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Abstract 

Long-range attractive potentials cause self-gravitating N-body systems to exhibit not only chaotic behavior but also 
peculiar features such as gravothermal catastrophe, negative specific heat and nonextensive statistical mechanics. 
Especially when its potential energy is significantly dominated, a system should gradually evolve from quasi-
equilibrium states through collapses to core-halo states. In dynamical evolution, velocity distributions are generally 
expected to monotonically relax from non-Gaussian towards Gaussian (Maxwell–Boltzmann) distributions. To clarify 
the velocity relaxation, we numerically examine the long-term evolution of a self-gravitating N-body system enclosed 
in a spherical container with adiabatic walls. We found that the velocity distribution non-monotonically relaxes from 
a non-Gaussian distribution to a Gaussian-like distribution when a core forms rapidly through the collapse process. 
 
 
 
Keywords: Gaussian/non-Gaussian velocity distributions, velocity relaxation , collapse, self-gravitating systems 

1. Introduction 

Chaos is considered to be one of the origins of irreversibility appearing in macroscopic systems, such 
as N-body systems [1]. Accordingly, stability of systems has been extensively examined numerically, 
especially in N-body systems interacting with short-range potentials. However, it is known that numerical 
irreversibility due to round-off errors may behave as if it were physical irreversibility, although it is not in 
fact physical. Numerical irreversibility in standard N-body simulations [2] makes it difficult to investigate 
physical irreversibility numerically. Recently, to clarify numerical irreversibility in classical molecular-
dynamics (MD) simulations with short-range potentials, the present author et al. proposed a new method 
based on a bit-reversible algorithm [3] and controlled noise [4-6]. The bit-reversible algorithm, which 
combines the Verlet algorithm with space discretization using integer arithmetic, is free from round-off 
errors and is completely time-reversible and therefore can detect any irreversibility in MD simulations. 
By means of the new method, the Boltzmann H-function and instability of the system have been 
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investigated, through the Loschmidt reversibility paradox based on a velocity inversion technique [4,5]. It 
was clearly demonstrated that numerical irreversibility due to round-off errors correlated with the process 
of relaxation and the magnitude of noise, and that the irreversibility propagated through collisions 
between particles. For example, an expansion shock wave appearing in the bit-reversible MD simulation 
disappears dramatically and turns into an isentropic expansion wave when controlled noise is 
intentionally added to the system [6]. 

The influence of round-off errors should be a more serious problem in N-body systems interacting with 
long-range potentials, e.g., self-gravitating systems [7]. For instance, in a typical star-rich cluster with a 
million stars, each star feels enough of the granularity of the gravitational field of the other stars that the 
consequent perturbations lead to a total loss of memory of the initial conditions of its orbit [8]. In self-
gravitating N-body simulations, numerical fluctuations due to round-off errors could behave as if they 
were the physical perturbations, as for systems with short-range potentials. Therefore, the present author 
et al. have investigated numerical irreversibility and instability of a self-gravitating system [9,10]. Under 
the restriction of constant initial potential energy, the numerical irreversibility is found to increase rapidly 
with decreasing initial kinetic energy or total energy. In other words, the lower the initial kinetic energy 
or total energy, the earlier the memory of the initial conditions is lost. Moreover, the memory loss time, 
i.e., when the simulated trajectory completely forgets its initial conditions, increases approximately 
linearly with the Lyapunov time. It is shown that propagation of numerical irreversibility or loss of 
reversibility depends on both the energy state of the system and the instability affected by the softening 
parameter [9,10]. 

Due to long-range attractive potentials, chaotic self-gravitating N-body systems exhibit several 
peculiar features, e.g., gravothermal catastrophe, negative specific heat and nonextensive statistical 
mechanics [11,12]. In particular, negative specific heat causes thermodynamic instability during 
dynamical evolution of the system and has been investigated theoretically and numerically from a 
thermodynamic viewpoint [13-16]. The present author et al. have examined a self-gravitating N-body 
system enclosed in a spherical container with adiabatic and non-adiabatic walls [15]. (For a 
nonequilibrium process, a particle reflected at the non-adiabatic wall is cooled to mimic energy loss by 
reflecting walls.) It is clearly demonstrated that a negative specific heat occurs not only in microcanonical 
ensembles but also in the nonequilibrium process with energy loss. The dependence of the temperature on 
energy, i.e., the ε–T curve, varies from the ε–T curve for a microcanonical ensemble, tending towards a 
common curve with increasing cooling rate. Surprisingly, the common curve agrees with the ε–T curve 
for stellar polytropes assuming hydrostatic equilibrium states, especially for a polytrope index of n ~ 5 
[15]. This result is consistent with gravothermal instability since, for n > 5, a stellar polytrope within an 
adiabatic wall exhibits gravothermal instability [13]. (Using semipermeable reflecting walls, the above 
model has been applied to further strong nonequilibrium processes with mass and energy loss, i.e., the so-
called evaporation process [16].) 

However, velocity distributions and velocity relaxations have not yet been extensively discussed for 
long-term nonequilibrium processes, except for a few studies [17,18], although they should play an 
important role in the thermodynamic properties and irreversibility of the system [19,20]. For example, 
Iguchi et al. [17] proposed universal non-Gaussian velocity distributions for a spherical collapse in a 
violent gravitational process of a collisionless stage (t < τr), while Ispolatov et al. [18] discussed Gaussian 
velocity distributions in core-halo states in a collisional stage (t >> τr). (Here τr represents the relaxation 
time, which is driven by the two-body encounter [11]. A Gaussian distribution means a Maxwell–
Boltzmann distribution.) These works suggest that long-range attractive interacting systems should finally 
relax towards a Boltzmann-like state thorough a collapse process [20]. In general, we expect that velocity 
distributions monotonically relax from a non-Gaussian distribution towards a Gaussian distribution 
(Fig.1). However, interesting observation data of open stellar clusters has been reported recently by 
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Carvalho et al. [21]. They reported that the radial velocity distribution of old open stellar clusters changes 
from a non-Gaussian distribution to a higher non-Gaussian distribution (not to a Gaussian distribution), 
with increasing age of the clusters. In other words, the velocity distribution further deviates from 
Gaussian for older clusters. 

In the present study, to clarify the properties of self-gravitating N-body systems, we numerically 
examine the long-term dynamical evolution of a system, from an early relaxation to a collapse, focusing 
on velocity relaxations [20]. For this purpose, we examine a cold collapse process of a self-gravitating 
system under the restriction of constant mass and energy. To simulate the cold collapse process, we 
employ a typical small N-body system which has been analyzed in detail by Ispolatov and Karttunen [18], 
since the well-studied system is an important benchmark system for examining a collapse theoretically 
and numerically [20]. 

The present paper is organized as follows. In Sec. 2, we present the simulation method. In Sec. 2.1, we 
give a brief review of the numerical techniques for simulating a self-gravitating system enclosed in a 
spherical container with adiabatic walls. In Sec. 2.2, we briefly review the parameters for the simulations, 
e.g., the Tsallis entropic parameter, the ratio of velocity moments and the virial ratio. In Sec. 3, we 
present the simulation results and discuss the velocity relaxation. Finally, we present our conclusions in 
Sec. 4. In the present paper, typical results of the cold collapse process studied in Refs. [19,20] are 
reconsidered from the viewpoint of velocity relaxations of a chaotic system with long-range attractive 
potentials. Note that new N-body simulations are carried out, since the ratio of the velocity moments 
examined in this study is slightly different from that in Refs. [19,20] (see Sec. 2.2 for details).  
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Fig. 1. Schematic diagram of typical velocity relaxations. The vertical axis represents a deviation q of the velocity distribution from 
the Gaussian distribution. In this figure, q=1 corresponds to the Gaussian velocity distribution ~ exp (–v2), and f(v) represents the 
velocity distribution function. The velocity distribution is generally expected to relax from a non-Gaussian distribution to a 
Gaussian distribution monotonically. However, an interesting observation result has been reported recently that exhibits a tendency 
to a higher non-Gaussian distribution [21]. 

2. Simulation methods 

In this section we briefly review the simulation methods, according to Ref. [20]. 

2.1. N-body simulations 

To simulate self-gravitating N-body systems, we consider a typical situation known as the Antonov 
problem (Fig. 2): i.e., we consider a self-gravitating system consisting of N point-particles enclosed in a 
spherical container of radius R with adiabatic walls [9,10,19,20]. By means of the Verlet algorithm (i.e., 
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leapfrog algorithm), we integrate a set of classical equations of motion for the particles interacting 
through the Plummer softened potential Φ [11] : 

Φ = –1/(r+r0)
1/2  (1) 

where r and r0 represent the distance between particles and the softening parameter, respectively. r0 is 
employed to avoid numerical singularity. In our simulations, the softening parameter is set to be r0 = 
0.005R. Note that r0 affects the instability of the system [10]. For example, when r0 is large, the scattering 
is small. In contrast, when r0 is small, as for pure gravitational potentials, the scattering is large. 
Accordingly, when r0 is small, the Lyapunov time should be short since the system is more unstable. We 
checked the instability of the system for this study, i.e., the Lyapunov time, and set r0 = 0.005R, since the 
Lyapunov time of the system with r0 = 0.005R is sufficiently shorter than the relaxation time. 

The total energy E of the system is defined as E = EKE + EPE where EKE and EPE represent kinetic 
energy and potential energy, respectively. The total rescaled energy ε is defined as 

ε = ER/(GM2) = ER/(Gm2N2)  (2) 

where G, M and m represent the gravitational constant, the total mass and the mass of each particle, 
respectively. In this study, the units of time t and velocity v are [R3/(Gm)]1/2 and (Gm/R)1/2, respectively 
[10,20]. The units are set to be G = R = m = 1, to ensure generality of the system. We assume that the 
kinetic energy corresponds to the temperature T of the system and that the Boltzmann constant kB=1. As a 
result, in our units, the temperature is given by T = 2εKE/(3kB) = 2εKE/3, where εKE is the rescaled kinetic 
energy. In the present simulation, the total energy ε is set to be –1.0, to simulate a typical gravity-
dominated system. A total energy of ε = –1.0 is sufficiently lower than the collapse energy εcoll = –0.339 
for the present system with an adiabatic wall [18]. (In Ref. [20], we also discuss the simulation result with 
various ε ranging from –0.6 to –1.2.) 
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Fig. 2. Setup for the Antonov problem. As a typical simple model, we consider a self-gravitating system consisting of N point-
particles enclosed in a spherical container of radius R with adiabatic walls. The total energy E and the number N of particles are 
fixed during simulations. 

To consider a typical small N-body system, the number N of particles is set to be 125. Accordingly, in 
our units, the crossing time τc and the relaxation time τr are evaluated as τc ~ 0.2 and τr ~ 0.5 [20]. 
However, it takes a much longer time for the collapse to be completed in a core-halo state. For example, 
the complete collapse time in a system with N = 100–200 particles is approximately 103–104τc [22] and, 
therefore, the collapse time of the present study is the order of 102–103 in our units. Note that τc 
corresponds to the free-fall time. τc and τr can be evaluated as τc ~ 1/(Gρ)1/2 and τr ~ (0.1N/ln N) τc, 
respectively, where ρ represents the density assuming a uniform density profile [11,13]. 

The initial density profile is based on the Plummer model, ρ ~ (1+r2/a2)–5/2 [11], since this model is 
suitable for simulating stellar clusters. The initial velocity is set to be small to simulate cold and 
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nonequilibrium initial-states for cold collapse processes: i.e., the initial kinetic energy is set to be 
negligible, smaller than the order of 1% of the total energy. (Initially, all the particles have a small equal 
speed but with a random direction.) In the above setup, microcanonical ensemble simulations are carried 
out using 30 simulations with different initial configurations [20].  

2.2. Parameters for simulations 

In general, the Boltzmann H-function has been widely employed to examine velocity relaxation. 
However, the temperature (i.e., kinetic energy) of self-gravitating systems increases during their 
dynamical evolution because of gravitational potentials. Therefore, we did not employ the Boltzmann H-
function, since it depends on temperature. Instead, we employed the following two parameters to examine 
whether the simulated velocity distribution function is Gaussian. 

The first parameter is the Tsallis entropic parameter q based on a q-Gaussian distribution function [12]. 
The one-component q-Gaussian distribution function is defined as  

fq(v) = A expq (–Bv2) = A [1–B(1–q)v2 ] 1/(1–q)  (3) 

exp1 (–Bv2) = exp (–Bv2)  (4) 

where q is the Tsallis entropic parameter at time t [12]. When q = 1, this function is reduced to the 
Gaussian form exactly. A is a normalization parameter and B corresponds approximately to the inverse of 
temperature. In the present study, these temporal parameters are determined by fitting with a simulated 
velocity distribution function fsim(v) [20]. Note that  fsim(v) is first averaged over 30 simulations. After the 
ensemble average is obtained, fsim(v) for t < 30 and t > 30 are time-averaged over Δt = 0.1 and Δt = 2, 
respectively, to determine the distribution function more clearly.  

The second parameter is the normalized ratio of velocity moments VM(t). The ratio of velocity 
moments vm(t) is first defined as  

vm(t) = < vi
2 >2 / < vi

4 >   (5) 

where vi and < X > represent the velocity of the i-th particle and the mean of X at time t, respectively. The 
ratio of velocity moments varies from an initial value towards a specific value vmG (= 1/3) corresponding 
to the Gaussian distribution. Accordingly, we define the normalized ratio of velocity moments as  

VM(t) = vm(t) / vmG  (6) 

When VM = 1, the velocity distribution is Gaussian, as for q. It should be noted that in Eq. (5) we employ 
the one-component velocity vi of the particles, unlike in Ref. [20]. Therefore, the specific value vmG for 
the Gaussian velocity distribution is 1/3. If the speed of the particles is employed, the specific value for 
the Gaussian (Maxwell–Boltzmann) speed distribution is 0.6, as examined in Ref. [20]. We have 
confirmed that the fluctuations of VM(t) considered here are slightly larger than VMspeed(t), which is 
computed from the speed of the particles. However, a time-averaged VM approximately agrees with a 
time-averaged VMspeed, when VM(t) and VMspeed(t) are time-averaged over Δt = 0.1. In this paper, the 
velocity vi of the particles is employed to define VM(t), since q is determined by fitting with the 
simulated velocity distribution function. 

To observe an equilibrium state, the virial ratio α is defined as 

α = ( 2EKE – 4πR3Pwall )  /  | EPE |  (7) 

where Pwall represents the pressure on the container wall by reflecting particles [10,15,16,18,20]. The 
virial ratio is 1 if the system is in the virial equilibrium state with pure gravitational potentials. Note that 
the virial ratio in core-halo states with soft gravitational potentials is not 1 [20], since particles in the core 
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are well within the softening radius (i.e., the softening parameter r0), unlike for pure gravitational 
potentials [18]. For example, the virial ratio defined by Eq. (7) is evaluated as 0.555 in the core-halo state 
with ε = εcoll = –0.339 and r0 = 0.005 [18]. 

Moreover, we examine the number Nc of core particles of a prescribed radius rc, instead of temporal 
density profiles [20]. This is because during a collapse process of small N-body systems, it is difficult to 
observe the density profile due to strong fluctuations in the position of the high-density parts [18]. In this 
paper, according to Ref. [18], we count the number Ni of particles within rc from the i-th particle and find 
the particle which has the largest Ni. The prescribed radius rc is set to be 0.01 [20]. 

3. Results 

In this paper, as a typical result, we examine a cold-collapse process with constant mass and energy for 
ε = –1.0. The details are described in Ref. [20]. (In Ref. [20], we have discussed not only the cold-
collapse simulation with various total energies but also evaporation–collapse simulations.) 

To examine an overview of dynamical evolution, we first observe time evolutions of T, α and Nc. As 
shown in Fig. 3, initially (t < 0.2), Nc is approximately constant and, therefore, a collapse has not yet 
started. However, we can confirm that T and α fluctuate significantly. This is because the initial 
temperature calculated from the initial kinetic energy is extremely low due to our initial setup of the cold 
collapse simulation. The above time, i.e., t ~ 0.2, likely corresponds to the crossing time τc ~ 0.2 of the 
present small system. However, T and α gradually approach specific values. In particular, α gradually 
approaches 1 for 0.5 < t < 1. Accordingly, the system is in an approximate virial equilibrium state or a 
quasi-equilibrium state during this stage. The approaching time, i.e., t ~ 0.5, likely corresponds to the 
relaxation time τr ~ 0.5. However, after this stage (t > 1), Nc rapidly increases and α gradually deviates 
from 1. Therefore, we expect that a collapse should start from t ~ 1 in the present cold collapse simulation. 
It should be noted that the deviation of α from 1 is caused by the Plummer softened potential, since the 
core particles are well within the softening radius r0 [18]. For t > 7, the growth of Nc gradually tends to be 
slower than that of the early stage. After a delay of several time units, i.e., for t > 10, T starts to increase 
rapidly. This delay has been noted in Ref. [18]. Since the temperature increases in this process, our 
system discussed here has not yet approached a complete core-halo state [20]. 

To examine velocity relaxations, we observe VM and q. As mentioned previously, VM and q are 1 
when the velocity distribution is Gaussian. Note that VM discussed here is calculated from the velocity of 
the particles, while VMspeed examined in Refs. [19,20] is calculated from the speed of the particles. 
Although the fluctuations of VM are slightly larger than VMspeed, the time-averaged values approximately 
agree with each other when they are time-averaged over Δt = 0.1. Therefore, our simulation result in the 
present paper is consistent with the result in Refs. [19,20], although VM is different from VMspeed in Refs. 
[19,20]. 

As shown in Fig. 4 (bottom), for t < 1, VM and q deviate from 1 (i.e., VM < 1, q > 1). This indicates 
that the velocity distribution is non-Gaussian in the early relaxation process or in the quasi-equilibrium 
state. In the early relaxation process, the velocity distribution is well fitted with the q-Gaussian 
distribution for q > 1 (e.g., see the top-left panel for f(v) at time t = 0.5 in Fig. 4). Thereafter, for t > 1, 
VM and q further deviate from 1. In fact, Nc starts to increase at t ~ 1. This suggests that the velocity 
distribution exhibits higher non-Gaussian distributions, especially when the core forms rapidly in the 
early collapse process. However, the velocity distribution gradually relaxes toward a Gaussian-like 
distribution (VM ~ 1, q ~ 1) after the core forms sufficiently (t > 200) (e.g., see the top-right panel for f(v) 
at t = 300 in Fig. 4). 
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Fig. 3. Time evolutions of temperature T, virial ratio α and number Nc of core particles, for ε = –1.0 [20]. α = 1 when the system is in 
the virial equilibrium state. In our units, the crossing time τc and the relaxation time τr are approximately evaluated as τc ~ 0.2 and τr ~ 
0.5. The complete collapse time is expected to be the order of 102–103. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4. Time evolutions of the normalized ratio of velocity moments VM and Tsallis entropic parameter q, for ε = –1.0 [20]. When 
the velocity distribution is Gaussian, VM and q are 1. Typical temporal velocity distribution functions f(v) are shown in the three 
top-panels (left: t = 0.5, middle: t = 7, right: t = 300). In the three top panels, the open circles represent the simulated velocity 
distribution functions, while the blue-thin and red-heavy lines represent Gaussian and q-Gaussian functions, respectively. The 
velocity distribution function is time-averaged, after the ensemble averaged is obtained (see Sec. 2.2). Note that VM shown in the 
bottom figure is calculated from the velocity of the particles, while VMspeed examined in Refs. [19,20] is calculated from the speed 
of the particles. 
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Surprisingly, we found that the velocity distribution relaxes from a non-Gaussian distribution towards 
a Gaussian-like distribution non-monotonically, because of an early collapse process. We clearly show 
such a transition of the velocity distribution, based not only on q but also on VM. We expect that our 
simulation result is likely related to the observation data of open stellar clusters [21]. (In Ref. [21], 
Carvalho et al. reported that a radial velocity distribution of the old open stellar clusters varies from a 
non-Gaussian distribution to a higher non-Gaussian distribution with increasing age of the clusters.) 

As discussed above, we focus on the velocity relaxation and examine velocity moments and q, which 
is calculated from f(v). In fact, we have examined phase-space distribution functions f(x,v). Consequently, 
f(x,v) of the present system significantly depends on its normalization of both configuration space and 
velocity space. Accordingly, phase-space distribution functions are not discussed in the present study. 
Note that energy distributions have been discussed in Ref [20]. 

In the present cold collapse simulation, the initial velocity distribution is a delta-function-like 
distribution with negligible small values, to observe variations in velocity distributions clearly. Therefore, 
the initial setup may affect the deviation of the velocity distribution from Gaussian. To clarify this, we 
have confirmed that the velocity distribution deviates from Gaussian, even if the initial velocity 
distribution is a Gaussian-like distribution. Of course, further research is required to clarify whether a 
collapse plays an important role in the deviation from Gaussian [20].  

4. Conclusions 

To clarify the strange velocity-relaxation of chaotic N-body systems interacting with long-range 
attractive potentials (i.e., self-gravitating N-body systems), we have numerically examined long-term 
evolutions of these systems, from an early relaxation to a collapse [20]. In the present paper, we have 
focused on a cold-collapse process under a restriction of constant mass and energy. Consequently, the 
velocity distribution is non-Gaussian in a quasi-equilibrium state or an early relaxation process, when the 
total energy is lower than the collapse energy. In dynamical evolutions of the system, the velocity 
distribution further deviates from the Gaussian distribution, especially in an early collapse process, i.e., 
when the core forms rapidly. However, after the core forms sufficiently, the velocity distribution 
gradually approaches an approximate Gaussian distribution. It is clearly shown that the velocity 
distribution evolves from a non-Gaussian distribution (q = q1 > 1) through a higher non-Gaussian 
distribution (q > q1) to an approximate Gaussian distribution (q ~ 1). In other words, the velocity 
distribution relaxes from a non-Gaussian distribution towards a Gaussian-like distribution non-
monotonically. Similar transitions of the velocity distribution have been observed in evaporation–collapse 
processes [20]. We also found q and VM are suitable for observing the evolution of velocity distributions 
in a chaotic system with long-range attractive potentials. We have not yet clarified irreversibility. 
However, our studies present a new approach for examining irreversibility, instability and 
thermodynamics of N-body systems interacting with long-range attractive potentials. 
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