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ABSTRACT     

          

A generalized theoretical analysis for amplification mechanism in the planar-type 

Cherenkov laser is given. An electron is represented to be a material wave having temporal 

and spatial varying phases with finite spreading length. Interaction between the electrons and 

the electromagnetic (EM) wave is analyzed by counting the quantum statistical properties. The 

interaction mechanism is classified into the Velocity and Density Modulation (VDM) model 

and the Energy Level Transition (ELT) model basing on the relation between the wavelength 

of the EM wave and the electron spreading length. The VDM model is applicable when the 

wavelength of the EM wave is longer than the electron spreading length as in the micro-wave 

region. The dynamic equation of the electron, which is popularly used in the classical 

Newtonian mechanics, has been derived from the quantum mechanical Schrödinger equation. 

The amplification of the EM wave can be explained basing on the bunching effect of the 

electron density in the electron beam. The amplification gain and whose dispersion relation 

with respect to the electron velocity is given in this paper. On the other hand, the ELT model is 

applicable for the case that the wavelength of the EM wave is shorter than the electron 

spreading length as in the optical region. The dynamics of the electron is explained to be 

caused by the electron transition between different energy levels. The amplification gain and 

whose dispersion relation with respect to the electron acceleration voltage was derived on the 

basis of the quantum mechanical density matrix.    

 

 

 

 



I. INTRODUCTION 

 

The electromagnetic (EM) wave can be emitted or amplified by traveling electron beam as 

has been realized in the traveling-wave tube, free-electrons laser, and Cherenkov laser [1-15].  

We can expect a very wide frequency range of the EM wave, such as from the micro-wave to 

the X-ray regions, for the operation based on the interaction between the EM wave and the 

electron beam.   

Authors group has presented theoretical analyses to investigate the optical emission and 

amplification in the planar-type Cherenkov laser basing on the quantum mechanical treatment. 

In these analyses [16,17], the electron is represented to be spatially spreading wave, and 

experimentally observed the optical emission with the electron acceleration voltage of around 

40 kV [18]. We also estimated the spreading length of an electron wave in our experiment to 

be 20 to 40 mμ  by comparing the experimentally obtained emission profile with theoretical 

analysis [18,19].         

   On the other hand, there are many theoretical analyses on the interaction between the EM 

wave and the electron beam. Almost all of these analyses are based on the classical treatment, 

where the electron is regarded as a spatially localized point particle [1-14,20-22]. Then our 

quantum mechanical analyses as in Refs.[16-19] seem different from the analyses based on the 

classical mechanics.  

    In this paper, we show that both analytical models based on the classical mechanics and 

the quantum mechanics can be derived from identical quantum statistical treatment. We also 

confirm that a criterion for the range of applicability of both models is determined by the 

relation between the wavelength of the EM wave and the spreading length of the single 

electron. Our analyses are limited to the non-relativistic regime which is well applicable when 

the electron velocity is slower than c/3.   

    The organization of this article is as follows. In Sec. II, excitation of the EM wave by the 

electron current is formulated basing on the classical Maxwell’s equations. In Sec. III, 

quantum statistical representation of the electron dynamics is given. The electron is 

represented as a wave which has finite spreading length. The dynamic model for the electron is 

classified into Velocity and Density Modulation model (VDM model) and Energy Level 

Transition model (ELT model) according to the relation between the wavelength of the EM 

wave and the spreading length of the single electron. In Sec. IV, the amplification mechanism 

in the VDM model is analyzed. The famous dynamic equation of the electron motion in the 

classical mechanics is derived from the quantum mechanical Schrödinger equation. In Sec. V, 
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the density matrix method is applied for the ELT model and amplification of the EM wave is 

analyzed. In Sec. VI, applicable wavelength ranges of both the VDM and ELT models are 

summarized basing on numerical calculations. Conclusions of this paper are given in Sec. VII.     

    

II. EXCITATION OF THE ELECTROMAGNETIC WAVE BY THE ELECTRON 

BEAM CURRENT  

 

Configuration of the planar Cherenkov laser is shown in Fig.1, where a dielectric planar 

waveguide having high refractive index and an electron gun are set in a vacuum chamber. The 

electron beam is aligned to be parallel to the surface of the dielectric planer waveguide which 

is designed to penetrate one part of the guiding EM wave into the vacuum region. If we put the 

input EM wave, the laser works as an amplifier, and if there is no input light the laser works an 

EM emitter.   

     Excitation of the EM wave by the electron beam is formulated from the classical 

Maxwell’s equations. Variation of the electric field E  is given by        

         c
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where  is the current density of the electron beam and J cρ  is the charge density in the 

electron beam as well as in the waveguide. iε  and iσ  are the dielectric constant and the 

conductivity in the -th layer of the waveguide including the vacuum region, respectively.  

Solution of 

i

E  is assumed to be given as    

             ,                 (2) ..),(),( )( cceyxztF ztj += −βωTE

where ω  and β  are the angular frequency and the propagation constant of the EM wave, 

respectively. The effective refractive index  is defined with the propagation constant to 

be

effn

ωε oμβ o= effn . j  is the imaginary unit and c.c. refers to the complex conjugate of the 

preceding term.  is the transverse field distribution of the electric field given as a 
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Since the amplification is achieved through excitation of  component with the 

electron beam, the Transverse Magnetic (TM) mode is used as the guiding mode in the planar 

zE
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waveguide. Existing components of the TM mode are , and , then the distribution 

functions and exist but 

xH

0

yE zE

),( yxTy ),( yxTz ),( =yxTx , eventually.  is the field 

amplitude varying with respect to t and z and whose variations are much smoother than those 

of 

),( ztF

ω  and β , respectively. .  

    We substitute Eq. (2) into Eq. (1), multiply both side of Eq. (1) by 

, perform the spatial integrations along the )exp)* ty ωT ]([ zj β −,(x x  and  directions, 

and take the spatial and time averages over 

y

tΔzΔ  and  whose values are several periods of 
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where  is a velocity of the EM wave given by fv

          
∫ ∫
∞

∞−

∞

∞−

=f
dydx2yxio ),(Tεωμ

β ,                       (6) v

 is the guiding loss coefficient given by  and lossα

dydx      yxi
o ∫ ∫

∞

∞−

∞

∞−

2),(Tσ
β
ωμ

=lossα .                     (7) 

),( ztF  and a phase By decomposing the field amplitude into an absolute magnitude 

), zt(φ  as  

 ),(),(),( ztjeztFzt φ≡F ,                             (8) 

and by substituting it into Eq. (5), we get the following equations by comparing the real and 

the imaginary parts on both sides of the resulted equation:  
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Here we have supposed that the current density  has only z component, i.e., , and the 

charge 

J J

cρ  varies along  z  direction.   

The term g is the gain coefficient and βΔ  is the change of the propagation constant due 

to the presence of the electron beam. When g is a positive value, the EM wave is amplified. 

The effective propagation constant changes from β  to βΔβ + , then the phase velocity 

of the EM wave becomes  

phv  

              
βΔβ

ω
+

=phv .                              (12) 

Although the velocity  introduced in Eq. (6) is not mathematically identical to the phase 

velocity , the value of  is almost same with  numerically. Also, the value of 

fv

phv fv phv

|| βΔ  is much smaller than β , then we can assume that  

eff
f n

c
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β
ω

phvv .                              (13) 

for almost cases.  

 

III. QUANTUM STATISTICAL REPRESENTATION OF ELECTRON DYNAMICS    

 

A. Basic definitions   

 

Physical quantities related to the electron dynamics, such as the current density  and 

the charge density 

J

cρ  in the electron beam, should be evaluated as expectation values in the 

quantum mechanical treatment. When many electrons contribute to the interaction, we further 

need to count the statistical properties using the so called quantum statistics.  

We assign a number ν  for each electron in a group (an ensemble). The expectation 

value of any quantum mechanical operator  in the group of electrons is given by  A

                 ∑=
ν

ννν ΨΨ ),(),( )()()( tAtPA rr ,                     (14) 
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),()( trνΨ  is the state vector of the th−ν electron which satisfies the normalization 

condition of  
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where )()( tr,υΨ  is a wave function corresponding to the state vector ),()( trνΨ , and 

 indicates the spatial integration over the volume  of the ∫ )(
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                      )()()( )()()( rrr ννν ϕωϕϕ mmmmmo WH h==                 (18) 

with 

                 2

0

2

0

22

22
∇−==

mm
H o

hh p ,                          (19) 

where  is the momentum operator and  is the rest mass. p 0m

 In the present analysis, we suppose that the wave function  is approximately 

represented with a boxlike plane wave  
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where  is the center position of the ),,( vzyx ννν =r −ν th electron. , and are 

spreading lengths of the confining box in the x, y, and z directions, respectively, as illustrated 

in Fig. 2. These lengths can be changed with the electron density in the electron beam. The 

normalization and orthogonal conditions of the electron wave are written as    
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  In Eq. (14), the coefficient  indicates the contribution of the -th energy state 

in the

),()( tcm rν m

−ν th electron and can be expressed as  
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Here, we should note that the coefficient  has both spatial and temporal variations 

which are much smoother than those of  and 

),()( tcm rν

)() rν
m
(ϕ ( )tj mω−exp , respectively.  

Since both the state vector ),()( trνΨ  and the eigen energy state )()( rνϕm  are 

normalized as given in Eqs. (16) and (22), we also get the relation of 

1),(
2)( =∑

m
m tc rν .                           (24)  

Equation (24) implies a simple but an important characteristic that is only a single electron 

exists in the defined space of . Thus, each electron is assigned with different index )(νV ν . 

  Basing on the above discussions, the electron density N is given by 
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B. Excitation term with the beam current   

 

The amplification of the EM wave is derived from the terms tJ ∂∂ /  and zc ∂∂ /ρ  in Eq. 

(10) multiplied by the complex conjugate of the EM distribution function. Since the current 

density  is given as a spatial operator in the quantum mechanics and both the electron and 

the EM waves have specific spatial distributions, the quantum statistical expectation value 

must be evaluated over these combined functions.     

J

  We now start to determine an expectation value of zj
z eyxTJ β),(* . The expectation 

value of zj
z eyxTtJ β),()( *∂∂  shown in Eqs. (10) and (11) is determined from 

zj
z eyxTJ β),(*  as shown in later. The current density  in quantum mechanics is given by J
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where  is the total electron density including all energy levels as,  tN
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 and  are z-components of the electron momentum and the EM vector 

potential, respectively. Since different electrons are not overlapped spatially, expectation value 
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Here, we focus our attention on the two cases of mn =  and  regarding the 

double summations over energy levels n and m in Eq. (28). The first case of 

mn ≠

mn =  

corresponds to a dynamic motion of an electron without making any transition from the initial 

energy level m to other energy levels. The latter case of mn ≠  indicates an electron transition 

between different energy levels n and m.  

In the former case, from Eq. (23), we get a relation of  
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where the condition of 1),()( =tcm rν  is used because the electron never transits to other 

energy levels. Then the integrand in Eq. (28) becomes 
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In the latter case of , the electron dynamics is regarded as an electron transition 

between different energy levels in the defined space of . Then the temporal variation of 

the coefficient  has to been taken into account while the spatial distribution of this 

coefficient is neglected, such as 
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By the help of Eqs. (29)-(31), Equation (28) can be rewritten as  
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The first term zj
z eyxTJ β),(*

vdm  corresponds to modulations of the electron velocity 

and density by the EM field as treated with the classical mechanics. Interaction mechanism 

induced by this term is named Velocity and Density Modulations model (VDM model) in this 

paper. The second term zj
z eyxTJ β),(*

elt  is caused by the electron transition between 

different electron energy levels. Then, interaction mechanism induced by the second term is 

named Energy Level Transition model (ELT model) in this paper. 

 

C. Effect of the charge term 

 

Charges must exist not only in the electron beam but also in the waveguide in the form of 

the holes or the positive ions due to the mirror (the image) effect from the electrons in the 

beam.  However, we make a classification here based on properties in the electron beam. 

The charge density cρ  in the electron beam is given as   

                ),(),( tNetc rr −=ρ                             (35)  

where  is the electron density given by a square value of the electron wave function as 

shown in Eq. (25). Then the electron density is also divided into two components of  and 

.  is related to the diagonal elements of the energy eigen functions corresponding to 

the VDM model, while  is related to the off-diagonal elements in the crossing term of the 

electron wave functions corresponding the ELT model, such as 
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According to the above classification, the term with the charge in Eq. (10) is also divided into 

two components as 
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where vdmρ  and eltρ  are charge densities in the VDM model and the ELT model, 

respectively. 

In the electron beam, the terms vdmρ  and eltρ  are given by   
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    According to the above categorizations of the current density and the electron density, the 

gain coefficient g  and the change of the propagation constant βΔ  defined in Eq. (10) and 

(11), respectively, are calculated as a sum of two components  
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C. Criterion for application of the VDM and ELT models 

 

Here, we examine applicable range of the VDM and ELT models. Since we assume a finite 

spreading length  for a single electron, the energy levels are characterized by the relation 

of 
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m
mm

o
mm ΔΔ

2
2

1
2

2

1 )(
2

hh
≈−=−= −− .              (50)           

    As will be shown in Sec. V for the ELT model, the conditions required to induce the 

electron transition between different energy levels are to match the photon energy ωh  and 

the propagation constant β  with the separations of the energy and the wave-number of the 

electron, respectively, satisfying the energy and the momentum conservation rules. Then, the 

EM wave, whose photon energy and the propagation constant are smaller than the energy and 

wave-number separations, respectively, such as WΔω <h  and kΔβ < , can not induce the 

electron transition in the ELT model.  

    However, the EM wave having WΔω <h  and kΔβ <  can modulate the electron 

velocity around the initial energy level. This type of interaction is analyzed in the VDM 

model. 

    The above mentioned discussions are also understood by comparing the spatial 

distribution of the electrons with that of the EM wave as illustrated in Fig. 4. The EM wave 

with the higher photon energy has shorter wavelength. The condition of kΔβ >

λ

l

 required to 

cause the electron transition in the ELT model corresponds to the condition of . Then 

the phase of the EM wave varies within the spreading length of a single electron . Typical 

)(ν
zl<

)(ν
z
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example of the EM wave to be analyzed by the ELT model is the optical wave, because the 

wavelength is m 1 μ≈λ  while the spreading length )  of a single electron is expected to 

be several tens o

 (ν
zl

f mμ [18,19]. 

The EM wave with the lower photon energy has longer wavelength ( ).  Then an 

electron can be treated as a point particle in comparison with the wavelength of the EM wave 

corresponding to the classical mechanics. Typical example to be applied the VDM model is the 

micro-wave region whose wavelength 

)(νλ zl>

λ  is longer than 1 mm. The so called electron 

bunching is caused in the VDM model. 

Classifications and applicability of present models are summarized in Fig. 5.              

 

IV. VELOCITY AND DENSITY MODULATION (VDM) MODEL 

 

A. Derivation of the classical dynamic equation from the Schrödinger equation 

 

An important feature of this section is the introduction of a phase angle  which 

is a function of time t and position z. This is because the modulation of the electron velocity is 

characterized by the term  in Eq. (29). In this subsection, a dynamic equation for 

the electron motion is derived from the Schrödinger equation showing that obtained results 

well coincide with those derived by the classical Newtonian mechanics. 

),()( tzm
νθ

zm ∂∂ /)(νθ

In this model, since the th−ν  electron is assumed to occupy an energy level whereas 

electron transitions between different energy levels are not counted, the notation of the energy 

level  can be dropped and replaced with m ν  without loss of generality. Therefore, the 

electron wave function in Eq. (17) is expressed as 

                        

 12

)),( ,()( rr rθωνΨ νν tjtjet +−= ()
νϕ .                      (51) 

This wave function must follow the Schrödinger equation in the form of  

),(
2

),(
)(

into

)(

tjHHt
t

r
r

ν
ν

ΨΓΨ
⎟
⎠
⎞

⎜
⎝
⎛ −+=

∂

∂
jh ,                (52) 

where  is the principle Hamiltonian have been given in Eq. (19).  is the interaction 

Hamiltonian showing interactions between the electron and the EM wave  

0H intH

                     eUpAAp
m
eH zzzz −+= )(

2 o
int                         (53) 

where  is z component of the EM vector potential and  is the scalar potential. zA U

Γ  is an operator indicating the relaxation effect of the electron wave [23]. The 



expectation value of Γ  is characterized with the relaxation time τ  for the electron wave, 

being given by  

τΨΓψ νν h=)()( || .                         (54) 

The left-hand side of Eq. (52) is rewritten as 

)(
)(

νν
ν

ν

Ψ
θ

ω
Ψ

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

−=
∂

∂

ttj hh .                     (55) 

The term with the principle Hamiltonian on the right-hand side of Eq. (52) is 

)(2

o

2
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o

2

2

)(2

o

2
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o

2
2

2

2
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νν

νν
ν
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Ψ
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Ψ
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Ψ
Ψ

⎟
⎠

⎞
⎜
⎝

⎛
∂
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⎟
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⎜
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⎛
∂
∂

+=

∂
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−=

z
kk

m

z
k

m

zmH

h

h

h

.                       (56) 

Here, to trace the phase variation, we put the vector potential  using zA

                              (57) ..),( )( cceAtA ztj
oz +≡ −βωr

By applying )(νψ  to Eq. (53), the term of the interaction Hamiltonian becomes   

{ }
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 .             (58) 

It is worth noting here that the varying phase ),( trνθ  of the electron wave affects both the 

principle Hamiltonian and the interaction Hamiltonian. 

By substituting Eqs. (55)-(58) into Eq. (52) and using the relations of  

and 

0
22 2/ mkννω hh =

 zk ∂∂>> νν θ  and β , we get  

)(

0

)(

0 2
νννννν ΨΓΨ

θθ

⎭
⎬
⎫

⎩
⎨
⎧

++−=⎟⎟
⎠

⎞
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⎝

⎛
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∂
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∂
∂

hh

h
UeA

m
ke

zm
k

t z ,          (59) 

Here, we take one more spatial derivative z∂∂ /  to Eq. (59) and drop the terms with 

z∂∂ /)(νΨ  by using relation of    

        )(
)(

νν
ν

ν

ΨθΨ
⎟
⎠
⎞

⎜
⎝
⎛

∂
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+=
∂

∂
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 .                      (60) 

Then, we get the following equation         
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We now reform Eq.(61) to a dynamic equation giving variation of the electron velocity.  

The velocity of the νv ν -th electron is given with the expectation value of the momentum as 

ν
νν

ν
ννν Ψ

θ
ΨΨΨ v)()()()(

oz m
z

kp ≡⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

+= h                 (62) 

Then, we get 

( νν
ννν Ψ )θ

Ψ vv)()( −=
∂
∂

h
om

z
                    (63) 

 with 

  
om

k
v ν
ν

h
=   .                              (64) 

On the other hand, the spatial derivative of the vector potential given by Eq.(57) can be 

rewritten with the temporal derivative, such as  

           
t

A
vt

A
z

A z

ph

zz

∂
∂

−=
∂
∂

−=
∂
∂ 1

ω
β   .                       (65) 

Then, the first two terms in the right side of Eq. (61) is rewritten with the electric field 

component  as zE

            z
z

ph

νz E
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νh                     (66) 

giving the interaction between the electron and the EM wave, where we used the relation of 

phvv ≈ν . Expectation value of these terms shown in Eq. (66) become  

      z
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z EceEe
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hhh
  (67) 

where  is the so-called Sinc function. In deriving Eq. (67), we assume 

that spatial distributions of the EM wave in the transverse x-y direction are sufficiently smooth 

but the variation along z direction is not neglected and is counted with the Sinc function. 

xxx /)(Sin)Sinc( =

       
zjz

z

V

zj
z

zj
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deyxTeyxT

β
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β
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32)()(
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l

rr

             (68)  

   Finally we examine the last term in the right side of Eq. (61), that is the relaxation effect 

on the electron wave. Since the relaxation time operator Γ  introduced in Eq. (52) is defined 

for the temporal variation of the electron wave, the spatially averaged value of  must z∂∂ /Γ
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be zero, giving the following relation 
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Hence, we get  

τ
θ

ΨΓΨ ν
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νν h
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)()( .                     (70) 

   By multiplying )(νΨ  to Eq.(61) and by using above derived relations, we get a dynamic 

equation of the electron motion as 

V
z

z Em
e

zt τ
β ν

ν
ν

ν
ν v

2
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v )(
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−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
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∂
∂

+
∂
∂ l ,               (71) 

where ττ 2=V

)(ν
zl

0

 is the relaxation time of the electron velocity. Equation (71) is almost same as 

the well-known dynamic equation directly obtained by the Newtonian classical mechanics. 

The exceptional difference of Eq. (71) is the term .  This term results from 

taking into account the spatial average of the electric field over the finite length of the electron 

wave , while the electron in the classical mechanics is assumed to be a point particle (i.e., 

) giving .  

)2/Sinc( )(νβ zl

)( =ν
zl 1)2/Sinc( )( =νβ zl

 

B. Dynamics of the electron velocity and density 

     

    Here, we examine the term  in Eq. (33) showing further 

correspondence with the classical treatment. In Eq. (33),  is 

approximately assumed to be  since . We define an effective velocity 

 averaged over all electrons with the electron density as 

>< zj
z eyxTJ β),(*

vdm

βθ ν >>+∂∂ nn kz/)(

o
)( /)/( mkz nn h+∂∂+ νθβ

νv

v

                            vv)( =∑ ν
ν

νP                               (72) 

and 

                          vv)(

)(

vdmN
V
P

=∑ ν
ν

ν

ν

.                            (73) 

Then, Eqs. (71) and (33) becomes  
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and 
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l ,             (75)   

where  is an averaged value of  for the group of the electron.  l )(ν
zl

The contributing term to the gain coefficient  in Eq. (43) and the change of the 

propagation constant 

vdmg

vdmβΔ  in Eq. (46) will be given by 
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In the VDM model, the electrons run with the average velocity v  and are subjected to 

the electric force from the EM wave as given by Eq. (74). Then we put the electron velocity in 

the form of 

  ( ) .].)([vv V1/-v ccetu zjtj ++= − βτβ .                       (77) 

where  is the amplitude of the modulated component. By substituting Eq. (77) into Eq. 

(74), we obtain 
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where  

ωβΩ −= v .                              (79) 

Ω  is a relative EM wave frequency as seen by the electrons. Here, we have supposed that the 

interaction starts at . Then the velocity becomes  0=t
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   The modulation of the electron velocity due to the presence of the electric field induces a 

corresponding modulation in the electron density. The continuity equation of the electron is 

obtained from the Maxwell’s equations of { } 0)/(/ =++∂∂⋅∇=×∇⋅∇ JDDH oot εσ  and 

cρ=⋅∇ D  to be  

( )
N

vdm
vdm

vdm N
Nzt

N
τ

−
∂
∂−=

∂
∂ v ,                          (81) 

where )/( ooN σετ =  is a relaxation time for temporal variation of the electron density.  

The electron density  can be expressed to have temporal and spatial variations in vdmN
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the form of 

                     ( ) .].)([ N1/-v ccetnNN zjtj
vdm ++= − βτβ ,                      (82) 

where  is the amplitude of the density modulation. By substituting Eq. (82) into Eq. (81), 

with the help of Eq. (80), we obtain 
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and then, 
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Here, we have supposed more approximation for the sake of simplicity that the relaxation 

times of the electron velocity and the density are almost identical, i.e., τττ ′== VN .  

By substituting Eqs. (80) and (84) to Eq. (76) , we get  
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with 

{ }
2

)/()1(
2

)1(
)/)(1(11t),v(

−′
′−′−−

⋅′=
′−′

τΩ
ττΩτ

ττΩ

j
etjY

tj

.              (86) 

In derivation of Eq.(85), the relation of tNtN vdmvdm ∂∂<<∂∂ /v/v  is used. That is the 

modulation of the electron density is more important than that of the velocity for the 

interaction as called be the bunching.  

 Equation (86) is a dispersion function for the electron velocity, where the imaginary and the 

real parts give the gain coefficient  and the change in the propagation constant vdmg βΔ , 

respectively. The dispersion function is written in more unified form by taking a normalized  

form of 2t)/,v( τ ′Y  whose numerical examples are shown in Fig. 6(a) and (b). The dispersion 

function is characterized not only by the electron velocity but also by the time  from the 

start of the interaction and the relaxation time 

t

'τ . The gain show peaks when the electron 

velocity v  is slightly faster than the EM phase velocity effnc //vph == βω . 

 

C. Effect of the charge distribution in the VDM model 

    

    The effect of the space charge on the gain coefficient in the VDM model is given in Eq. 

(40). In the right side of Eq. (40), the volume  is regarded to be an averaged volume with )(νV
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relation of . Then, by substitution of Eq. (84 ) to Eq. (40), we get  ∑ =
ν

ν 1)(P
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The charge effect is represented with almost same form with the term caused by the current 

density  given in Eq. (85). However, the charge effect gives an opposite sign in the 

amplification gain  of Eq. (43) in comparison with the term caused by the electron 

current density . 

vdmJ

vdmg

vdmJ

 We need to pay attention that the positive ions or the holes must be induced in the 

waveguide especially at surface of the metal or the semiconductor when these materials are 

used to cancel the electric flux from the electron beam as well as to release electrons 

accumulated at the waveguide surface. These induced positive charges work to reduce the 

charge effect of the electron beam. Therefore, we define a coefficient κ  to characterize the 

degradation of the charge effect as    
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where  indicates to count the electron charges in the beam as given by Eq. (87), 

while  means to count all possible charges including the positive ions or the holes 

in the waveguide. 

∫∫beam
dydx

∫ ∫
∞

∞−

∞

∞−
dydx

κ takes a value between 0 to 1, where the smaller value leads to the more 

efficient operation. 

 

D. Gain coefficient and the change of the propagation constant in the VDM model  

 

According to the above mentioned definitions and discussions, the gain coefficient  

and the change of the propagation constant 

vdmg

vdmβΔ  in the VDM model are given as  
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where v0 NeJ =  is the average current density and vdmξ  is a coupling coefficient,  

dydxyxT
beam z∫∫= 2

vdm |),(|ξ ,                       (91) 



where  means the spatial integration over the cross-sectional area of the electron 

beam.  

∫∫beam
dydx

    A numerical example of the gain coefficient in the VDM model is shown in Fig.7 for a 

fixed value of 0.1'=τΩ s, and other assumed parameters are given in the figure. The gain 

coefficient varies with the time up to 3'/ ≈τt  as a transient phenomenon then reaches to the 

steady state. Other numerical examples will be shown in Fig. 12 together with those for the 

ELT model.   

 

V. ENERGY LEVEL TRANSITON (ELT) MODEL 

 

A. Quantum Mechanical Density Matrix 

 

The interaction mechanism caused by the electron transition between energy levels can 

be well analyzed using the quantum mechanical density matrix by which the statistical 

behavior of the electron group is taken into account [16,23,24]. 

In this section, we suppose the volume of all electrons  is identical as 

 assuming a balanced state and the energy levels are also common for all 

electrons. Then we can remove the index 

)(νV
3)( l==VV ν

ν  from the eigen function to be 

          mmm ≡≡ )()()( rr ϕϕ ν  .                         (92) 

By rewriting , Eq. (34) becomes  VNt /1=
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Here we define a matrix ρ  whose matrix element is given by 

            .                    (94) ∑ −=
ν

ωωνννρ tj
mnmn

mnetctcP )()()*()( )()(

ρ  is different from the previously introduced charge density cρ , and is called the quantum 

mechanical density matrix [24]. Equation (94) implies that the matrix ρ  can be given by  

             ∑=
ν

ννν ΨΨρ )()()( P .                         (95) 

Since the diagonal element 0),(* =meyxTpm zj
zz

β , Eq. (93) is reduced to 
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Here,  means to take all diagonal elements in { }Tr {} nd sum up them as is called the trace 

operation[24].   

 a

The dynamic equation of the density matrix is given by [16,23]: 
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} ,              (97) 

where ρ~  is the electron density at thermal equilibrium, Λ  indicates electron supports, and 

 is the relaxation operator as has been given in Eqs. (52) and (54). Γ
To analyze Eq. (97), we represent the interacting term with the electric field. The 

interaction Hamiltonian has been given in Eq. (53) and the vector potential is given by Eq. 
(57). The momentum operator in  is intH zjpz ∂∂−= /h . Since the wave-number of the 

electron is much larger than the propagation constant of the EM wave β , a matrix element of 

 is simply rewritten as  intH
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Now we put the scalar potential to be 

       .                       (99) ..),( )( cceUtU ztj
o +≡ −βωr

Then the electric field  is represented with the vector and the scalar potentials as zE

        ..)
v
1(..),(),(),( )()( cceUAjcceyxTztFtE ztj

o
ph

o
ztj

zz +−−=+= −− βωβω ωr    (100) 

Since the phase velocity  of the EM wave is almost same as the electron velocity 

, Eq. (98) is written as 

phv

onn mk /v h=

    >
⎭
⎬
⎫

⎩
⎨
⎧ +<=>< − ncceyxTztFjm

m
k

enHm ztj
z

o

n |..),(),(||| )(
int

βω

ω
h

       (101)  

Therefore, the exchange term between  and intH ρ  in Eq. (97) becomes 

⎥
⎦

⎤
⎢
⎣

⎡
+−+=>−< ..)()(2

),(|)(|
0

intint cceTkkm
ztFejnHHm tj

mmnnmnmn
ωρρωρρ h ,    (102) 

where  is an off-diagonal matrix element relating to the EM wave and the electron wave 

functions, being given by 

mnT
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and  

neyxTmT zj
zmn

β),(** ≡      .                     (104)      

The dynamic equation for the off-diagonal elements of the density matrix is 
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               (105) 

where  
               ( ) h/mnnm WW −=ω  .                            (106) 

From Eq. (105), we obtain the temporal variation of the density matrix element as 

             [ ] { tjtj

nm

mmnnmnmn
mn

nmeeztF
jm

Tkke
t )/1(

0

),(
/1)(2

)()(
)( τωω

τωωω
}ρρ

ρ −−
+−
−+

= .       (107) 

This equation is applicable for all energy levels having the relation of . Then Eq. (96) 

becomes  

mn >
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and 
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As can be shown from Eqs. (103) and (109), the interaction between the electron wave and 

the EM wave is the most expected under the conditions of h/)( mnnm WW −=≈ ωω  and           

mn kk −≈β  . These conditions correspond to the energy and momentum conservation rules 

for the electron transition, respectively.  

  The interaction mechanism is illustrated in Fig. 8. The electron wave )(rnϕ  at the initial 

state has the spatial phase variation of jkne nd that of the final state )(rm
z , a ϕ  has zjkme . Then 

the mixed wave )(* rmϕ  beating vibration of kkj mne ( −  the beating spatial 

variation of the mixed wave coincides with the spatial variation of the EM wave  

satisfying the momentum conservation rule given in Eq. (103), the electron transition is 

induced. Note that the electron transition occurs when the wave-number of the beating wave 

)(rnϕ  has a . Wz) hen

zje β−

 21



matches with the wave-number of the EM wave, while the de Broglie wavelength given by 

nk/2π  itself is much shorter than the wavelength of the EM wave λ . We can also describe a 

similar relation between the temporal variation of the mixed electron wave  and 

that of the EM wave , resulting in the energy conservation rule given in Eq. (109).  

tj mne )( ωω −−

tje ω

 

B. Designation of the energy levels 

     

 We suppose here that the incident electron is accelerated with velocity 

obb mk /vv h==  corresponding to the energy level , as illustrated in Fig. 9. When the 

electron transits to a lower energy  the emission and the amplification of the EM wave are 

generated. On the other hand, when the electron transits to an upper energy level , the EM 

wave is absorbed. Since there are dense energy levels, the final energy levels are chosen to 

satisfy relations of 

b

a

c

ω =ba ω  for the amplification and ωω =cb  for the absorption. We also 

suppose that electron populations in these final energy levels are zero, because the thermal 

distribution of the electron beam is much narrower than the photon energy ( ωh<<TK B ),   

                          0== ccaa ρρ .                             (110) 

  Then Eq. (109) is rewritten in more simple form as 
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where 
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−

Since the averaged current density in the ELT model is written as 

                                                (113) ∑=
b

bbbto NeJ vρ

Equation (111) is rewritten as 
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C. Effect of the charge distribution in the ETL model 



 

The space charge term of Eq. (41) is also represented with the density matrix as  

∑∑
>

−−=
∂
∂

mn m
nmmnmnt

zj
z

elt TtkkjNeyxT
z

N ** )()(),( ρβ             (115)  

By supposing similar energy levels and notation with the last sub-section, this equation 

becomes  

      { } ( τβ τ /22* 1),(||||
v

),( t
cbab

ph

ozj
z

elt eztFTT
J

jeyxT
z

N −−−−=
∂
∂

h
)       (116) 

However, this space charge term also gives an opposite sign in the amplification gain  in 

comparison with the term caused by the electron current density . We have to take into 

account induced positive charges in the waveguide similar as the case of VDM model by 

embedding the coefficient 

eltg

eltJ

κ  defined in Eq. (88).  

 

D. The gain and the change of the propagation constant in the ELT model 

 

Basing on the above mentioned derivations, the gain and the change of the propagation 

constant in the ELT model become  

[ τξ
β
τμκ /
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h
],              (117) 

and 

         0elt =βΔ .                               (118) 

Here, eltξ  is the spatial coupling coefficient between the EM field and the electron wave 

given by  

          dxdyydxdyxT
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and ),v( lD  is a dispersion function in the ELT model given as  
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(120) 

where  is the acceleration voltage of the electron beam related with the initial velocity as bV
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2
v2

o
b

m
eV = .                           (121)            

Since we supposed dense energy levels satisfying ωω =ba  and ωω =cb , the gain 

coefficient is proportional to the relaxation time τ  and the change in the propagation 

constant becom 0=eltes zero βΔ  as in Eq.(118) in the ELT model. 

As shown in Eq.(120), the spreading length  is understood as the coherent length of the 

electron wave.  Numerical examples of the dispersion function 

l

),v( lD are shown in 

Figs.10(a) and (b). Fig.10(a) is for the case when m40μ=l  and Fig.10(b) is for the case 

when . When  is long enough as shown in Fig.10(b), the maximum value of the 

dispersion function approaches to 

cm1=l l

1),v( max ≈lD . On the other hand, as shown in Fig.10(a), 

when  becomes very small as in the real situation such as l m40μ=l , the dispersion 

function approaches to 0. 

 Numerical example of the time variation of the gain coefficient  is shown in Fig.11 . 

The gain coefficient reaches to the steady state after a time longer than several times of 

eltg

τ .   

    

VI. APPLICATION OF THE TWO MODELS IN WIDER WAVELENGTH RANGE   

 

The variations of the gain coefficients  in Eq. (89) and  in Eq. (117) with the 

wavelength of the EM wave 

vdmg eltg

λ  are shown in Fig. 12. In these examples, the relaxation times 

and the spatial coupling coefficients are supposed to be identical in two models for a direct 

comparison, i.e., sec and 9−10' == ττ 1.0== eltvdm ξξ . The examined range of the EM 

wavelength is from m1.0 μ to 10 cm in this figure. Peak values of the dispersion functions 

)},v(Im{ tY  and ),v( lD  in the steady states have been traced for each . Applicable ranges 

of the two models are characterized by the spreading length of the electron wave .  

shows sufficient values in the case of 

l

l vdmg

l>>λ , while  is effective for the case of eltg l<<λ .  

The shorter  is more profitable for , while the longer  is more profitable for .  l vdmg l eltg

 

VII. CONCLUSIONS 
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A generalized theoretical analysis for amplification mechanism in the planar-type 

Cherenkov laser is given. An electron is represented to be a material wave having temporal 

and spatial varying phases with finite spreading length. Interaction between the electrons and 

the electro-magnetic (EM) wave is analyzed by counting the quantum statistical properties. 
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The interaction mechanism is classified into the Velocity and Density Modulation (VDM) 

model and the Energy Level Transition (ELT) model basing on the relation between the 

wave-length of the EM wave and the electron spreading length. The VDM model is applicable 

when the wavelength of the EM wave is longer than the electron spreading length as in the 

micro-wave region. The dynamic equation of the electron, which is popularly used in the 

classical Newtonian mechanics, has been derived from the quantum mechanical Schrödinger 

equation. The amplification of the EM wave can be explained basing on the bunching effect of 

the electron density in the electron beam. The amplification gain and whose dispersion relation 

with respect to the electron velocity is given in this paper. On the other hand, the ELT model is 

applicable for the case that the wavelength of the EM wave is shorter than the electron 

spreading length as in the optical region. The dynamics of the electron is explained to be 

caused by the electron transition between different energy levels. The amplification gain and 

whose dispersion relation with respect to the electron acceleration voltage was derived on the 

basis of the quantum mechanical density matrix.    

In both VDM and ELT models, the effect of the electron charge in the electron beam 

work to reduce the amplification gain by the electron beam. This reduction effect can be 

degraded by induced positive ions or holes at the surface of metallic or semiconductor 

waveguides (or inside the waveguide).  
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Figure Captions 

FIG..1 Schematic illustration of the Cherenkov laser utilizing a dielectric planer waveguide 

and traveling electron beam. 

 

FIG..2  Supposed shape of a single electron. The electron wave is approximately represented 

with a boxlike plane wave. 

 

FIG..3  Energy levels of a single electron. The energy levels are not continuous but are given 

with discrete levels.   

 

FIG.. 4  Spatial distributions of the electrons and the EM waves. The spreading length of an 

electron is longer than the wavelength of the optical wave but is shorter than the wavelength of 

the micro-wave.  

 

FIG..5  Summary of the classifications and applicability of the VDM and ELT models.  

 

FIG..6  Normalized dispersion function in VDM model.  (a) is the imaginary part giving the 

gain coefficient and (b) is the real part giving the change of the propagation constant. The 

dispersion function is characterized not only by the electron velocity but also by the interaction 

time  from start of the interaction and the relaxation time 't τ .  

 

FIG..7  Numerical example of the gain coefficient in the VDM model. The gain coefficient 

varies with the time up to 3'/ ≈τt  as a transient phenomenon then reaches to the steady state.  

 

FIG..8  Illustration of interaction mechanism in ELT model. The mixed wave of the initial and 

the states  synchronizes with the EM wave, giving the electron transition from the 

initial state to the final state when 

nmϕϕ *

β=− mn kk .    
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FIG..9  Illustration of the electron transition. The initial energy level of the electron beam is 

set to be . When the electron transits to a lower energy level , the EM wave is emitted or 

amplified. When the electron transits to a higher energy level , the EM wave is absorbed. 

The energy conservation and the momentum conservation rules should be satisfied during the 

electron transition.  

b a

b

 

FIG..10  Numerical examples of the dispersion function in the ELT model. (a) for m40μ=l  

and (b) for . cm1=l

 

FIG..11 Numerical example of the time variation of the gain coefficient in the ELT model The 

peak values of the dispersion function are traced for each  l

 
FIG.12 Wavelength dispersions of the gain coefficients.  shows sufficient values in the 
case of 

vdmg
l>>λ , while  is effective for the case of eltg l<<λ .   

 
 
 

 28



FIG. 1 
 
 
 
 
 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 29



FIG. 2 
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FIG. 3 
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FIG.5 
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FIG. 6 
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FIG. 7 
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FIG. 8 
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FIG. 9 
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FIG. 10 
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FIG.11 
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