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ABSTRACT

A generalized theoretical analysis for amplification mechanism in the planar-type
Cherenkov laser is given. An electron is represented to be a material wave having temporal
and spatial varying phases with finite spreading length. Interaction between the electrons and
the electromagnetic (EM) wave is analyzed by counting the quantum statistical properties. The
interaction mechanism is classified into the Velocity and Density Modulation (VDM) model
and the Energy Level Transition (ELT) model basing on the relation between the wavelength
of the EM wave and the electron spreading length. The VDM model is applicable when the
wavelength of the EM wave is longer than the electron spreading length as in the micro-wave
region. The dynamic equation of the electron, which is popularly used in the classical
Newtonian mechanics, has been derived from the quantum mechanical Schrsdinger equation.
The amplification of the EM wave can be explained basing on the bunching effect of the
electron density in the electron beam. The amplification gain and whose dispersion relation
with respect to the electron velocity is given in this paper. On the other hand, the ELT model is
applicable for the case that the wavelength of the EM wave is shorter than the electron
spreading length as in the optical region. The dynamics of the electron is explained to be
caused by the electron transition between different energy levels. The amplification gain and
whose dispersion relation with respect to the electron acceleration voltage was derived on the

basis of the quantum mechanical density matrix.



I. INTRODUCTION

The electromagnetic (EM) wave can be emitted or amplified by traveling electron beam as
has been realized in the traveling-wave tube, free-electrons laser, and Cherenkov laser [1-15].
We can expect a very wide frequency range of the EM wave, such as from the micro-wave to
the X-ray regions, for the operation based on the interaction between the EM wave and the
electron beam.

Authors group has presented theoretical analyses to investigate the optical emission and
amplification in the planar-type Cherenkov laser basing on the quantum mechanical treatment.
In these analyses [16,17], the electron is represented to be spatially spreading wave, and
experimentally observed the optical emission with the electron acceleration voltage of around
40 kV [18]. We also estimated the spreading length of an electron wave in our experiment to
be 20 to 40 um by comparing the experimentally obtained emission profile with theoretical
analysis [18,19].

On the other hand, there are many theoretical analyses on the interaction between the EM
wave and the electron beam. Almost all of these analyses are based on the classical treatment,
where the electron is regarded as a spatially localized point particle [1-14,20-22]. Then our
quantum mechanical analyses as in Refs.[16-19] seem different from the analyses based on the
classical mechanics.

In this paper, we show that both analytical models based on the classical mechanics and
the quantum mechanics can be derived from identical quantum statistical treatment. We also
confirm that a criterion for the range of applicability of both models is determined by the
relation between the wavelength of the EM wave and the spreading length of the single
electron. Our analyses are limited to the non-relativistic regime which is well applicable when
the electron velocity is slower than c/3.

The organization of this article is as follows. In Sec. |1, excitation of the EM wave by the
electron current is formulated basing on the classical Maxwell’s equations. In Sec. IlI,
guantum statistical representation of the electron dynamics is given. The electron is
represented as a wave which has finite spreading length. The dynamic model for the electron is
classified into Velocity and Density Modulation model (VDM model) and Energy Level
Transition model (ELT model) according to the relation between the wavelength of the EM
wave and the spreading length of the single electron. In Sec. 1V, the amplification mechanism
in the VDM model is analyzed. The famous dynamic equation of the electron motion in the

classical mechanics is derived from the quantum mechanical Schrisdinger equation. In Sec. V,



the density matrix method is applied for the ELT model and amplification of the EM wave is
analyzed. In Sec. VI, applicable wavelength ranges of both the VDM and ELT models are

summarized basing on numerical calculations. Conclusions of this paper are given in Sec. VII.

Il. EXCITATION OF THE ELECTROMAGNETIC WAVE BY THE ELECTRON
BEAM CURRENT

Configuration of the planar Cherenkov laser is shown in Fig.1, where a dielectric planar
waveguide having high refractive index and an electron gun are set in a vacuum chamber. The
electron beam is aligned to be parallel to the surface of the dielectric planer waveguide which
is designed to penetrate one part of the guiding EM wave into the vacuum region. If we put the
input EM wave, the laser works as an amplifier, and if there is no input light the laser works an
EM emitter.

Excitation of the EM wave by the electron beam is formulated from the classical

Maxwell’s equations. Variation of the electric field E is given by
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where J is the current density of the electron beam and p, is the charge density in the
electron beam as well as in the waveguide. &, and o; are the dielectric constant and the

conductivity in the i-th layer of the waveguide including the vacuum region, respectively.

Solution of E is assumed to be given as
E=F(2)T(xy)e!“7?) +cc., 2)
where @ and £ are the angular frequency and the propagation constant of the EM wave,

respectively. The effective refractive index n., is defined with the propagation constant to

be f=ny /p,e,0. | is the imaginary unit and c.c. refers to the complex conjugate of the

preceding term. T(X,y) is the transverse field distribution of the electric field given as a
solution of
(VZ"‘,uogi a)Z)T(X, y)e_jﬂz =0, 3)

with a normalization condition of
L I_ [T (x,y) | dxdy = L LO(| T, Y) P +IT,(xy) Iz) dxdy =1. (4)

Since the amplification is achieved through excitation of E, component with the

electron beam, the Transverse Magnetic (TM) mode is used as the guiding mode in the planar
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waveguide. Existing components of the TM mode areH,,E and E,, then the distribution
functions T, (x,y) and T,(x,y) exist but T,(x,y)=0, eventually. F(t,z) is the field
amplitude varying with respect to t and z and whose variations are much smoother than those
of @ and g, respectively.

We substitute Eq. (2) into Eq. (1), multiply both side of Eqg. (1) by
T7(x, y)exp[j(Bz — wt)], perform the spatial integrations along the x and y directions,

and take the spatial and time averages over Az and At whose values are several periods of

1/ and 1/, respectively. Then we obtain an equation for the variation of F(t,z) as

oF(t2) , 1 oF(t2)

0z v, ot
s /uo { g “r” ﬂ 1 T P-jot _%

- 20 At Az -[t—At J.Z—AZ‘[cx) J._oo( ot i Ho € VPC] Txye dxdy dzdt 2 Ft2)
()

where v, is a velocity of the EM wave given by
Vf = 0 @0 ﬂ 2 ! (6)

ﬂoa)Lo J‘_m &[T (x,y)| dxdy
and ¢, isthe guiding loss coefficient given by
o a) 0 o0

iy = ’“‘7 [ [ o ey dxay. )

By decomposing the field amplitude into an absolute magnitude |F(t, z)| and a phase

o(t,z) as

F(t,z) =|F(t, z)[e’"?, (8)
and by substituting it into Eq. (5), we get the following equations by comparing the real and
the imaginary parts on both sides of the resulted equation:

diFt2)f _olFt2)f 1 olFt2)[
dz 01 Vi ot 9)

= (g _aloss)l F(t’ Z) |2

with

_ M 1 1 ' z =70 1 6pc * iB-jot
oot L (T e e oty

y/; F(t,z) AtAz Uy & O

(10)
and



dg(t.z) _ 04(tz) 1 94(t.2)

AP = -
o dz 0z v, Ot
—_Hopge '[ J' _[I L1 o T,(x,y)e“ it dxdy dzdt
28 F(t z)AtAz t-atJz-m 5'[ & 01

(11)

Here we have supposed that the current density J has only z component, i.e., J, and the
charge p, variesalong z direction.

The term g is the gain coefficient and AfS is the change of the propagation constant due

to the presence of the electron beam. When g is a positive value, the EM wave is amplified.

The effective propagation constant changes from g to g+ 4p, then the phase velocity v,

of the EM wave becomes

v . [0
B+ AB

Although the velocity v, introduced in Eq. (6) is not mathematically identical to the phase

(12)

velocity v, the value of v, is almost same with v numerically. Also, the value of

ph

| A | is much smaller than £, then we can assume that

o
szVphzZ:_- (13)

for almost cases.
I11. QUANTUM STATISTICAL REPRESENTATION OF ELECTRON DYNAMICS
A. Basic definitions

Physical quantities related to the electron dynamics, such as the current density J and

the charge density p_ in the electron beam, should be evaluated as expectation values in the

quantum mechanical treatment. When many electrons contribute to the interaction, we further
need to count the statistical properties using the so called quantum statistics.
We assign a number v for each electron in a group (an ensemble). The expectation

value of any quantum mechanical operator A in the group of electrons is given by

(W)= PO (r,t)| A (r,1)), (14)

where P is the probability to find thev — th electron in the group whereas
5



> p=1, (15)

14

‘Yf(v’(r,t)> is the state vector of the v —th electron which satisfies the normalization
condition of

(e )=, \svm(r,t)\2 dir =1, (16)
where ¥ (r,t) is a wave function corresponding to the state vector ‘Y’(”(r,t)>, and
V(V)d3r indicates the spatial integration over the volume V) of the v —thelectron. The
electron state | (r,t)) i

‘Y"”’(r t)> Zc

(V)(r)> is defined with the eigen energy value of W_=#hw_ for

Pl (r)> in the form of

2 (r))yet (17)

The eigen energy state

the principle Hamiltonian H, in the relation of

|28 (1) =W, [0 (1) =7

NISIG) (18)
with
h2 p2 h2 )

H, = =— Ve, (19)
2m, 2m,

where p is the momentum operator and m, is the rest mass.

In the present analysis, we suppose that the wave function ¢ (r) is approximately

represented with a boxlike plane wave

(v) (r) _ g Jkn- (r=r) (20)

/ )
with

V) = ) ) g 21)

where r, =(x,,y,,z,) is the center position of the v —th electron. ¢¢’,¢%’and ¢\’ are

vi©y
spreading lengths of the confining box in the x, y, and z directions, respectively, as illustrated
in Fig. 2. These lengths can be changed with the electron density in the electron beam. The
normalization and orthogonal conditions of the electron wave are written as

(PP (oS (0) = [, 04" (NS (Ndr =5,,8, .- (22)

In Eq. (14), the coefficient ¢! (r,t) indicates the contribution of the m -th energy state

in the v —th electron and can be expressed as



c(r,t)=

cW (r 1) el ., (23)
Here, we should note that the coefficient ¢!’ (r,t) has both spatial and temporal variations
which are much smoother than those of ¢ (r) and exp(— ja)mt), respectively.

m

Since both the state vector “P(V)(r,t)> and the eigen energy state

pi(r)) are

normalized as given in Egs. (16) and (22), we also get the relation of

2

m

e (r.y| =1. (24)

Equation (24) implies a simple but an important characteristic that is only a single electron
exists in the defined space of V ). Thus, each electron is assigned with different index v .

Basing on the above discussions, the electron density N is given by

N(rt =Y PO (r). (25)

B. Excitation term with the beam current

The amplification of the EM wave is derived from the terms oJ /ot and Op,/0dz in Eq.

(10) multiplied by the complex conjugate of the EM distribution function. Since the current
density J is given as a spatial operator in the quantum mechanics and both the electron and
the EM waves have specific spatial distributions, the quantum statistical expectation value

must be evaluated over these combined functions.

We now start to determine an expectation value of <J T, (X, y)eiﬂz>. The expectation
value of <(8J/at)TZ*(x,y)ej”Z> shown in Egs. (10) and (11) is determined from

<J T, (X, y)e”“> as shown in later. The current density J in quantum mechanics is given by

N .
3=_f t(quLeAZ)z—ENt Z=jehN‘£, (26)
m, m, m, 0z
where N, is the total electron density including all energy levels as,
N () = 3 3 POC (r,y)| [l (n)f —ZPM 27)
t\" - - m ’ ¢)m - V(V) '

p,=—jholoz and A, are z-components of the electron momentum and the EM vector
potential, respectively. Since different electrons are not overlapped spatially, expectation value

<JT,(x,y)e”" > iswritten as



p, T, (x, y)e’*

)
i (¥W(r.1)

(3T, (x,y)e¥") = —miz vIT

¥ (r,1))

p(V)

SEOP PR

mO v n
J . )ejwn (V)*(r)c(v)*(r t)_{'r (X y) eJﬂZC(V) (r t) w(V) (r) efjwmt }d 3r

(28)
Here, we focus our attention on the two cases of n=m and n=m regarding the
double summations over energy levels n and m in Eqg. (28). The first case of n=m
corresponds to a dynamic motion of an electron without making any transition from the initial
energy level m to other energy levels. The latter case of n = m indicates an electron transition
between different energy levels n and m.
In the former case, from Eqg. (23), we get a relation of

acgnv)(r,t)_i{ jagév)(r,t)

) (R
c (r,t)‘e " }_
0z oz ™" 0z

Y i)
cfn)(r,t)‘e‘gm Y when n=m,

(29)

where the condition of

c (r,t)‘ =1 is used because the electron never transits to other

energy levels. Then the integrand in Eq. (28) becomes

ejwnt (V)*(r t)C(V)*(r t)—{T (X y) eJﬁZC(V)(r t)q)(‘/) (r)e*iwnt}
(30)

(ﬂ+ Dl O T (x y)e”

In the latter case of n=m, the electron dynamics is regarded as an electron transition
between different energy levels in the defined space of V. Then the temporal variation of
the coefficient ¢ (r,t) has to been taken into account while the spatial distribution of this
coefficient is neglected, such as

och(r,t)

=0 when n=z=m (31)
0z

By the help of Egs. (29)-(31), Equation (28) can be rewritten as

(377068 )= (36 T, (6 V)7 )+ (34 T, (X y) €7, (32)

with
<‘Jvdm Tz*(Xv y)ejﬂz >= \Iji:z IV( ) (V) (r)‘2 Tz*(xv y) ejﬂz d 3r ' (33)

and



* e\ __ & ﬂ O (1) ) (1) p § (@ -0t
(Ja T, (xy)eV?) = m(,;;;vw () e (t)e e

x| Lon (0P, T, (x y) e’ o (r)d’r

The first term <Jvdm T, (X, y)ejﬂz> corresponds to modulations of the electron velocity

and density by the EM field as treated with the classical mechanics. Interaction mechanism

induced by this term is named Velocity and Density Modulations model (VDM model) in this

paper. The second term <Jelt T, (X, y)e”“> is caused by the electron transition between

different electron energy levels. Then, interaction mechanism induced by the second term is

named Energy Level Transition model (ELT model) in this paper.
C. Effect of the charge term

Charges must exist not only in the electron beam but also in the waveguide in the form of
the holes or the positive ions due to the mirror (the image) effect from the electrons in the
beam. However, we make a classification here based on properties in the electron beam.

The charge density p_ in the electron beam is given as

p.(r,t) =—eN(r,t) (35)
where N(r,t) is the electron density given by a square value of the electron wave function as

shown in EqQ. (25). Then the electron density is also divided into two components of N ., and

vdm

N N .. is related to the diagonal elements of the energy eigen functions corresponding to

elt * vdm

the VDM model, while N, is related to the off-diagonal elements in the crossing term of the

elt

electron wave functions corresponding the ELT model, such as

N(r!t): Nvdm(r!t)+Nelt(r!t) (36)
where
0|0 [y P
Nugo (1,0 = 2Pl ()] =20 =N (37)
and
Nge (1, 1) =D > PO () ¢ (1) o (r) ) (r) e(enen)t (38)

v n#Fm m

According to the above classification, the term with the charge in Eq. (10) is also divided into

fwo components as



(39)

apc TZ*(X,y)ejﬁz — alovdm T;(X,y)ewz + aloelt TZ*(X,y)ejﬂZ ’
0z 0z 0z

where p,, and p, are charge densities in the VDM model and the ELT model,

respectively.
In the electron beam, the terms p,,,, and p,, are given by

ON g = iz \_ ) ON i | ()27 ifz 43
<7Tz (x,y)e >— ZV:P V(,,)T‘(Dm T, (x,y)e¥ d°r (40)
and
v y)e )= N T T T PO (@) ¢ el ™ (k, ~k,)
017 v nzm m (4]_)

X v (DIEV)*(r) ¢l‘(n‘/) (r)Tz*(Xv y) e]ﬂZd Sr

According to the above categorizations of the current density and the electron density, the

gain coefficient g and the change of the propagation constant Af defined in Eq. (10) and

(11), respectively, are calculated as a sum of two components
g = gvdm + gelt’ (42)

with

1 1 N
Quam = _%Im{F(t, 7) Atﬁz.[ttAt-[ZAZ-[w J._w
(43)

<{ Odvam 1 9Pum }TZ* (x,y)e¥” >e‘j”’t dxdydz dt}

at luogi az

My 1 o oge o
Oent __ﬂ_lm{F(t,Z) AtAZIt—At.[Z—AZ»[DO J‘,w
(44)

<{ OJeit n 1 Ope }TZ*(X, y)ejﬁ7>e_j”)t dxdy dz dt:l

at /uogi 62

and
Aﬂ = Aﬂvdm + Aﬁelt (45)

with

__ﬂ 1 1 t z © e
Aﬂvdm - 28 Re|:F(t,Z) AtAZJ.thtJ.z—AZJ’_OO I_OO ( 6)
4

<{ O0Jvdm + 1 8p"dm }T;(X, y)ejﬁZ >e—jwt dx dy dz dtjl

at luo 8i 82
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(47)

C. Criterion for application of the VDM and ELT models

Here, we examine applicable range of the VDM and ELT models. Since we assume a finite
spreading length ¢ for a single electron, the energy levels are characterized by the relation
of

k, (V) =2mrx. (48)

Then, as illustrated in Fig. 3, separations of the electron wave-numbers and the energy levels

are
27
Ak =k =Koy =57 (49)
and
o, .y Rk,
AW :Wm _Wm—l = (km - km—l) ~ Ak (50)
2m, m,

As will be shown in Sec. V for the ELT model, the conditions required to induce the
electron transition between different energy levels are to match the photon energy 7@ and
the propagation constant £ with the separations of the energy and the wave-number of the
electron, respectively, satisfying the energy and the momentum conservation rules. Then, the
EM wave, whose photon energy and the propagation constant are smaller than the energy and

wave-number separations, respectively, such as 7w < AW and g < 4k, can not induce the

electron transition in the ELT model.

However, the EM wave having 7w < AW and g < 4k can modulate the electron
velocity around the initial energy level. This type of interaction is analyzed in the VDM
model.

The above mentioned discussions are also understood by comparing the spatial
distribution of the electrons with that of the EM wave as illustrated in Fig. 4. The EM wave

with the higher photon energy has shorter wavelength. The condition of S > Ak required to
cause the electron transition in the ELT model corresponds to the condition of 1 < ¢%). Then

the phase of the EM wave varies within the spreading length of a single electron ¢¢”. Typical

11



example of the EM wave to be analyzed by the ELT model is the optical wave, because the
wavelength is A ~1um while the spreading length ¢%) of a single electron is expected to

be several tens of xm[18,19].

The EM wave with the lower photon energy has longer wavelength (4 > ¢%?).  Then an
electron can be treated as a point particle in comparison with the wavelength of the EM wave
corresponding to the classical mechanics. Typical example to be applied the VDM model is the
micro-wave region whose wavelength 4 is longer than 1 mm. The so called electron
bunching is caused in the VDM model.

Classifications and applicability of present models are summarized in Fig. 5.
IV. VELOCITY AND DENSITY MODULATION (VDM) MODEL

A. Derivation of the classical dynamic equation from the Schrodinger equation

An important feature of this section is the introduction of a phase angle 6%’ (z,t) which
is a function of time t and position z. This is because the modulation of the electron velocity is
characterized by the term 06 /6z in Eq. (29). In this subsection, a dynamic equation for

the electron motion is derived from the Schrédinger equation showing that obtained results
well coincide with those derived by the classical Newtonian mechanics.

In this model, since the v —th electron is assumed to occupy an energy level whereas
electron transitions between different energy levels are not counted, the notation of the energy
level m can be dropped and replaced with v without loss of generality. Therefore, the

electron wave function in Eq. (17) is expressed as

‘y/(v) (r t)> _p iat+i (Y

9,(r)). (51)
This wave function must follow the Schrédinger equation in the form of

0 S’/(V) 1
th{Ho +Hy - jgj\w(r,t», (52)

where H, is the principle Hamiltonian have been given in Eq. (19). H,, is the interaction

int
Hamiltonian showing interactions between the electron and the EM wave

= (p,A +Ap,)-eU (53)
2m

0

int

where A, isz component of the EM vector potential and U is the scalar potential.

I" is an operator indicating the relaxation effect of the electron wave [23]. The
12



expectation value of 7 is characterized with the relaxation time ¢ for the electron wave,

being given by
<1//‘V’ |F|yj(v)>=%. (54)

The left-hand side of Eq. (52) is rewritten as

ot ot

), (55)

The term with the principle Hamiltonian on the right-hand side of Eq. (52) is

2 625”(V)
Ho‘sv(v)>:_2hTo%

2
e
)

zh—z[kz 2k, aej
2m oz

Here, to trace the phase variation, we put the vector potential A, using

A(r,t)=Ae' 7 e (57)

By applying |*’) to Eq. (53), the term of the interaction Hamiltonian becomes

|nt

|SV(v)> Z: (kv 6802 j{AOeJ(wt ﬁz)+cc ‘5”(”>

enp ' (6)
_E{AO R —c.c.}‘?f‘“)> —eU|¥ )
It is worth noting here that the varying phase &, (r,t) of the electron wave affects both the
principle Hamiltonian and the interaction Hamiltonian.
By substituting Egs. (55)-(58) into Eq. (52) and using the relations of #w, = #°k>/2m,

and k, >>06,/0z and B, we get

00, ik, 09,
o m, oz

Here, we take one more spatial derivative 6/0z to Eq. (59) and drop the terms with

lp(v)>:{_ﬂp\z +fu +—}‘Yf‘“)> (59)

m, h

8‘50("’>/82 by using relation of

—8‘¥/(V)> = j(kv +%j

gy 60
0z 0z > (60)

Then, we get the following equation

13



2 hk, 0° k OA '
oot m, oz m, 60z hoz 2hoz

We now reform Eq.(61) to a dynamic equation giving variation of the electron velocity.

The velocity v, of the v -th electron is given with the expectation value of the momentum as

00
) M\ _ 3/ v o) =
(0 ) =l 6, + 2 ) =, (62)
Then, we get
00 m
() v M\ _ o o
(¥ i >—7(VV—VV) (63)
with
v, -2 (64)
m

On the other hand, the spatial derivative of the vector potential given by Eq.(57) can be
rewritten with the temporal derivative, such as

A __pon __10A

- = = : (65)
0z o ot v,, ot
Then, the first two terms in the right side of Eq. (61) is rewritten with the electric field
component E, as
K, 8AZ+8U_VV 8AZ+8Uz_E (66)

m, 6z oz v, ot 01 §

ph
giving the interaction between the electron and the EM wave, where we used the relation of
V, = v, . Expectation value of these terms shown in Eq. (66) become

k, 6A, e oU . )
T

)

7O~ —%Sinc[%} E, (67)

(¥ E,

where Sinc(x) =Sin(x)/x is the so-called Sinc function. In deriving Eq. (67), we assume
that spatial distributions of the EM wave in the transverse x-y direction are sufficiently smooth
but the variation along z direction is not neglected and is counted with the Sinc function.

v —iBz 2
v O) = [ TGy e P o, () d°r

MY (68)

(7 [Txy)e ¥

Finally we examine the last term in the right side of Eq. (61), that is the relaxation effect
on the electron wave. Since the relaxation time operator 7~ introduced in Eq. (52) is defined

for the temporal variation of the electron wave, the spatially averaged value of 677/6z must

14



be zero, giving the following relation

v a v v)* a Y
<¥,( ) Er‘y/( )>: V(V)yj( ) (ri)E{FT( )(I’,t)}dsr

. or . o0,

_ ) ol v (v) 3

—Lmyj (r,t){ =t jf(kv = j}ﬁ” (r,t)d°r . (69)

=0

Hence, we get
<5y(v) 8_F‘5v(v)>:—j k, +89” E (70)

0z o7 )t

By multiplying <5V(V)

to Eq.(61) and by using above derived relations, we get a dynamic

equation of the electron motion as

(v)
Ny 1y OV e gind Al |g Ve (71)
at oz mg 2 7,

where 7, =27 is the relaxation time of the electron velocity. Equation (71) is almost same as
the well-known dynamic equation directly obtained by the Newtonian classical mechanics.
The exceptional difference of Eq. (71) is the term Sinc(8¢{” /2). This term results from
taking into account the spatial average of the electric field over the finite length of the electron

wave ¢, while the electron in the classical mechanics is assumed to be a point particle (i.e.,

¢ =0) giving Sinc(B¢%) 12) =1.

B. Dynamics of the electron velocity and density

*

Here, we examine the term <J,. T.(x,y)e””> in Eqg. (33) showing further

vdm 'z

correspondence with the classical treatment. In Eqg. (33), (B+06 /dz+k hlm, is

approximately assumed to be v, since 06" /oz+k, >> /. We define an effective velocity

v averaged over all electrons with the electron density as

D PYy, =v (72)
and
v)
\F/)(V) Vv = Nvdm V. (73)

Then, Egs. (71) and (33) becomes
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NN egind Blg -V (74)
ot 0z Mg 2 iy

and

< ‘]vdm Tz* (X’ y)ejﬁz >= _eNvdm VSinc(%jT; (X, y) ejﬁz ’ (75)

where ¢ is an averaged value of ¢{” for the group of the electron.

The contributing term to the gain coefficient g in Eqg. (43) and the change of the

vdm

propagation constant A2

vdm

in Eq. (46) will be given by

O ygm | ov  oN AR _
<M T(x,y)e”? >= —¢ Ny, — +Vv—2" | Sinc| [T, (x,y) ””. 76

In the VDM model, the electrons run with the average velocity v and are subjected to
the electric force from the EM wave as given by Eq. (74). Then we put the electron velocity in
the form of

v =V+[u(t)eTv iz e, (77)
where u(t) is the amplitude of the modulated component. By substituting Eq. (77) into Eq.
(74), we obtain

u(t) = e F(t-, )T (X,Y) Sinc(ﬂ] [e(—jml/rv )t _1]’ (78)

m, (—j.Q+1/TV ) 2

where
Q=pV-w. (79)
2 is arelative EM wave frequency as seen by the electrons. Here, we have supposed that the

interaction starts at t = 0. Then the velocity becomes

V=V— imsinc(%j{ejm _e(jﬂV—lfrv)t}e—jﬂz e (80)

m, (- j2+1/z,
The modulation of the electron velocity due to the presence of the electric field induces a
corresponding modulation in the electron density. The continuity equation of the electron is

obtained from the Maxwell’s equations of V-VxH =V-{oD/ét+(c,/e,)D+J}=0 and
V-D=p, tobe

a |\Ivdm

_ _i _ Nvdm
ot - oz (Nvdm V) ! (81)

N
where ¢, (=¢,/0,) isarelaxation time for temporal variation of the electron density.

The electron density N,,, can be expressed to have temporal and spatial variations in

16



the form of

N, =N +[n(t)eW" =i L ce], (82)
where n(t) is the amplitude of the density modulation. By substituting Eq. (82) into Eq. (81),
with the help of Eg. (80), we obtain

__epNFLT(XY) o [ﬂj &_}
n(t) I, Ci@+1r) Sinc > {(—j_(2+1/rr) s )

and then,

_ NI jot _ o (ALt N
Nygm =N - J'%NF(-LZ)TZ(X’ ) Sinc(ﬂj — —teUA eI L | (84)
m, (-j2+1/7") 2 )| (~je+us)

Here, we have supposed more approximation for the sake of simplicity that the relaxation
times of the electron velocity and the density are almost identical, i.e.,z, =7, =7".
By substituting Egs. (80) and (84) to Eq. (76) , we get

R
- 0J 4 T (%, y)el? >:_e VLo NF(t,2)
ot m

Sinc? (%j T, (X, y)|2 Y (V,t)e (85)

[¢]

with

2 1=l (jQr -(t/7)jelo D

Y(V,t)=1 (i ~1)°

(86)

In derivation of Eq.(85), the relation of |N,, ov/ét|<<|VoN,,, /ot is used. That is the

vdm
modulation of the electron density is more important than that of the velocity for the
interaction as called be the bunching.

Equation (86) is a dispersion function for the electron velocity, where the imaginary and the
real parts give the gain coefficient g, and the change in the propagation constant Af,
respectively. The dispersion function is written in more unified form by taking a normalized
form of Y (V,t)/z'> whose numerical examples are shown in Fig. 6(a) and (b). The dispersion

function is characterized not only by the electron velocity but also by the time t from the
start of the interaction and the relaxation time z'. The gain show peaks when the electron

velocity V is slightly faster than the EM phase velocity v, =a/B=c/ny.

C. Effect of the charge distribution in the VDM model

The effect of the space charge on the gain coefficient in the VDM model is given in Eq.

(40). In the right side of Eq. (40), the volume V) is regarded to be an averaged volume with

17



relation of > P =1.Then, by substitution of Eq. (84 ) to Eq. (40), we get

<M T(x,y)e? >=

oN __eB’NF(t,z)
0z m

Sinc{%)ﬁz (X, y)|2 Y(V,t)elt . (87)

0

The charge effect is represented with almost same form with the term caused by the current

density J . given in Eq. (85). However, the charge effect gives an opposite sign in the

vdm

amplification gain g, Of Eq. (43) in comparison with the term caused by the electron

vdm

current density J

vdm *

We need to pay attention that the positive ions or the holes must be induced in the
waveguide especially at surface of the metal or the semiconductor when these materials are
used to cancel the electric flux from the electron beam as well as to release electrons
accumulated at the waveguide surface. These induced positive charges work to reduce the
charge effect of the electron beam. Therefore, we define a coefficient x to characterize the

degradation of the charge effect as
o o 1 ap * f 1
= === T7(x, y)e'”? )dxd —
K j_wj_w<gi o, T 06) > y/ﬂbeam<€o

where ”beam dxdy indicates to count the electron charges in the beam as given by Eq. (87),

88’0° TZ*(x,y)ejﬁZ>dxdy . (88)
z

while Jiw Jiw dxdy means to count all possible charges including the positive ions or the holes

in the waveguide. xtakes a value between 0 to 1, where the smaller value leads to the more
efficient operation.

D. Gain coefficient and the change of the propagation constant in the VDM model

According to the above mentioned definitions and discussions, the gain coefficient g

vdm

and the change of the propagation constant Af

vdm

in the VDM model are given as

uon = {1— x(%j }Mcfm Sind (ﬂij im{Y (v,)} (89)
v m, 2
AB = {1— K(%] }Wsm& (ﬂ%j Re{Y (V,1)} (90)

where J, =eNV is the average current density and &, is a coupling coefficient,

vdm

Eum =[], 1T (% y) [Pxdy, (91)
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where ”b dxdy means the spatial integration over the cross-sectional area of the electron
eam

beam.
A numerical example of the gain coefficient in the VDM model is shown in Fig.7 for a

fixed value of ©Q7'=1.0s, and other assumed parameters are given in the figure. The gain

coefficient varies with the time up to t/z'~ 3 as a transient phenomenon then reaches to the
steady state. Other numerical examples will be shown in Fig. 12 together with those for the
ELT model.

V. ENERGY LEVEL TRANSITON (ELT) MODEL
A. Quantum Mechanical Density Matrix

The interaction mechanism caused by the electron transition between energy levels can
be well analyzed using the quantum mechanical density matrix by which the statistical

behavior of the electron group is taken into account [16,23,24].
In this section, we suppose the volume of all electrons V® s identical as

V& =V =¢* assuming a balanced state and the energy levels are also common for all

electrons. Then we can remove the index v from the eigen function to be
0 (1) =[ @ (1) =|m) . (92)

By rewriting N, =1/V, Eq. (34) becomes

< ‘]elt TZ*(X, y)ejﬂz >=-=

z z Z P(V)Crgv)* (t) Cr(nV) (t) e (o —op)t <n| pZTZ* (X, y) ejﬂz| m> ) (93)

eN,
mo v n#zm m

Here we define a matrix o whose matrix element is given by

P = 2P (M) o (94)

p s different from the previously introduced charge density p., and is called the quantum
mechanical density matrix [24]. Equation (94) implies that the matrix o can be given by

pzz‘yj(")>P(V) <l[,(v> . (95)

Since the diagonal element (m|p,T, (x,y)e”*|m) =0, Eq. (93) is reduced to
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Ja T (1y)e” >= ‘%22<mlpln><n| p,T, (x,y) €*|m)

0 n m

SRS mlop T e m) (96)

0 m

__&N, Tr{p p, T (X Y) e"*’“}
m

0

Here, Tr{} means to take all diagonal elementsin {} and sum up them as is called the trace

operation[24].
The dynamic equation of the density matrix is given by [16,23]:
1 1 ~ ~
%zﬁ[HO+Hint’p]_5{(p_p)r+r(p_p) }+A’ (97)

where p is the electron density at thermal equilibrium, A indicates electron supports, and
I is the relaxation operator as has been given in Egs. (52) and (54).

To analyze Eq. (97), we represent the interacting term with the electric field. The
interaction Hamiltonian has been given in Eq. (53) and the vector potential is given by Eq.
(57). The momentum operator in H,, is p, =—jhad/oz. Since the wave-number of the

electron is much larger than the propagation constant of the EM wave £, a matrix element of

H. . issimply rewritten as

int

<m|Him|n>:e{hk”<m|AZ|n>—<m|U|n>} (98)
m

Now we put the scalar potential to be
U(r,t)=U, e!“7? 1cc.. (99)
Then the electric field E, is represented with the vector and the scalar potentials as
E,(r,t)=F(,2)T,(x,y)e' 79 +cc.=— jo(A, —iuo)ej(‘“‘/’z) +cc.  (100)
v
ph

Since the phase velocity v, of the EM wave is almost same as the electron velocity

v, =hk, /m,, Eq. (98) is written as

ik i )
<m|H, [n>=e—"<m| {iF(t, 2)T,(x,y)elr2 +c.c.}| n> (101)
m ®

0

Therefore, the exchange term between H. and p inEq. (97) becomes

int
<m|(Him,0—,0Him)| n> :|:JT(0)Z)(kn+km)Tmn(p m— P mrr*)eJ t+C'C'i|! (102)

0
where T . is an off-diagonal matrix element relating to the EM wave and the electron wave

functions, being given by
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Ty = (M, 06 )

_ (103)
(T j(kn—kn=$)z 4 3
_VJ'VTZ (x,y)e d°r
and
Ton = (M[T; (x,y)e¥?|n) : (104)
The dynamic equation for the off-diagonal elements of the density matrix is
P (. 1
dt - (Ja)nm r jpmn
k,+k, )T (105)
+|:e( n T m) mn (pnn _pmm) F(t,Z)ejm +C.C.:|,
2my
where
Oy =W, =W, )70 (106)
From Eq. (105), we obtain the temporal variation of the density matrix element as
K )T - - e
oo (t) _ e(kn + ) mn (pnn pmm) F(t1 Z) {eja)’[ _e(anm 1/7)t } (107)

2m, 0[j(@ - ) + U]

This equation is applicable for all energy levels having the relation of n > m. Then Eq. (96)

becomes
elt z (X y)eJﬁZ >== Zz Prmn (t) km Tnm (108)
and
<a;telt-|-z*(x’y)ejﬂ2 >__ Zz apmn()K‘n
n>m m (109)
ehN (k+k)k|T|(p— ) i o
mn nn mm F(t,Z) e]wt _e(ja)nm 1/7)t
2mO g‘n; li(w-aw_)+Ur] { }

As can be shown from Eqgs. (103) and (109), the interaction between the electron wave and

the EM wave is the most expected under the conditions of w~w,, =W, -W,_)/% and
L ~k,—k,. . These conditions correspond to the energy and momentum conservation rules
for the electron transition, respectively.

The interaction mechanism is illustrated in Fig. 8. The electron wave ¢ (r) at the initial
state has the spatial phase variation of e, and that of the final state ¢, (r) has e’*. Then

the mixed wave ¢ (r)e,(r) has a beating vibration of e \When the beating spatial

variation of the mixed wave coincides with the spatial variation of the EM wave e /*
satisfying the momentum conservation rule given in Eqg. (103), the electron transition is

induced. Note that the electron transition occurs when the wave-number of the beating wave
21



matches with the wave-number of the EM wave, while the de Broglie wavelength given by

271k, itself is much shorter than the wavelength of the EM wave . We can also describe a

similar relation between the temporal variation of the mixed electron wave e ' ' and

that of the EM wave e ", resulting in the energy conservation rule given in Eq. (109).
B. Designation of the energy levels

We suppose here that the incident electron is accelerated with velocity

V=V, =7k, /m, corresponding to the energy level b, as illustrated in Fig. 9. When the

electron transits to a lower energy a the emission and the amplification of the EM wave are
generated. On the other hand, when the electron transits to an upper energy level c, the EM
wave is absorbed. Since there are dense energy levels, the final energy levels are chosen to

satisfy relations of @,, =@ for the amplification and @, = for the absorption. We also

suppose that electron populations in these final energy levels are zero, because the thermal

distribution of the electron beam is much narrower than the photon energy (K, T << o),
2, =1 =0. (110)
Then Eq. (109) is rewritten in more simple form as

< —T*(x,y)e?* >
el (X, y)

111
e’hN, 7 (1)

=—]
m;

zka pbb{|Tab * =Ty |2}F(t,2)(1—e“’f)ej“’t
b

where

T, P=l<al|T,(x,y)e "> |b>|?
(112)

y+012 px+012 P , '2 . 2 b4
=2 T Ky X dy| Sine[(ky—k, - £)-]

y—012Jdx-012

1
2

Since the averaged current density in the ELT model is written as
J :eNtzpbb Yy (113)
b

Equation (111) is rewritten as

< %T;(x, y)e’ >
a - (114)
.eJ vr

=TTy P -1 PR 2) e e

C. Effect of the charge distribution in the ETL model
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The space charge term of Eq. (41) is also represented with the density matrix as

ONg —» 82 . x
<a—zlth (X! y)ejﬂ >: _JNt ZZ(kn _km)pmn (t)Tnm (115)
By supposing similar energy levels and notation with the last sub-section, this equation
becomes
ONg -+ 82 N e
Ce T (x,y)e ) = —j | T, P =T, PIF(t2)1—e ) (116)
0z hv .,

However, this space charge term also gives an opposite sign in the amplification gain g, In

comparison with the term caused by the electron current density J, . We have to take into

elt *
account induced positive charges in the waveguide similar as the case of VDM model by

embedding the coefficient x defined in Eq. (88).

D. The gain and the change of the propagation constant in the ELT model

Basing on the above mentioned derivations, the gain and the change of the propagation
constant in the ELT model become

B PN N V7S S T
gelt - {1 K(vj } hﬂ é:elt D(V!E)[l € ]’ (117)
and
Aﬂelt = 0 ' (118)

Here, &, is the spatial coupling coefficient between the EM field and the electron wave

given by

Y+012  x+(12
T,(x', y")dx'dy’

y—t12  X0f2

2
dxdy . (119)

Con = ”beam

and D(V,/¢) is adispersion function in the ELT model given as

1
7

D(V,7) =Sinc?[{k, —k, — B}¢12]-Sinc?[{k, =k, — 8}¢ /2]

Sincz[{mwevb - ey —hw)—ﬂ}ﬂ—smcz[{mwe\é+hw —ey )—ﬂ}ﬂ ’

h h

(120)

where V, is the acceleration voltage of the electron beam related with the initial velocity as
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eV, =2 (121)

Since we supposed dense energy levels satisfying o, =@ and o, =o, the gain
coefficient is proportional to the relaxation time z and the change in the propagation

constant becomes zero A5, =0 as in Eq.(118) in the ELT model.

elt
As shown in Eq.(120), the spreading length ¢ is understood as the coherent length of the

electron wave. Numerical examples of the dispersion function D(V,/) are shown in
Figs.10(a) and (b). Fig.10(a) is for the case when ¢ =40um and Fig.10(b) is for the case
when ¢=1cm. When / is long enough as shown in Fig.10(b), the maximum value of the

dispersion function approaches to D(v,?) .. =1. On the other hand, as shown in Fig.10(a),

max
when ¢ becomes very small as in the real situation such as ¢=40um, the dispersion
function approaches to 0.

Numerical example of the time variation of the gain coefficient g, is shown in Fig.11 .

The gain coefficient reaches to the steady state after a time longer than several times of 7.

VI. APPLICATION OF THE TWO MODELS IN WIDER WAVELENGTH RANGE

The variations of the gain coefficients g, in Eq. (89) and g, in Eq. (117) with the

wavelength of the EM wave A are shown in Fig. 12. In these examples, the relaxation times

and the spatial coupling coefficients are supposed to be identical in two models for a direct
comparison, i.e., r'=7=10"sec and &, =&, =0.1. The examined range of the EM
wavelength is from 0.1zmto 10 cm in this figure. Peak values of the dispersion functions
Im{Y (v,t)} and D(V,?) in the steady states have been traced for each ¢. Applicable ranges
of the two models are characterized by the spreading length of the electron wave /. g,
shows sufficient values in the case of 4 >> /¢, while g, is effective for the case of 4 << /.

The shorter ¢ is more profitable for g,,,, while the longer ¢ is more profitable for g, .

VII. CONCLUSIONS

A generalized theoretical analysis for amplification mechanism in the planar-type
Cherenkov laser is given. An electron is represented to be a material wave having temporal
and spatial varying phases with finite spreading length. Interaction between the electrons and

the electro-magnetic (EM) wave is analyzed by counting the quantum statistical properties.
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The interaction mechanism is classified into the Velocity and Density Modulation (VDM)
model and the Energy Level Transition (ELT) model basing on the relation between the
wave-length of the EM wave and the electron spreading length. The VDM model is applicable
when the wavelength of the EM wave is longer than the electron spreading length as in the
micro-wave region. The dynamic equation of the electron, which is popularly used in the
classical Newtonian mechanics, has been derived from the quantum mechanical Schradinger
equation. The amplification of the EM wave can be explained basing on the bunching effect of
the electron density in the electron beam. The amplification gain and whose dispersion relation
with respect to the electron velocity is given in this paper. On the other hand, the ELT model is
applicable for the case that the wavelength of the EM wave is shorter than the electron
spreading length as in the optical region. The dynamics of the electron is explained to be
caused by the electron transition between different energy levels. The amplification gain and
whose dispersion relation with respect to the electron acceleration voltage was derived on the
basis of the quantum mechanical density matrix.

In both VDM and ELT models, the effect of the electron charge in the electron beam
work to reduce the amplification gain by the electron beam. This reduction effect can be
degraded by induced positive ions or holes at the surface of metallic or semiconductor

waveguides (or inside the waveguide).
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Figure Captions

FIG..1 Schematic illustration of the Cherenkov laser utilizing a dielectric planer waveguide

and traveling electron beam.

FIG..2 Supposed shape of a single electron. The electron wave is approximately represented

with a boxlike plane wave.

FIG..3 Energy levels of a single electron. The energy levels are not continuous but are given

with discrete levels.

FIG.. 4 Spatial distributions of the electrons and the EM waves. The spreading length of an
electron is longer than the wavelength of the optical wave but is shorter than the wavelength of

the micro-wave.

FIG.5 Summary of the classifications and applicability of the VDM and ELT models.

FIG..6 Normalized dispersion function in VDM model. (a) is the imaginary part giving the
gain coefficient and (b) is the real part giving the change of the propagation constant. The
dispersion function is characterized not only by the electron velocity but also by the interaction

time t from start of the interaction and the relaxation time z'.

FIG..7 Numerical example of the gain coefficient in the VDM model. The gain coefficient

varies with the time up to t/z'~ 3 as a transient phenomenon then reaches to the steady state.

FIG..8 Illustration of interaction mechanism in ELT model. The mixed wave of the initial and

the states ¢ ¢, synchronizes with the EM wave, giving the electron transition from the

initial state to the final state when k, -k = /.
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FIG..9 Illustration of the electron transition. The initial energy level of the electron beam is
set to be b. When the electron transits to a lower energy level a, the EM wave is emitted or
amplified. When the electron transits to a higher energy level b, the EM wave is absorbed.
The energy conservation and the momentum conservation rules should be satisfied during the

electron transition.

FIG..10 Numerical examples of the dispersion function in the ELT model. (a) for ¢ =40um

and (b) for ¢ =1cm.

FIG..11 Numerical example of the time variation of the gain coefficient in the ELT model The

peak values of the dispersion function are traced for each /¢

FIG.12 Wavelength dispersions of the gain coefficients. g, shows sufficient values in the
case of A >>/,while g, is effective for the case of 4 << /.
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FIG.4
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FIG. 6
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FIG. 7
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FIG. 8
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FIG. 9
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FIG. 10
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FIG11
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FIG.12
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