
Formal verification of dynamically reconfigurable
systems

言語: eng

出版者:

公開日: 2017-10-03

キーワード (Ja):

キーワード (En):

作成者:

メールアドレス:

所属:

メタデータ

http://hdl.handle.net/2297/45586URL

Formal Verification of Dynamically Reconfigurable
Systems

Ryo Yanase ∗, Tatsunori Sakai ∗, Makoto Sakai ∗ and Satoshi Yamane †
∗ Graduate School of Natural Science and Technology

Kanazawa University, Kakuma-machi 920–1192
Email: ryanase@csl.ec.t.kanazawa-u.ac.jp
† Institute of Science and Engineering

Kanazawa University, Kakuma-machi 920–1192
Email: syamane@is.t.kanazawa-u.ac.jp

Abstract—A dynamically reconfigurable system can perform
complicated operations with dynamically changing the configu-
ration. For ensuring the safety of the system, a model checking
is one of the efficient formal approach. In our work, we define
the specification language of a dynamically reconfigurable system
and propose the model checking algorithm of verifying safety
properties.

I. INTRODUCTION

If a system changes its configuration during the operation,
we call it dynamically reconfigurable system. The feature of a
dynamically reconfigurable system is appeared in many real-
time systems (e.g., embedded systems, networks, etc.). Since
the operation of a such system is generally complex, it is
difficult to guarantee that the system is safe. Model checking is
a formal method for verification, and it is one of the effective
approach. In our work, we define the specification language
dynamic linear hybrid automaton (DLHA) of dynamically
reconfigurable systems and propose an approach to the model
checking of safety properties.

II. RELATED WORKS

Linear hybrid automaton provides continuous and discrete
operations but cannot describe the dynamic change of the
configuration[1]. Therefore, the system is modeled as a static
system[2]. Dynamic Input/Output automaton describes asyn-
chronous concurrent systems with FIfO channels and also
provides the dynamic change as creation and destruction of
automata[3]. However, this language doesn’t provide con-
tinuous transition and cannot describe a real-time system.
Hierarchical linear hybrid automaton is based on concepts of
object-orientation[4]. For this language, given a large scale
system, the specification and the verification method tend to be
complex. H. Nakano and others have developed a dynamically
configurable processor LSI that the circuit configuration is
changed by a single clock[5]. In our work, we assume that
a dynamically reconfigurable system can change its configu-
ration by a single clock.

III. SPECIFICATION LANGUAGE

We propose a specification language Dynamic Linear Hy-
brid Automaton (DLHA). A DLHA is a hybrid automaton
extended by creation/destruction of automata and queue op-
erations.

A. Dynamic Linear Hybrid Automaton

A dynamic linear hybrid automaton(DLHA) is a linear
hybrid automaton extended with special actions that are labels
representing the types of transitions.

1) Syntax of a DLHA: A DLHA is a tuple consisting of
the following components:

• A finite set L of locations

• A finite set V of variables

• A function Inv that assigns a constraint to each loca-
tion: A constraint ϕ on V is defined by

ϕ ::= true | x ∼ e | x− y ∼ e | ϕ1 ∧ ϕ2

where x, y ∈ V , e ∈ Q, ϕ1 and ϕ2 are constraints on
V , and ∼∈ {=, <,>,≤,≥}. Φ(V) denotes a set of
all constraints on V . For a location l ∈ L, a constraint
Inv(l) is called invariant of l.

• A function Flow that assigns a flow condition to each
location: Let V = {x1, . . . , xn} be a finite set of (real-
valued) variables. A flow condition f on V is defined
by

f ::= ẋ1 = d1 ∧ . . . ∧ ẋn = d1

where d1, . . . , dn ∈ Q. We can also write a set of all
flow conditions in F (V) .

• A finite set Act of actions: An action is either one
among input action, output action and internal action.
An input action that has the form m? represents
receiving the message m. An output action that has
the form m! represents sending (broad-casting) the
message m. An internal action aτ represents an asyn-
chronous transition between two locations. In partic-
ular, the special actions are below:
◦ Creation actions: Crt Ai! and Crt Ai? denote

the creation of Ai.
◦ Destruction actions: Dst Ai! and Dst Ai? de-

note the destruction of Ai.
◦ Enqueue actions: qi!m denotes enqueueing the

message m into the queue qi.
◦ Dequeue actions: qi?m denotes dequeueing

the message m from the queue qi.

• A finite set T ⊆ L × Φ(V) × Act × 2UPD(V) × L
of transitions: A constraint of transition g ∈ Φ(V) is
called guard condition.
UPD(V) is a set of update expressions. An update
expression λ is defined by

λ ::= x := c | x := x+ c

where x ∈ V and c ∈ Q.

• An initial transition t0 ∈ L× (Actin ∪Actτ)× 2UPD(V)

• A finite set Tend ⊆ L × Φ(V) × Actout of destruction
transitions

2) Semantics of a DLHA: A state σ of a DLHA is defined
as (l, ν) or ⊥, where l is a location, ν is an evaluation of
variables and ⊥ is an undefined state (that is, the DLHA is
not created). An evaluation is an assignment of variables to
real numbers.

The operational semantics of a DLHA is defined by the
following rules:

• Time transition:
◦ For any d ∈ R≥0, ⊥⇒d⊥ .
◦ For d ∈ R≥0 and a state (l, ν),

(l, ν)⇒d (l, ν + d) if ν + d ∈ Inv(l)

where ν + d is a shorthand for a function
defined by ν(x) + Flow(x) · d.

• Discrete transition:
◦ For a transition (l, ϕ, a, λ, l′) ∈ T ,

(l, ν)⇒a (l′, ν[λ]) if ν ∈ ϕ, ν[λ] ∈ Inv.

◦ For a destruction-transition (l, ϕ, a) ∈ Tend,

(l, ν)⇒a⊥ if ν ∈ ϕ.

◦ For the initial transition t0 = (l0, a0, λ0),

⊥⇒a0 (l0, 0⃗[λ])

where 0⃗ is an evaluation that assigns 0 to each
variables.

B. Dynamically Reconfigurable System

A dynamically reconfigurable system consists of a set of
DLHAs and a set of queues. Formally, a system S is defined
by a tuple (A,Q), where A is a finite set of DLHAs and Q is
a finite set of queues (unbounded FIfO buffers). A state of the
system is a pair ⟨σ⃗, w⃗Q⟩ = ⟨(σ1, . . . , σ|A|), (w1, . . . , w|Q|)⟩ of
a vector of DLHA-states and a vector of queue-contents.

1) Time Transition: For an arbitrary δ ∈ R≥0, the time
transition is defined by the following rule:

⟨σ⃗, w⃗Q⟩ →δ (σ⃗′, w⃗Q) ⇐⇒ ∀i.[σi ⇒δ σi].

2) Discrete Transition: Let σ⃗, σ⃗′, w⃗Q and w⃗′
Q be

σ⃗ = (σ1, . . . , σ|A|),

σ⃗′ = (σ′
1, . . . , σ

′
|A|),

w⃗Q = (w1, . . . , w|Q|)

and w⃗′
Q = (w′

1, . . . , w
′
|Q|).

• For any output action a!, ⟨σ⃗, w⃗Q⟩ →a ⟨σ⃗′, w⃗Q⟩

if ∃i.[σi ⇒a! σ
′
i ∧ ∀j ̸= i.[σj ⇒a? σj

∨ (¬∃σ.[σj ⇒a? σ
′
j] ∧ σj = σ′

j)]].

An output action is broadcasted to all DLHAs, and
a DLHA receiving the action moves by the synchro-
nization if the state holds the guard condition.

• For an internal action aτ ,
◦ In case of aτ = qk!w, ⟨σ⃗, w⃗Q⟩ →qk!w

⟨σ⃗′, w⃗′
Q⟩

if ∃i.[σi ⇒qk!w σ′
i ∧ ∀j ̸= i.[σj = σ′

j]

∧ w′
k = wkw ∧ ∀l ̸= k.[wk = w′

k]].

◦ In case of aτ = qk?w, ⟨σ⃗, w⃗Q⟩ →qk?w

⟨σ⃗′, w⃗′
Q⟩

if ∃i.[σi ⇒qk?w σ′
i ∧ ∀j ̸= i.[σj = σ′

j]

∧ wk = ww′
k ∧ ∀l ̸= k.[wl = w′

l]].

◦ Otherwise, ⟨σ⃗, w⃗Q⟩ →aτ ⟨σ⃗′, w⃗Q⟩

if ∃i.[σi ⇒aτ σ′
i ∧ ∀j ̸= i.[σj = σ′

j]].

A run(or path) ρ of the system S is the following finite(or
infinite) sequence of states.

ρ :s0 →δ0
a0

s1 →δ1
a1
· · · →δi−1

ai−1
si →δi

ai
· · ·

where →δi
ai

between si and si+1 is defined as follows:

si →δi
ai

si+1 ⇐⇒ ∃s′i.[si →δi s
′
i ∧ s′i →ai si+1].

The initial state s0 of a dynamically reconfigurable system
is ⟨(σ01 . . . , σ0|A|), (w01, . . . , w0|Q|)⟩ where each σ0i is the
initial state of DLHA Ai and each w0j is empty, that is
∀j.w0j = ε

An example of a dynamically reconfigurable system is
shown in Fig.1. This system consists of three DLHAs and
one queue.

A DLHA A1 has two locations, Run and Wait, that are
expressed as circles. In the location Run, an invariant is x ≤ 10
and a flow condition is ẋ = 1.

A run of this system is as below:

ρ :⟨((Run, x = 0), (Idle, y = 0),⊥), (ε)⟩ (1)
→10

q!A3
⟨((Wait, x = 10), (Idle, y = 0),⊥), (A3)⟩ (2)

→0
q?A3

⟨((Wait, x = 10), (Create, y = 0),⊥), (ε)⟩ (3)

→0
Crt A3

⟨((Wait, x = 10), (Idle, y = 0),

(Execute, z = 0)), (ε)⟩ (4)
→50

Dst A3
⟨((Run, x = 0), (Idle, y = 0),⊥), (ε)⟩ (5)

→ · · ·

Here, ε denotes the empty string.

In this tiny system, each DLHA has the following features:

• Environment: A1 periodically sends a message to
request creation of A3.

• Dispatcher: A2 receives the message from A1 and
creates A3 with actions Crt A3! and Crt A3?.

• Task: A3 is created by A2 synchronously with actions
Crt A3!.

In the initial state, A1 and A2 is already created because they
have initial transitions with internal actions, and the content of
the queue is empty (1). Next,A1 sends a creation request ofA3

to A2 via the queue (2). Receiving the request asynchronously,
A2 prepares to createA3, that is,A2 moves from Idle to Create
and the content of the queue becomes empty (3). A3 is created
and its state moves from ⊥ to (Execute, z = 0) (4). When A3

finishes executing the process, it is destroyed with the action
Dst A3! (5).

DLHA

DLHA

DLHA

Fig. 1. An example of a dynamically reconfigurable system

IV. REACHABILITY ANALYSIS

A. Reachability Problem

Given a dynamically reconfigurable system S = (A,Q)
and a location lt, we say “S reaches lt” if there exists a path
from the initial state to a state containing lt. The reachability
problem is the problem of determining whether S reaches lt.

B. Convex Polyhedra

In our proposed method, we introduce convex polyhedra
for the reachability analysis according to [6]. For a set V =

{x1, . . . , xn} of variables, a convex polyhedron ζ on V has
the following syntax:

ζ ::= true | false |
∑n

i=1 aixi ∼ an+1 | ζ1 ∧ ζ2

where ∼∈ {=, <,>,≤,≥} and ζ1, ζ2 are convex polyhedra.

Let [[ζ]] be a set of vertices such that are contained in the
region described by ζ, that is, [[ζ]] = ∃V.[ζ] ⊆ Rn.

Then, the equivalence of convex polyhedra is defined as
follows:

ζ1 = ζ2 ⇐⇒ [[ζ1]] = [[ζ2]].

C. Algorithm

For the reachability analysis, a state of system is defined
as (L, ζ, w⃗Q), where L is a set of locations, ζ is a con-
vex polyhedron, and w⃗Q is a vector of queue-contents. The
overview of the reachability analysis is shown in Fig. 2. The
analysis is performed by breadth-first order with QDDs[7] as
the following procedures:

1) Compute an initial state s0 of the system S (line 1 –
line 3).

2) Initialize a traversed set Visit and a untraversed set
Wait of states by ∅ and {s0} (line 4).

3) While Wait is not empty, the following processing is
repeated (line 8).

a) Take a state (L, ζ, w⃗Q) from Wait and re-
move the state from Wait (line 9 – line 10).

b) If the set L of locations contains the target
location, return “yes” and terminate (line 11
– line 13).

c) If the state is not traversed yet ((L, ζ, w⃗Q) ̸∈
Visit):
i) Add the state into Visit (line 15).

ii) Compute a set Spost of successors by
the subroutine Succ (line 17).

iii) Add all components of Spost into Wait
(line 18).

The subroutine Succ that computes successors of a state
is shown in Fig.3. Given a state (L, ζ, w⃗Q) and a system,
successors are computed by the following procedure:

1) For each transition (l, ϕ, a, λ, l′) (or destruction-
transition (l, ϕ, al!)) outgoing from a location l ∈ L,
a set Spost of post states is computed as below:

2) If a is an enqueue action qk!w: Add a message w to
the content of queue qk and add the new state to Spost
(line 11 – line 15).

3) If a is a dequeue action qk?w: Remove a message w
from the content of queue qk and add the new state
to Spost (line 16 – line 19).

4) If a is other internal action: Add the new state to Spost
(line 22).

5) If a is an output action al!: Spost is computed by
subroutine Syncs as the following steps (line 29).

a) Compute a set Tsync of transitions synchro-
nizing with t.

b) Compute a set L′ of locations of the new
state with t and Tsync.

Input: a system S and a target location lt
Output: “yes” or “no”

1: /* Compute the initial state */
2: L0 ← {l0i | t0i = (l0i, a0i, λ0i), a0i ̸= Crt Ai?}
3: λ0 ←

∪
{λ0i | t0i = (l0i, a0i, λ0i), a0i ̸= Crt Ai?}

4: s0 ← (L0, 0⃗[λ0], (ε, . . . , ε))
5: /* Initialize a set Visit of visited states and a queue Wait of states to search */
6: Visit← ∅,Wait← {s0}
7: /* Traverse in a breadth-first order */
8: while Wait ̸= ∅ do
9: (L, ζ, w⃗Q)← s ∈Wait

10: Wait←Wait \ {(L, ζ, w⃗Q)}
11: if lt ∈ L then return “yes”
12: if (L, ζ, w⃗Q) ̸∈ Visit then
13: Visit← Visit ∪ {(L, ζ, w⃗Q)}
14: /* Compute a set of post-states */
15: Spost ← Succ((L, ζ, w⃗Q),S)
16: Wait←Wait ∪ Spost

return “no”

Fig. 2. Algorithm of Reachability Analysis

c) Compute a convex polyhedron ζ ′ of the new
state with t and Tsync.

d) Add the new state (L′, ζ ′, wQ) to Spost.
6) If a is an input action: Spost = ∅.

V. IMPLEMENTATION AND PRACTICAL EXPERIMENTS

We have developed a prototype model checker of dynam-
ically reconfigurable systems. The model checker is imple-
mented in Java and comprised of about 1,600 lines of code
using external libraries LAS[8], PPL[9], and QDD[7], [10].

Moreover, for practical experiments, we have specified a
cooperating system consisting CPU and DRP(Dynamically Re-
configurable Processor), and verified several safety properties
for the system. The configuration of the embedded system
is shown in Fig.4, and components of the system is shown
in Fig.5. This system consists of 11 DLHAs and 1 queue.
We show the DLHA of Scheduler in Fig.6 for example. The
external environment consists of EnvA and EnvB that create
periodically TaskA and TaskB. That is, EnvA creates TaskA
with Crt taskA! every 70 milliseconds and EnvB creates TaskB
with Crt taskB! every 200 milliseconds. Scheduler performs
scheduling in accordance with the priority and actions for
creation and destruction of DLHAs. For example, when TaskA
is created by EnvA with Crt taskA! and TaskB is already run-
ning, Scheduler receives Crt taskA? and sends Act Preempt!.
Then, TaskA moves to location RunA and TaskB moves to the
location WaitB with the action.

TaskA and TaskB send a message to Sender if they need
a co-task. Sender enqueues the message to create a co-
task to the queue q when it receives a message from tasks.
When TaskA moves to location RunA from location WaitA
with Act Create a0!, Sender receives Act Create a0? and
enqueues cotask a0 to q with q!cotask a0.

DRP Dispatcher dequeues a message and creates co-
task a0, cotask a1 and cotask b0 if there are enough free
tiles. Frequency Manager is a module which manages the
operating frequency of DRP. When a DLHA of co-task is

created, Frequency Manager moves to the location fixing the
frequency to minimum value.

For example, we have verified the schedulability of tasks.
This property provides that each task must be finished pro-
cessing within its deadline. To verify the property, a monitor
automaton is defined as Fig.7. Monitor automaton checks
whether the system satisfies the property, and it moves to a
special location called error location when the property is
not satisfied. In this case, the schedulability is verified in 180
seconds with 169 [MB] on a machine with Intel (R) Core (TM)
i7-3770 (3.40 [GHz]) CPU and 16 [GB] RAM.

Task A

CPU Dispatcher

Task B

Co-task a

DRP Dispatcher

Co-task a

External Environment

CPU DRP

Cooperation

Tile

Co-task b

Fig. 4. Overview of the CPU-DRP embedded system

VI. CONCLUSION

In this paper, we have presented the specification language
of dynamically reconfigurable systems and the reachability
analysis algorithm for the verification. The next step would
be to focus on more effective methods (e.g., Counterexample
Guided Abstraction Refinement, Satisfiability Modulo Theo-
ries, etc.) for the verification.

Input: a state (L, ζ, w⃗Q) and the system S
Output: the set Spost of post-states

1: TN ←
∪|A|

i=1{(l, ϕg, a, λ, l
′) ∈ Ti | l ∈ L} /* Set of outgoing transitions */

2: TD ←
∪|A|

i=1{(l, ϕg, a) ∈ Tendi | l ∈ L} /* Set of outgoing destruction transitions */
3: Spost ← ∅, Tpost ← TN ∪ TD

4: ζδ ← Tsucc(L, ζ) ∧
∧

lp∈L Invs(lp) /* Convex polyhedron for the time transition */
5: for all t ∈ Tpost do
6: if t = (l, ϕg, a, λ, l

′) then
7: if a is an internal action then
8: L′ ← (L \ {l}) ∪ {l′} /* Locations of the post-state */
9: ζ ′ ← (ζδ ∧ ϕg)[λ] ∧ ζ ′i ∧

∧
l′p∈L′ Invs(l′p) /* The convex polyhedron of the post-states */

10: if ζ ′ ̸= false then
11: if a is a enqueue action qk!w then
12: (w1, . . . , w|Q|)← w⃗Q
13: w′

k ← wkw /* Enqueue the message into qk */
14: w⃗′

Q ← (w1, . . . , wk−1, w
′
k, wk+1, . . . , w|Q|)

15: Spost ← Spost ∪ {(L′, ζ ′, w⃗′
Q)}

16: else if a is a dequeue action qk?w then
17: if wk = ww′

k then
18: w⃗′

Q ← (w1, . . . , wk−1, w
′
k, wk+1, . . . , w|Q|) /* Dequeue the message from qk */

19: Spost ← Spost ∪ {(L′, ζ ′, w⃗′
Q)}

20: else
21: Spost ← Spost ∪ {(L′, ζ ′, w⃗Q)} /* For other internal action */
22: else if a is an output action al! then
23: Spost ← Spost ∪ Syncs((L, ζ, w⃗Q), t,S) /* Compute the set of states by the synchronous transitions */
24: else
25: Spost ← Spost ∪ Syncs((L, ζ, w⃗Q), t,S) /* Compute the set of states by the destruction transition */

return Spost

Fig. 3. Subroutine Succ

EnvA EnvB

Scheduler

TaskA

DRP_Dispatcher

cotask_a0 cotask_a1

Frequency_

 Manager

cotask_b0

TaskB

Environment

CPU DRP

Queue qSender

Message

Creation

Fig. 5. Components of the system

REFERENCES

[1] R. Alur, C. Courcoubetis, T. A. Henzinger, and P. H. Ho, “Hybrid
automata: An algorithmic approach to the specification and verification
of hybrid systems,” Lecture Notes in Computer Science, vol. 736, pp.
209–229, 1993.

[2] S. Minami, S. Takinai, S. Sekoguchi, Y. Nakai, and S. Yamane, “Mod-
eling, specification and model checking of dynamically reconfigurable
processors,” in Computer Software 28(1). Japan Society for Software
Science and Technology, 2011, pp. 190–216.

[3] P. C. Attie and N. A. Lynch, “Dynamic input/output automata, a formal
model for dynamic systems,” in Proceedings of the twentieth annual
ACM symposium on Principles of distributed computing, ser. PODC
’01, 2001, pp. 314–316.

[4] H. Yamada, Y. Nakai, and S. Yamane, “Proposal of specification
language and verification experiment for dynamically reconfigurable

Fig. 6. DLHA of Scheduler

system,” Journal of Information Processing Society of Japan, Program-
ming, vol. 6, no. 3, pp. 1–19, 2013.

[5] H. Nakano, T. Shindo, T. Kazami, and M. Motomura, “Development
of dynamically reconfigurable processor LSI,” NEC Technical Journal,
vol. 56, no. 2, pp. 99–102, 2003.

[6] R. Alur, C. Courcoubetis, N. Halbwachs, T. A. Henzinger, P.-H. Ho,
X. Nicollin, A. Olivero, J. Sifakis, and S. Yovine, “The algorithmic
analysis of hybrid systems,” THEORETICAL COMPUTER SCIENCE,
vol. 138, pp. 3–34, 1995.

[7] B. Boigelot and P. Godefroid, “Symbolic verification of communication
protocols with infinite statespaces using qdds,” Form. Methods Syst.
Des., vol. 14, no. 3, pp. 237–255, 1999.

Fig. 7. Monitor automaton for schedulability

[8] Y. Ono and S. Yamane, “Computation of quantifier elimination of
linear inequlities of first order predicate logic,” IEICE Technical Report.
COMP, Computation, vol. 111, no. 20, pp. 55–59, 2011.

[9] R. Bagnara, P. M. Hill, and E. Zaffanella, “The parma polyhedra library:
Toward a complete set of numerical abstractions for the analysis and
verification of hardware and software systems,” Sci. Comput. Program.,
vol. 72, no. 1-2, pp. 3–21, 2008.

[10] B. Boigelot, P. Godefroid, B. Willems, and P. Wolper, “The power of
qdds (extended abstract),” in SAS, 1997, pp. 172–186.

