
Efficient Implementation of RLS-Based Adaptive
Filterson nVIDIA GeForce Graphics Processing
Unit

言語: eng

出版者:

公開日: 2017-10-03

キーワード (Ja):

キーワード (En):

作成者:

メールアドレス:

所属:

メタデータ

http://hdl.handle.net/2297/35267URL

Efficient Implementation of RLS-Based Adaptive Filters

on nVIDIA GeForce Graphics Processing Unit

Akihiro HIRANO Kenji Nakayama

Kanazawa University

Abstract This paper presents efficient implementa-
tion of RLS-based adaptive filters with a large number
of taps on nVIDIA GeForce graphics processing unit
(GPU) and CUDA software development environment.
Modification of the order and the combination of calcu-
lations reduces the number of accesses to slow off-chip
memory. Assigning tasks into multiple threads also takes
memory access order into account. Multiple shader pro-
cessor arrays are used to handle a large matrix. For
a 8192-tap case, a GPU program is almost 30-times
faster than a CPU program. Real-time processing is
possible for an 8kHz-sampling and 512-tap case by us-
ing 32 shader processors, which is only 25% of GeForce
8800GTS.

1 Introduction

Echo cancellers are used to reduce echoes in a wide
range of applications, such as teleconference systems and
hands-free telephones. As adaptation algorithms used
in echo cancellers, least mean square (LMS) family algo-
rithms[1], [2] are widely used because of their low com-
putational complexity. However, the convergence speed
of the LMS algorithms is slow for colored signals such as
speech signals.

As a candidate of a fast convergence algorithm, a re-
cursive least squares (RLS) algorithm[3] is well known.
The drawback of the RLS algorithm is its huge amount
of computation which is proportional to the square of
the filter length. For acoustic echo cancellers (AEC’s),
the number of taps is from several hundreds to several
thousands. Therefore, using the RLS algorithm in real-
time AEC’s is extremely difficult.

Recent years, PC-based communication systems such
as Skype and Messenger becomes very popular. Recent
PC’s are also equipped with powerful graphics process-
ing units (GPU’s). These GPU’s are also capable of
numerical computations by using C/C++ language[4]–
[6] and have been used for computer simulations. There-
fore, audio/speech processing on GPU’s has been studied
for AEC’s[7]–[11] and independent component analysis
(ICA)[12].

GeForce GPU by nVIDIA used in previously re-
ported AEC implementation consists of multiple single-
instruction multiple-data (SIMD) processor arrays.
However, only one SIMD array per filter is used these
AEC’s [8]–[11]. A reason is a difficulty in synchroniza-
tion between SIMD arrays. For implementation of RLS
algorithm, using multiple SIMD arrays is considered be-
cause of its heavy computations.

In this paper, computationally efficient implemen-
tation of adaptive filters with the RLS algorithm on
nVIDIA GeForce family GPU and CUDA is discussed.
Section 2 describes the adaptive filter with the RLS al-
gorithm. GeForce family GPU and CUDA is briefly
described in Sec. 3. The proposed implementation is
shown by Sec. 4. Section 5 compares the performance.

2 Adaptive Filter Based on RLS Algorithm

From the filter coefficient vector w(n) and the input
signal vector u(n) at the time index n, the filter output
y(n) is generated by

y(n) = wT (n)u(n). (1)

The superscript T denotes the transpose of a matrix or
a vector. The error signal e(n) between the desired re-
sponse d(n) and the filter output y(n) is calculated by

e(n) = d(n)− y(n). (2)

Using the inverse correlation matrix P (n), the gain vec-
tor k(n) is given by

k(n) =
λ−1P (n− 1)u(n)

1 + λ−1uT (n)P (n− 1)u(n)
. (3)

The filter coefficients w(n) is updated by

w(n) = w(n− 1) + k(n)e(n), (4)

followed by the update of P (n) by

P (n) = λ−1P (n− 1)− λ−1k(n)uT (n)P (n− 1). (5)

By introducing a vector v(n) defined by

v(n) = P (n− 1)u(n), (6)

equations (3) and (5) can be rewritten as

k(n) =
λ−1v(n)

1 + λ−1uT (n)v(n)
(7)

P (n) = λ−1P (n− 1)− λ−1k(n)vT (n). (8)

For Ntap-tap case, computations for (6) and (8) require
N2

tap-order computations.

Constant Memory (64KB)

Multiprocessor #N

Shared Memory (16~32KB)

Shader

Processor

(SP) #8

Shader

Processor

(SP) #1

Registers Registers

Instruction

Unit

Multiprocessor #1

Device Memory (MB~GB) Host CPU

GeForce GPU

Figure 1: Computation model for Tesla architecture

3 nVIDIA GeForce GPU and CUDA

In this implementation, nVIDIA GeForce family
GPU’s are assumed. Both Tesla architecture (GeForce
8000 through GT 300) and Fermi architecture (GT 400
through GT 500) are used as benchmark platforms. For
the latest Kepler architecture (GT 600 or later), different
optimizations would be necessary.
Figure 1 shows the computation model for Tesla ar-

chitecture. Main features of GeForce GPU’s with Tesla
architecture are listed below.

• Unified shader architecture

• Large number of shader processors (SP’s):

– 16 ∼ 480 SP’s per chip.

– 8 SP’s execute the same instruction.

– The same instruction are executed in four
successive instruction cycles.

– 32 threads are executed simultaneously by 8-
SP block.

– 8192 or more data registers per 8 SP’s.

• Floating-Point (FP) support

– 32-bit FP multiply-add.

– Four-clock latency for 32-bit FP multiply-
add.

– Some newer GPU’s support 64-bit FP.

• Multiple data memories

– Shared memory: 16KB or 32KB read/write
RAM per 8 SP’s.
Access latency is 4 instruction cycles.

Device Memory (MB~TB)

Memory I/F L2 Cache

Constant Memory (64kB)

Multiprocessor #N

Register File (32768)

Shader

Processor

(SP) #16

Shader

Processor

(SP) #1

SP #17 SP #32

Dual-Issue

Instruction

Unit

Multiprocessor #1

Device Memory (MB~GB) Host CPU

GeForce GPU

Shared Memory (16/48kB)

L1 Data Cache (48/16kB)

Memory I/F L2 Cache (128kB)

Load/Store

 #1

Load/Store

#16

Figure 2: Computation model for Fermi architecture

– Constant memory: 64KB read-only RAM per
chip.

– Device memory (off-chip RAM): ∼ 1GB.
Very slow: Latency is 400 ∼ 600 clocks.

• Compiler support

As a programmable processor, GPU’s with Tesla archi-
tecture can be regarded as multiple sets of 8-way SIMD
processor arrays. In order to cover a four-cycle latency
for most operations, each SP repeats a single instruction
by four times. Therefore, a set of 32 threads is executed
by a set of 8 SP’s. A synchronization mechanism is pre-
pared between threads in a SIMD processor array, while
there are no synchronization mechanisms between dif-
ferent SIMD processor arrays.
There are some classes for data memories on GeForce

GPU’s: shared memory, constant memory, texture mem-
ory and device memory. 8 SP’s in the same group can
access shared memory. Though shared memory is the
fastest memory, special care is required for its lifetime.
Shared memory is prepared at the beginning of thread
and is removed at the end. Users have to save data which
will be used after the end of thread into device memory
(off-chip memory).
Device memory is a large off-chip memory. The prob-

lem of device memory is a very long access latency which
is 400 ∼ 600 instruction cycles. To hide this latency,
multiple groups of threads are commonly used; another
thread starts when a thread is interlocked by slow mem-
ory access. Constant memory is an intermediate-speed

memory. From GPU, constant memory is a read-only
memory, while host CPU can read/write this memory.
The computation model for Fermi architecture is de-

picted in Fig. 2. Major differences between two archi-
tectures are listed below.

• Shader multiprocessors (SM’s)

– SM consists of 32 or 48 SP’s and 16 load/store
units.

– 16 SP’s execute the same instruction.

– Dual- ore tripple-issue instruction unit exe-
cutes two or three independent sets of threads
simultaneously.

– Improved performance for 64-bit FP.

– Configurable 64kB data memory for shared
memory and L1 data cache.

• Data cache for GPU computing

– 16 or 48kB L1 data cache per SM.

– 128kB L2 data cache per memory interface.

An important change would be the introduction of the
data cache for GPU computing. This change would af-
fect the optimization for slow device memory.
“CUDA”[4], [5] is a software development tools and

drivers for GeForce family GPU’s, which is an abbrevi-
ation of “Compute Unified Device Architecture.” Pro-
grams for both CPU and GPU can be written in a single
source file. Some extensions to C/C++ language sup-
port parallel processing and multiple memory classes.

4 Implementation of Adaptive Filters Based on

RLS Algorithm

4.1 Reduction of memory accesses for matrix

P (n)

In order to reduce the number of the memory accesses
for the matrix P (n), the computation order of the equa-
tions (1) through (8) is modified as shown below;

y(n) = wT (n)u(n) (9)

e(n) = d(n)− y(n) (10)

P (n−1) = λ−1P (n−2)−λ−1k(n−1)vT (n−1)(11)

v(n) = P (n− 1)u(n) (12)

k(n) =
λ−1v(n)

1 + λ−1uT (n)v(n)
(13)

w(n) = w(n− 1) + k(n)e(n). (14)

The calculations in (11) and (12) are further combined.
The matrix P (n) is divided into a set of raw vectors as

P (n) =







p
1
(n)
...

pN (n)






, (15)

where pi(n) is an i-th row vector of P (n). Computations
in equations (11) and (12) can be performed by repeating
the following two equations for i = 1, · · · , N :

pi(n−1) = λ−1pi(n−2)−λ−1ki(n−1)vT (n−1)(16)

vi(n) = pi(n− 1)u(n) (17)

where ki(n) and vi(n) are the i-th element of vectors
k(n) and v(n), respectively. In this manner, the number
of the memory accesses for P (n) can be minimized; only
one read and one write per element. Please note that a
double-buffer operation is necessary for v(n).

4.2 Coping with slow off-chip memory

Multiple techniques are required for avoiding the per-
formance degradation caused by the slow off-chip mem-
ory. Vector load/store operations reduce the number
of memory accesses. Techniques avoiding the misalign-
ment problem[13] caused by vector load/sore operations
are required for the input signal vector u(n). The de-
lay line in the off-chip memory uses a multiple-delay-line
approach. The number of the delay lines is same as the
vector load/store size.
In order to combine multiple accesses for the off-

chip memory into one, the i-th thread handles the
(i + j × Nth)-th elements where Nth is the number of
threads and j = 0, 1, · · · , Ntap/Nth. This assignment re-
sults in the successive memory accesses to the successive
addresses. The memory controller will combine these
memory accesses into a multi-word read/write operation
for the SDRAM. In [10], the same effect is achieved by
a different way. It changes the data address assignmens.

4.3 Task assignments for multiple SIMD array

In this implementation, calculations for (11) and (12),
which requiresN2

tap-order computations, are divided into
multiple SIMD arrays. This division is based on pi(n).
For an Nsm SIMD arrays case, p

1
(n) through pNtap/Nsm

are handled by first SIMD array.
Other operations are not divided and are executed by

a single SIMD array. This is because synchronization
between multiple SIMD arrays through the slow off-chip
memory degrades the performance.

4.4 Implementation for a small number of taps

If the number of taps Ntap is small, the vectors w(n),
u(n), v(n) and k(n) can be stored into the shared mem-
ory. The matrix P (n) is stored into the off-chip memory
because of its N2

tap size. An exception would be a very
small Ntap such as 32. Figure 3 depics memory alloca-
tion.
In order to avoid data sharing via the slow off-chip

memory, each SIMD array holds whole vectors rather
than holding a partial vectors. Furthermore, all SIMD
arrays perform all calculations for (9), (10), (13) and
(14), which cause almost no performance penalties.
In a first sample of the signal block, the vectors w(n),

v(n) and k(n) are read from the off-chip memory and

P(n)
w(n)

k(n)

v(n)

v(n)

u(n)

u(n)

Device memory

u(n)

v(n)

w(n)

k(n)

Shared
memory

SP SP SP SP SP SP SP SP

SIMD Array

u(n)

Constant memory

Figure 3: Memory assignments for small filter

written into the shared memory. These vectors are writ-
ten back to the off-chip memory in the last sample of the
signal block. This write-back operation should be car-
ried out by only one SIMD array. In order to reduce the
data size, Ntap-th order vector is prepared in the shared
memory as a cache. The input signals are stored in the
cache in (9). The other operations read u(n) from the
cache.

5 Performance Comparison

The FIR adaptive filters with the RLS algorithm have
been implemented and tested. GPU-based RLS pro-
grams with a single multiprocessor (MP, i.e. SIMD ar-
ray) [11] are also compared. Table 1 depicts the spec-
ifications of the platforms. For all CPU’s and GPU’s,
programs in C language is used. The CPU program has
been optimized by the compiler. For the GPU programs,
the tunable parameters such as the number of threads
have been manually optimized for the speed. The com-
putation time for 16000-sample signals have been com-
pared. The CPU time less than two seconds means real-
time processing for an 8kHz-sampling case.
Figure 4 compares the computation time in seconds.

For large-scale filters over 200 taps, all GPU programs
are faster than CPU programs. For a 4096-tap case,
GeForce GTS 450 is 30-times faster than Core i5 CPU.
In order to examine the effects of techniques, four

types of programs for GeForce 8800 GTS have been com-
pared. The program “GeForce 8800 mMP,” which uses

Table 1: Specifications of Platform

CPU Core 2 Duo E8200 Core i5 2405S
Physical cores 2 4
Logical cores 2 4
CPU clock 2.66GHz 2.5GHz

GPU GeForce 8800 GTS GeForce GTS 450
SPs 128 = 8× 16 192 = (16× 3)× 4

SP clock 1.62GHz 1.56GHz
OS Linux Linux

(bits) (64bit) (64bit)

 0.1

 1

 10

 100

 1000

 10000

 10 100 1000 10000

C
P

U
 t
im

e
 [
s
e
c
]

Number of taps

Core 2 Duo

Core i5

GeForce 8800 1MP

GeForce 8800 1MP SM

GeForce 8800 mMP

GeForce 8800 mMP SM

GeForce GTS 450 mMP vector

GeForce GTS 450 mMP scalar

Figure 4: Computation time

multiple MP’s and does not store vectors into the shared
memory (SM), is as fast as the program “GeForce 8800
1MP SM,” which uses a single MP and stores the vectors
into the SM. By using multiple SIMD arrays, the perfor-
mance degradation caused by slow off-chip memory can
be reduced. The optimization without storing vectors
into the SM is applicable for larger number of taps such
as 4096.
The program “GeForce 8800 mMP SM” stores the vec-

tors into the SM. By using the SM, the computation
speed becomes almost three times faster. However, the
number of taps is limited by the memory size as 512-tap.
For an 8kHz-sampling and a 512-tap case, “GeForce 8800
mMP SM” program is capable of real-time processing.
This program uses four SIMD arrays or 32 SP’s, which
is only 25% of GeForce 8800 GTS GPU. Please note
that 32-SP is only an “entry class” products in recent
GeForce family.
The performance of GeForce GTS 450 and 8800 GTS

are also compared for large-scale filters. Though the
clock speed is comparable, GeForce GTS 450 (Fermi)

is almost twice as fast as GeForce 8800 GTS (Tesla).
A possible reason is the structure of SIMD array. The
Fermi architecture is 16-way SIMD while the Tesla ar-
chitecture is 8-way SIMD. Another reason might be the
data cache.

The effect of the data cache has been examined by
programs with and without the vector load/store opera-
tions. The vector load/store operation improves perfor-
mance for GPU’s without data cache[11]. On the other
hand, he vector load/store operations seems to have al-
most no improvements for GeForce GTS 450 with data
cache.

6 Conclusion

RLS-based adaptive filters with a large number of taps
has been implemented on nVIDIA GeForce GPU’s. In
order to reduce accesses to slow off-chip memory, the or-
der and the combination of calculations has been mod-
ified. The matrix operations are handled by multiple
SIMD arrays, while the vector operations are not di-
vided. Task asignment to multiple threads takes mem-
ory access order into account. The GPU program is up
to 30 times faster than the CPU program. For an 8kHz-
sampling and 512-tap case, Only 25% of SP’s in GeForce
8800GTS GPU is capable of real-time processing.

References

[1] B. Widrow and S. D. Stearns, “Adaptive noise can-
celing: Principles and applications,” Proc. of IEEE,
vol. 63, no. 12, pp. 1692–1716, Dec. 1975.

[2] J. Nagumo and A. Noda, “A learning method for
system identification,” IEEE Trans. AC, vol. 12,
no. 3, pp. 282–287, Mar. 1967.

[3] S. Haykin, Adatptive Filter Theory, Third Edition,
Prentice Hall, 1996.

[4] “NVIDIA CUDA compute unified device architec-
ture reference manual,” Nov. 2008.

[5] “NVIDIA CUDA programming guide,” Dec. 2008.

[6] “ATI stream computing user guide,” Mar 2009.

[7] A. Hirano and K. Nakayama, “Implementation of
stereophonic acoustic echo canceller on intel IA-32
processors with SIMD capability,” Proc. of 22nd

SIP symposium, Nov. 2007.

[8] A. Hirano and K. Nakayama, “Implementation
of stereophonic acoustic echo canceller on nvidia
geforce graphics processing unit,” Proc. of ISPACS

2009, pp. 303–306, Dec. 2009.

[9] A. Hirano and K. Nakayama, “Implementation of
large-scale FIR adaptive filters on nVIDIA GeForce
graphics processing unit,” Proc. of ISPACS 2010,
pp. 269–272, Dec. 2010.

[10] A. Hirano and K. Nakayama, “Parallel simulation
of FIR adaptive filters on nVIDIA GeForce graphics
processing unit,” Proc. of 25th SIP Symposium, pp.
98–102, Nov. 2010.

[11] A. Hirano and K. Nakayama, “Implementation
of RLS-based adaptive filters on nVIDIA GeForce
graphics processing unit,” Proc. of 26th SIP Sym-

posium, pp. 477–481, Nov. 2011.

[12] R. Mazur and A. Mertins, “A CUDA implementa-
tion of independent component analysis in the time-
frequency domain,” Proc. of 19th EUSIPCO, pp.
511–514, Aug. 2011.

[13] B. Juurlink A. Shahbahrami and S. Vassiliadis,
“Performance impact of misaligned accesses in
SIMD extensions,” Proc. of ProRISC 2006, pp.
334–342, 2006.

