initial covariance matrix P0 is considered to examine the above theo-
rem and P0 is given by the following,

P0 =

⎡⎢⎢⎢⎢⎣
σ2
v 0

0 σ2
m

⎤⎥⎥⎥⎥⎦ (41)

where σv ∈ R3 is the robot initial state covariance and σm ∈ R2i is the landmark initial state
covariance. Assume that the stationary robot is observing one landmark i. From Eq.(17), when
the robot is observing i landmark n times, and if Rk = σ

2
r I, then we obtain the following. Here,

I is an identity matrix with an appropriate dimension.
ψk = I + n(HT

i R−1
k Hi − γ−2LT

k Lk)Pk

= I + n

⎡⎢⎢⎢⎢⎣
R−1

k − γ−2I R−1
k

R−1
k R−1k − γ−2I

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣
σ2
vk

σvmk

σmvk σ2
mk

⎤⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎣
ρ11 ρ12

ρ21 ρ22

⎤⎥⎥⎥⎥⎦ (42)

where each element in Eq.(42) is shown by
ρ11 = I + n(R−1

k − γ−2)σ2
vk
, ρ12 = (nR−1

k )σ2
mk

ρ21 = (nR−1
k )σ2

vk
, ρ22 = I + n(R−1

k − γ−2)σ2
mk

Finding the inverse matrix of Eq.(42) by the Matrix Inversion Lemma yields

ψ−1
k =

⎡⎢⎢⎢⎢⎣
ψ11 ψ12

ψ21 ψ22

⎤⎥⎥⎥⎥⎦ (43)

where
ψ11 = [1 + n(R−1

k − γ−2)σ2
v − nR−1

k σ2
m × (1 + n(R−1

k − γ−2))−1R−1
k σ2

v ]
−1

ψ12 = −ψ11nR−1
k σ2

m[1 + n(R−1
k − γ−2)]−1

ψ21 = ψ
T
12

ψ22 = [1 + n(R−1
k −γ−2)]−1+ [1 + n(R−1

k −γ−2)]−1× nR−1
k σ2

mψ11nR−1
k σ2

m[1 + n(R−1
k −γ−2)]−1

As n→ ∞ and for convenience assume that the correlation terms are very small and therefore,
can be neglected. It then yields

ψ−1
∞ =

⎡⎢⎢⎢⎢⎣
0 0
0 0

⎤⎥⎥⎥⎥⎦ (44)

Substituting Eq.(44) into Eq.(16), finally we obtain that if n−observations are made, the state
covariance P∞ becomes as

P∞ = Pkψ
−1
∞

=

⎡⎢⎢⎢⎢⎣
0 0
0 0

⎤⎥⎥⎥⎥⎦

�

It is recognizable that in the limit, the whole state covariance matrix is decreasing. We
discovered that, the designer must satisfy Theorem 1, Theorem 2. Otherwise, the results may
not be expected. Although above result encourages good estimation for the robot and land-
mark positions, the true landmark location is still unknown(23). Even more, similar to Kalman
Filter, if bigger magnitude of noises are applied to the filter, then oscillations becomes slightly
bigger. Hence it may give an impact to the overall estimations.

In normal application, the robot has to observe more than a landmark to increase its
confidence about its surroundings. We further study the convergence properties when the
non-moving robot was observing two stationary landmarks. Let σv be robot state covariance
and σm as landmark state covariance. Besides, assume that σvm = σmv, σvm̄ = σm̄v as the
correlation between robot and landmarks. Then the following rule is propose.

Proposition 1. For a stationary robot observing two stationary landmarks, m and m̄ with
γ > 0, as more n times observations are made, the whole covariance matrix is converging to
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P∞m =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

σ2
v σvσm σvσm̄

σmσv σ2
m σmσm̄

σm̄σv σm̄σm σ2
m̄

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (45)

In the limit, the covariance matrix finally becomes

P∞m =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0
0 0 0
0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (46)

Proof. The proof is similar to the proof of Theorem 3 and it is omitted. �

These results are extendable only for a single robot observing a number of landmarks.
Note that, the map covariance for landmark 1 and landmark 2 are different and varied to each
other, especially whenever the initial covariance matrix is not equal to zero and if and only if
the uncertainties are differ from each other. As a conclusion, the uncertainties of those two
landmarks are differ to each other and therefore contributes about of its dependence to the
initial covariance.

4. Experimental Results

4.1. Stationary robot observing landmarks
Experiments have been conducted by using an e-puck robot to observe some point land-

marks in order to evaluate above proposed analysis. We assume that the landmarks are not
occluded to each other and are available in sensor coverage. The process noise is assumed to
be very small than the measurement noise and both noises are able to represent our environ-
ment conditions. Table 1 shows the experimental parameters.

Table 1 EXPERIMENTAL PARAMETERS

Process noise distribution,Q 1 × 10−7 ∗ diag(I3)
Observation noise distribution,R 0.05 (for each ri, θi)

Observation noise(uniform noise),R

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Rθmax = 0.1
Rθmin = −0.08

Rdistancemax = 0.3
Rdistancemin = 0.1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Initial covariance, Pvv = 1 × 10−5 ∗ I3

P0(stationary) Pmm = 1 × 105 ∗ I2m

Initial covariance, Pvv = 6 × 10−3 ∗ I3

P0(moving) Pmm = 6 × 10−2 ∗ I2m

γ(stationary) 0.9
γ(moving) 8

Sampling time 0.1s

For a stationary robot case, two landmarks are defined at two positions at (50, 0) and
(60, 0) in millimeters(mm) respectively while the robot is at (0,0). The landmarks are assume
as point landmarks with respect to a global coordinate system. See Fig.3 that presents the
experiment environment. From Fig.4, it is easy to identify that the HF estimates very well for
its position and landmarks. From the sensor’s measurements, HF performs well in both land-
mark inference with reliable convergence results and thus proves Theorem 3. Besides that,
no finite escape time phenomena is perceived during experiment. As the robot is stationary
at (0,0), Fig.4(a) equivalently means that the estimation error is also decreasing and approxi-
mating the true value of (0,0) even though the associated figure is not mentioned here. Note
that, HF estimation converges faster than KF especially for the landmarks estimations. The
same characteristics can be interpreted from Fig.4(b) for the landmarks estimation error where
both landmark 1 and 2 estimation error are monotonically decreasing as more observations are
made.

On the other hand, when γ << R, HF performance is incapable of achieving better results
than Kalman Filter(see Fig.5). This result is caused by ineffective estimation about robot
localization and landmark’s estimation. Consequently, this proves Theorem 1 and Theorem 2
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Fig. 3 Stationary Epuck observing landmarks

Fig.4(a) Robot position estimation Fig.4(b) Landmark 1 estimation

Fig. 4 HF estimation about robot and landmarks position

when some conditions are not satisfied. The situation also synonymously means that the
estimation errors are keep increasing during observations. In linear case, this is happened
especially when the initial state covariance P0 >> 0 and if (28) or (29) exhibits a negative
definite matrix where R−1

k −γ−2I < 0. Therefore, this situation result in P−1
0 +R−1

k −γ−2I < 0(26).
Remark that commonly in SLAM, the initial state covariance holds large value as the robot
does not know where it is located in the environment before performing any given tasks.

4.2. Moving robot observing landmarks
The experiment for a case of moving robot observing landmarks is conducted to evalu-

ate the consistency of HF in SLAM in both gaussian and non-gaussian noises characteristics.
Figs.6-7 demonstrates that HF is more robust especially in robot pose angle estimation than
EKF. Even if the resulted covariance is slightly higher than EKF state covariance, HF has
the best solution for the respective case. These results also agrees with preceding findings
regarding the state covariance update(See Bolzern et.al(22) and Eqs.(12)-(15) for better com-
prehension). Furthermore, these results shows that HF converges faster than EKF about the
position and consistent to our previous results(24). The EKF robot path estimation is become
inconsistent especially when robot turns(See Fig.6(a) and Fig.7). Subsequently, the landmarks
estimation becomes faulty due to EKF inconsistent estimation. Remark that robot angle is im-
portant to achieve better performance in SLAM(23). A slight difference in angle estimation
leads to different estimation for the landmarks positions.

Considering uniform noise statistic, HF still surpassed EKF estimations(again refer to
Fig.7 when robot turns). The HF robot path estimation gives better result than EKF with better
robot pose angle estimation. Observes the figure at the first time when robot turns and when
robot finished estimating its surroundings. In addition, in an experiment when the robot initial
covariance is 1 × 102 while landmarks initial covariance is 1 × 104, HF again shows good
performance with γ = 12(see Fig.8). In most of the observations, HF estimation surpasses
EKF estimation. At the beginning of estimation EKF shows big error while HF estimation
keeps near to the true value for both robot path and landmarks locations. Thus, these results
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Fig. 5 Landmark estimation: Effect when R >> γ2

Fig.6(a) Biased gaussian noise Fig.6(b) State Covariance behavior

Fig. 6 Built map under HF Estimation under biased gaussian noise and its associated
state covariance

inspires further development for HF while at the same time guaranteeing HF as a solution to
the SLAM problem.

4.3. Discussion
The results have shown that HF is very useful and competent to EKF performance es-

pecially in a case of non-Gaussian noise characteristics. Instead of using Particle Filter(PF),
which suffers from computational cost and requires larger data storage, HF can be a best can-
didate for SLAM problem as it holds almost the same characteristics to Kalman Filter with
lower computational cost and memory storage. Furthermore, in our best knowledge, PF-based
SLAM still is incapable to be employed successfully online. Thus, the implementation of HF
in SLAM is a very considerable approach. Nevertheless, its performance in a case of an envi-
ronment with unknown noise characteristics is a notable achievement, which enable a simpler
approach than the PF.

5. Conclusions

It has been shown that HF is able to be a complement filter for unknown noise statistics
in SLAM. Besides that, HF is applicable in linear and non-linear system that has variety of
noises and useful for SLAM problem. We demonstrated that state covariance of HF is con-
verging if the robot keeps observing any landmarks. However, there are some circumstances
to be considered to ensure that the estimation results achieved the expected performance. If
these conditions are ignored, then the estimation result in erroneous estimation and probably
exhibits Finite Escape Time problem which is undesirable situation in SLAM. In addition, the
experimental results showed that HF is a good selection for an environment with unknown
noise statistics. Even though it seems that the estimation is almost the same to Kalman Filter,
HF improved better about the robot angle estimation which is very important in SLAM as
stated by S.Huang et.al. However, designer should design an appropriate level of weighting
noise Qk, and Rk to achieve a certain level of performance in HF. In addition, by applying the
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Fig. 7 HF and EKF Filter built map under uniform noise characteristics

Fig. 8 Estimation with bigger initial covariance

HF-SLAM, the computation cost is preserved and better than the PF approach which suffers
from computational cost and difficult to apply in real-time SLAM.
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