
Implementation of RLS-based Adaptive Filterson
nVIDIA GeForce Graphics Processing Unit

言語: eng

出版者: 

公開日: 2017-10-03

キーワード (Ja): 

キーワード (En): 

作成者: 

メールアドレス: 

所属: 

メタデータ

http://hdl.handle.net/2297/35266URL



Implementation of RLS-based Adaptive Filters

on nVIDIA GeForce Graphics Processing Unit

Akihiro HIRANO Kenji Nakayama

Kanazawa University

Abstract This paper presents efficient implementa-
tion of RLS-based adaptive filters with a large number
of taps on nVIDIA GeForce graphics processing unit
(GPU) and CUDA software development environment.
Modification of the order and the combination of calcu-
lations reduces the number of accesses to slow off-chip
memory. Assigning tasks into multiple threads also takes
memory access order into account. For a 4096-tap case,
a GPU program is almost three times faster than a CPU
program.

1 Introduction

Echo cancellers are used to reduce echoes in a wide
range of applications, such as teleconference systems and
hands-free telephones. As adaptation algorithms used
in echo cancellers, least mean square (LMS) family algo-
rithms[1], [2] are widely used because of their low com-
putational complexity. However, the convergence speed
of the LMS algorithms is slow for colored signals such as
speech signals.

As a candidate of a fast convergence algorithm, a re-
cursive least squares (RLS) algorithm[3] is well known.
The drawback of the RLS algorithm is its huge amount
of computation which is proportional to the square of
the filter length. For acoustic echo cancellers (AEC’s),
the number of taps is from several hundreds to several
thousands. Therefore, using the RLS algorithm in real-
time AEC’s is extremely difficult.

Recent years, PC-based communication systems such
as Skype and Messenger becomes very popular. Recent
PC’s are also equipped with powerful graphics process-
ing units (GPU’s). These GPU’s are also capable of nu-
merical computations by using C/C++ language[4]–[6]
and have been used for computer simulations. There-
fore, audio/speech processing on GPU’s has been stud-
ied for AEC’s[7]–[9] and independent component analy-
sis (ICA)[10].

In this paper, computationally efficient implemen-
tation of adaptive filters with the RLS algorithm on
nVIDIA GeForce family GPU and CUDA is discussed.
Section 2 describes the adaptive filter with the RLS al-
gorithm. GeForce family GPU and CUDA is briefly
described in Sec. 3. The proposed implementation is
shown by Sec. 4. Section 5 compares the performance.

2 Adaptive Filter Based on RLS Algorithm

From the filter coefficient vector w(n) and the input
signal vector u(n) at the time index n, the filter output

y(n) is generated by

y(n) = wT (n)u(n). (1)

The superscript T denotes the transpose of a matrix or
a vector. The error signal e(n) between the desired re-
sponse d(n) and the filter output y(n) is calculated by

e(n) = d(n) − y(n). (2)

Using the inverse correlation matrix P (n), the gain vec-
tor k(n) is given by

k(n) =
λ−1P (n − 1)u(n)

1 + λ−1uT (n)P (n − 1)u(n)
. (3)

The filter coefficients w(n) is updated by

w(n) = w(n − 1) + k(n)e(n), (4)

followed by the update of P (n) by

P (n) = λ−1P (n − 1) − λ−1k(n)uT (n)P (n − 1). (5)

By introducing a vector v(n) defined by

v(n) = P (n − 1)u(n), (6)

equations (3) and (5) can be rewritten as

k(n) =
λ−1v(n)

1 + λ−1uT (n)v(n)
(7)

P (n) = λ−1P (n − 1) − λ−1k(n)vT (n). (8)

For Ntap-tap case, computations for (6) and (8) require
N2

tap-order computations.

3 nVIDIA GeForce GPU and CUDA

In this implementation, nVIDIA GeForce 8000 fam-
ily or later GPU’s are assumed. Though GeForce 8800
GTS is used as a benchmark platform, the results could
be applied for other GPU’s. Exceptions might be lat-
est GeForce GT400 family or later GPU’s; they are
equipped with L1 and L2 data cache memories and
therefore, different optimization could be applied. Main
features of GeForce 8000 family GPU’s are listed below.

• Unified shader architecture

• Large number of shader processors (SP’s):

– 16 ∼ 128 SP’s per chip.

– 8 SP’s execute the same instruction.



Constant Memory (64KB)

Multiprocessor #N

Shared Memory (16~32KB)

Shader

Processor

(SP) #8

Shader

Processor

(SP) #1

Registers Registers

Instruction

Unit

Multiprocessor #1

Device Memory (MB~GB) Host CPU

GeForce GPU

Figure 1: Computation model of GeForce GPU

– The same instruction are executed in four
successive instruction cycles.

– 32 threads are executed simultaneously by 8-
SP block.

– 8192 data registers per 8 SP’s.

• Floating-Point (FP) support

– 32-bit FP multiply-add.

– Four-clock latency for 32-bit FP multiply-
add.

– Some newer GPU’s support 64-bit FP.

• Multiple data memories

– Shared memory: 16KB or 32KB read/write
RAM per 8 SP’s.
Access latency is 4 instruction cycles.

– Constant memory: 64KB read-only RAM per
chip.

– Device memory (off-chip RAM): ∼ 1GB.
Very slow: Latency is 400 ∼ 600 clocks.

• Compiler support

As a programmable processor, GeForce GPU’s can be re-
garded as multiple sets of 8-way SIMD processor array.
In order to cover a four-cycle latency for most opera-
tions, each SP repeats a single instruction by four times.
Therefore, a set of 32 threads is executed by a set of
8 SP’s. A synchronization mechanism is prepared be-
tween threads in a SIMD processor array, while there are
no synchronization mechanisms between different SIMD
processor arrays.

There are some classes for data memories on GeForce
GPU’s: shared memory, constant memory, texture mem-
ory and device memory. 8 SP’s in the same group can

access shared memory. Though shared memory is the
fastest memory, special care is required for its lifetime.
Shared memory is prepared at the beginning of thread
and is removed at the end. Users have to save data which
will be used after the end of thread into device memory
(off-chip memory).

Device memory is a large off-chip memory. The prob-
lem of device memory is a very long access latency which
is 400 ∼ 600 instruction cycles. To hide this latency,
multiple groups of threads are commonly used; another
thread starts when a thread is interlocked by slow mem-
ory access. Constant memory is an intermediate-speed
memory. From GPU, constant memory is a read-only
memory, while host CPU can read/write this memory.

“CUDA”[4], [5] is a software development tools and
drivers for GeForce family GPU’s, which is an abbrevi-
ation of “Compute Unified Device Architecture.” Pro-
grams for both CPU and GPU can be written in a single
source file. Some extensions to C/C++ language sup-
port parallel processing and multiple memory classes.

4 Implementation of Adaptive Filters Based on

RLS Algorithm

In this implementation, only one SIMD processor ar-
ray is used. An implementation with one SIMD array
is useful for low-cost GPUs with only two SIMD arrays;
one for the adaptive filter and the other for graphics and
video. Another reason is to avoid synchronization and
communication between multiple SIMD arrays.

4.1 Reduction of memory accesses for matrix

P (n)

In order to reduce the number of the memory accesses
for the matrix P (n), the computation order of the equa-
tions (1) through (8) is modified as shown below;

y(n) = wT (n)u(n) (9)

e(n) = d(n) − y(n) (10)

P (n− 1) = λ−1P (n− 2)− λ−1k(n− 1)vT (n− 1) (11)

v(n) = P (n − 1)u(n) (12)

k(n) =
λ−1v(n)

1 + λ−1uT (n)v(n)
(13)

w(n) = w(n − 1) + k(n)e(n). (14)

The calculations in (11) and (12) are further combined.
The matrix P (n) is divided into a set of raw vectors as

P (n) =







p
1
(n)
...

pN (n)






, (15)

where pi(n) is an i-th row vector of P (n). Computations
in equations (11) and (12) can be performed by repeating
the following two equations for i = 1, · · · , N :

pi(n− 1) = λ−1pi(n− 2)−λ−1ki(n− 1)vT (n− 1) (16)



Thread 2

Thread 13210

Figure 2: Thread assignments for vectors

p1(n)

p2(n)

p3(n)

p4(n)

Thread 2

Thread 10 4 8 12

95 131

6 142 10

7 11 153

(a) Thread per vector

p1(n)

p2(n)

p3(n)

p4(n)

Thread 2

Thread 13210

4 5 6 7

8 9 10 11

12 13 1514

(b) Thread per segment

Figure 3: Thread assignments for matrix

vi(n) = pi(n − 1)u(n) (17)

where ki(n) and vi(n) are the i-th element of vectors
k(n) and v(n), respectively. In this manner, the number
of the memory accesses for P (n) can be minimized; only
one read and one write per element. Please note that a
double-buffer operation is necessary for v(n).

4.2 Coping with slow off-chip memory

Multiple techniques are required for avoiding the per-
formance degradation caused by the slow off-chip mem-
ory. Vector load/store operations reduce the number
of memory accesses. Techniques avoiding the misalign-
ment problem[11] caused by vector load/sore operations
are required for the input signal vector u(n). The de-
lay line in the off-chip memory uses a multiple-delay-line
approach. The number of the delay lines is same as the
vector load/store size.

In order to combine multiple accesses for the off-
chip memory into one, the i-th thread handles the
(i + j × Nth)-th elements where Nth is the number of
threads and j = 0, 1, · · · , Ntap/Nth. Figure 2 demon-
strates a two-thread and four-dimensional vector case.
This assignment results in the successive memory ac-
cesses to the successive addresses. The memory con-
troller will combine these memory accesses into a multi-
word read/write operation for the SDRAM. In [9], the
same effect is achieved by a different way. It changes the
data address assignments.

4.3 Task assignments for multiple threads

For vector operations, each vectors are divided into
multiple segments as in Fig. 2. For a scalar product op-

P(n)
w(n)

k(n)

v(n)

v(n)

u(n)

u(n)

Device memory

u(n)

v(n)

w(n)

k(n)

Shared
memory

SP SP SP SP SP SP SP SP

SIMD Array

u(n)

Constant memory

Figure 4: Memory assignments for small filter

eration, a tree adder is used to accumulate the segment
outputs, which is similar to the LMS case[8].

Two task assignments for calculations of (11) and (12)
have been compared in this implementation. Though
GeForce GPU can handle up to three-dimensional thread
and the RLS algorithm requires N2

tap-order computa-
tions, only one-dimensional thread is used. First assign-
ment is based on pi(n). Each thread handles whole vec-
tor pi(n). Figure 3 (a) depicts a two-thread and 4 × 4-
matrix case. The data address is assigned “row-first”
basis so that combining accesses as in 4.2 can be used.

Second assignment shown in Fig. 3 (b) divides pi(n)
into multiple segments. In this case, the data address
is assigned “column-first” basis. The efficiency of these
assignments will be compared in the performance com-
parison.

4.4 Implementation for a small number of taps

If the number of taps Ntap is small, the vectors w(n),
u(n), v(n) and k(n) can be stored into the shared mem-
ory. Figure 4 shows the memory assignments for this
case. The matrix P (n) is stored into the off-chip mem-
ory because of its N2

tap size. An exception would be a
very small Ntap such as 32.

In a first sample of the signal block, the vectors w(n),
v(n) and k(n) are read from the off-chip memory (device
memory) and written into the shared memory. These
vectors are written back to the off-chip memory in the
last sample of the signal block.



Table 1: Specifications of Platform

CPU Core 2 Duo E8200
Physical cores 2
Logical cores 2
CPU clock 2.66GHz

GPU GeForce 8800 GTS
SPs 8 × 16

SP clock 1.62GHz
OS Linux

(bits) (64bit)

Table 2: Specifications of GPU Programs

Name GPU1 GPU2 GPU3 GPU4
Vectors Ext. Ext. Int. Int.
P (n) (a) (b) (a) (b)

In the beginning of a signal block, the host CPU stores
the signals u(n) and d(n) into the constant memory. The
GPU copies u(n) to multiple delay lines in the device
memory. Larger-size vectors are used for simplification
of the circular buffer operations. In order to reduce the
data size, Ntap-th order vector is prepared in the shared
memory as a cache. The input signals are stored in the
cache in (9). The other operations read u(n) from the
cache.

5 Performance Comparison

The FIR adaptive filters with the RLS algorithm have
been implemented and tested. Table 1 depicts the spec-
ifications of the platform. For both CPU and GPU, pro-
grams in C language is used. The CPU program has
been optimized by the compiler. For the GPU programs,
the tunable parameters such as the number of threads
have been manually optimized for the speed. The com-
putation time for 1600-sample signals have been com-
pared. The CPU time less than two seconds means real-
time processing for an 8kHz sampling case.

Table 2 shows the combination of the techniques. Pro-
grams “GPU3” and “GPU4” store the vectors into the
shared memory, while “GPU1” and “GPU2” stores all
vectors and matrix into the off-chip memory. The matrix
P (n) is handled “thread per vector” basis in “GPU1”
and “GPU3.”

Figure 5 compares the computation time in seconds.
For large number of taps over 128, all GPU programs
are faster than the CPU program. For 4096-tap case,
“GPU2” program reduces the CPU time by almost 67%.
By using the shared memory, the computation speed
becomes up to three times faster. However, the number
of taps is limited by the memory size. “GPU2” program
is faster than “GPU1” program if the number of taps is

 0.1

 1

 10

 100

 1000

 10000

 10  100  1000  10000

C
P

U
 t
im

e
 [
s
e
c
]

Number of taps

GPU1 (   )

GPU4 (   )

GPU2 (   )

Host (   )

GPU3 (   )

Real-time

Figure 5: Performance comparison

2048 or above.

For an 8kHz-sampling and a 256-tap case, “GPU3”
program is slightly slower for real-time processing. This
program uses only one SIMD array or 8 SP’s, which is a
minimum configuration of GeForce 8000 family or later.

6 Conclusion

RLS-based adaptive filters with a large number of taps
has been implemented on nVIDIA GeForce GPU. This
implementation focuses on a single SIMD array case. In
order to reduce accesses to slow off-chip memory, the or-
der and the combination of calculations has been modi-
fied. Task assignment to multiple threads takes memory
access order into account. If the number of taps is 256 or
more, the GPU programs reduces the computation time
up to 67% compared with the CPU program.

References

[1] B. Widrow and S. D. Stearns, “Adaptive noise can-
celing: Principles and applications,” Proc. of IEEE,
vol. 63, no. 12, pp. 1692–1716, Dec. 1975.

[2] J. Nagumo and A. Noda, “A learning method for
system identification,” IEEE Trans. AC, vol. 12,
no. 3, pp. 282–287, Mar. 1967.

[3] S. Haykin, Adatptive Filter Theory, Third Edition,
Prentice Hall, 1996.

[4] “NVIDIA CUDA compute unified device architec-
ture reference manual,” Nov. 2008.

[5] “NVIDIA CUDA programming guide,” Dec. 2008.

[6] “ATI stream computing user guide,” Mar 2009.

[7] A. Hirano and K. Nakayama, “Implementation
of stereophonic acoustic echo canceller on nvidia
geforce graphics processing unit,” Proc. of ISPACS

2009, pp. 303–306, Dec. 2009.



[8] A. Hirano and K. Nakayama, “Implementation of
large-scale FIR adaptive filters on nVIDIA GeForce
graphics processing unit,” Proc. of ISPACS 2010,
pp. 269–272, Dec. 2010.

[9] A. Hirano and K. Nakayama, “Parallel simulation
of FIR adaptive filters on nVIDIA GeForce graphics
processing unit,” Proc. of 25th SIP Symposium, pp.
98–102, Nov. 2010.

[10] R. Mazur and A. Mertins, “A CUDA implementa-
tion of independent component analysis in the time-
frequency domain,” Proc. of 19th EUSIPCO, pp.
511–514, Aug. 2011.

[11] B. Juurlink A. Shahbahrami and S. Vassiliadis,
“Performance impact of misaligned accesses in
SIMD extensions,” Proc. of ProRISC 2006, pp.
334–342, 2006.


