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BOUNDEDNESS OF LITTLEWOOD-PALEY OPERATORS

SHUICHI SATO

ABSTRACT. We survey some results related to LP boundedness of Littlewood-
Paley operators on homogeneous groups. Also, we give proofs of some results
in the survey.

1. INTRODUCTION

Let f € LP(T) (1 < p < o0), where T is the one-dimensional torus, which is
identified with R/Z (Z denotes the integer group), and let

(o)
§ ck62ﬂ'zk9

k=—oco

be the Fourier series of f, where

cr = / f(:v)e_2”ik’” dx
T

is the Fourier coefficient.
The Littlewood-Paley function «(f) is defined as

where

om— 1 S ‘ k ‘ <2m
if m is a positive integer and Ag = ¢y. Then Littlewood and Paley proved

(L.1) Apllfllze < [V (Hllze < Byl fllze

for some positive constants A,, B,. This can be applied in proving the multiplier
theorems of Marcinkiewicz type and in studying the lacunary convergence of the
Fourier series.

A result analogous to (1.1) for the g function on T defined by

1/2

(1.2) 9(f)(0) = (/0 (1= B)(0/ot) P = fO)I dt)
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was also shown by Littlewood and Paley, where
_ 11—
1 —2tcos(27f) + t2

is the Poisson kernel for the unit disk. (See Littlewood and Paley [22, 23, 24]) and
also Zygmund [43, Chap. XV] for the results above).

In this note we consider analogues on the Euclid spaces R® and on the homo-
geneous groups of the Littlewood-Paley function g(f) in (1.2). We survey a paper
[10] and some back ground results in Sections 2-4. (See [37, 39, 43] for relevant re-
sults.) Also, in Sections 5-7, we shall give proofs of three results stated in Sections
2 and 3. Finally, in Section 8, we shall see some results related to Littlewood-Paley
operators arising from the Bochner-Riesz means and the spherical means.

Py(8)

2. LITTLEWOOD-PALEY FUNCTIONS ON R"

Let ¢ be a function in L'(R™) such that
(2.1) Y(z)dz = 0.
R’n
We consider the Littlewood-Paley function on R™® defined by

s = ([T )"

where ¢ (z) = t™"(t"1z).
Let Q(z) = [(0/0t) Pi(x)]t=1, where
t
(fF + )07

Pi(z) =c,

is the Poisson kernel on the upper half space R x (0, 00). Then Sg(f) is a version
on R of the Littlewood-Paley function g(f).

If H(x) = x[—1,0](z) — X[0,1](%) is the Haar function on R, then Sg(f) coincides
with the Marcinkiewicz integral

w0 = (106 )+ P -2rp %)

where F(z) = [ f(y)dy. Here yp denotes the characteristic function of a set
E. We can easily see that Sg and Sy are L? (1 < p < o) bounded on R* and
R, respectively, from the following well-known result of Benedek, Calderén and
Panzone [2].

Theorem A. Suppose that ¢ satisfies (2.1) and
(2.2) [p(x)] < C(L+[z)7",

(23) [ 19ta =) = via)lds < Clyl

for some positive constant €. Then
(1) Sy is bounded on LP(R™) for all p € (1, 00);
(2) Sy is of weak type (1,1) on R™.

It is known that for the LP boundedness, the condition (2.3) is superfluous, which
can be seen from the following result when p = 2.
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Theorem B. S, is bounded on L*(R") if ¢ satisfies (2.1) and (2.2) with e = 1.

We refer to Coifman and Meyer [8, p. 148] for this. A proof can be found in
Journé [20]; see [20, pp. 81-82].
Let

Hy(x) = sup [¢(y)]
ly]>|z|

be the least non-increasing radial majorant of ¢. Also, define

Bw)= [ W@llfde x>0,
Jz|>1

1/u
Du(y) = (/ | (@)[* dﬂ?) for w>1.
|| <1
In [28], part (1) of Theorem A and Theorem B are improved as follows.

Theorem C. Let ¢ € L*(R"). Suppose that 1 satisfies (2.1) and the conditions

(1) B.(¢) < oo for some € > 0;

(2) Du(¢p) < o0 for some u > 1;

(3) Hy € L'(R").
Then

1Sy (Dllze, < Cpwllfllzr,
for allp € (1,00) and w € A,.
As usual L (R™) denotes the weighted L space of those functions f which satisfy

I fllze = || fw!/?||, < co. Also, here we recall the weight class 4, of Muckenhoupt.
We say that w € 4, (1 < p < o0) if

sup <|B|_1/Bw(m) dm) <|B|_1/Bw(:n)_1/(p_1)dm>pl <o,

where the supremum is taken over all balls B in R” and |B| denotes the Lebesgue
measure. Let M be the Hardy-Littlewood maximal operator defined by

M(f)(w) = sup |BI" /B £ @) dy,

where the supremum is taken over all balls B containing z. We then say that
w € A; if there exists a constant C' such that M (w)(z) < Cw(zx) for almost every
x.

We now see some applications of Theorem C from [28].

Corollary 1. Suppose that 1) € L' satisfies (2.1) and (2.2). Let b € BMO and
w € As. We define the measure v on the upper half space R* x (0,00) by
o dt

dv(z,t) = |b* ()| " w(z) dx.

Then, the measure v is a Carleson measure with respect to the measure w(zx)dz,
that is,

V(@) < CullblBmro /Q w(z) de

for all cubes Q) in R™, where

S(Q) ={(z,t) e R* x (0,00) :xz € Q,0<t <Q)}
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with £(Q) denoting sidelength of Q.

This follows from the L?-boundedness of the operator Sy. See [20, pp. 85-87].
From Corollary 1 we get the following (see [20, p. 87]).

Corollary 2. Let b € BMO. Suppose that  satisfies (2.2) and that ¢ satisfies
(2.1), (2.2). Then
1Ts(Nlzz, < Cpwllbllzarollfllzz,

for all p € (1,00) and w € A,, where

110 = ([ s @l |7 s ﬂ)/

t

We note that the conditions (2.1), (2.2) only are required for ¢ in Corollaries 1,
2 (no additional regularity condition for ¢ is needed).
By Corollary 2 and Theorem C we have the following.

Corollary 3. We assume that ¢ satisfies (2.1), (2.2) and that ¢ satisfies (2.2). Let
b€ BMO. Furthermore, let n be a function in L' (R™) satisfying all the conditions
of Theorem C imposed on 1. Define a paraproduct m, by the equation

dt

(@ = [ mr (@r0) (Frp0) @

Then
e (F)llze, < Cpwllbllzaroll fliLe,
for allp € (1,00) and w € A,.

The class L(log L)*(R™), a > 0, is defined to be the collection of the functions
f on R™ such that

[ 15@los(z + @)1 ds < .
Similarly, let L(log L)*(S™!) be the class of the functions Q on S ! satisfying

[ 100 log(2 + [20))]* d(6) < .

where do denotes the Lebesgue surface measure on S"~! = {z € R" : |z| = 1}.
For the rest of this section we consider the cases where v is compactly supported.
In [31] the following result was proved.

Theorem D. The operator Sy is bounded on LP(R"™) for all 2 < p < oo if ¢ is a
function in L(log L)'/?(R™) with compact support and satisfies (2.1).

This improves on a previous result of [17] which guarantees L? boundedness of
Sy for p € [2,00) under a more restrictive condition that ¢ € LI(R™) with some
qg> 1

For p < 2, Duoandikoetxea [12] proved the following result.

Theorem E. We assume that ¥ has compact support.

(1) Suppose that 1 < ¢ <2 and0<1/p<1/2+1/q". Then Sy is bounded on
LP(R™) if ¢ is in LY(R"™) and satisfies (2.1).

(2) Let 1 < ¢ < 2 and 1/p > 1/2+1/q". Then there exists yp € LY(R™) such
that Sy is not bounded on LP(R™).
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Here ¢' denotes the exponent conjugate to g. See also [6] for a previous result
for p < 2. Theorem E (1) was shown by arguments involving a theory of weights
(see also [14]).

Let ¢)(*) be a function on R defined by

a—1
() — Oé(l - |CU|) sgn(x), T € (_17 1)7
v (@) { 0, otherwise.
Suppose that 1 < p< 2,1 <¢g<2and 1/¢' <a <1/p—1/2. Then )(*) € LI(R);
also, Remark 2 of [17] implies that S, ) is not bounded on L? and S, () is of weak
type (p,p) if a =1/p—1/2.
The following result is a particular case of part (1) of Theorem E.

Proposition 1. If ¢ is compactly supported and belongs to L*(R™), then Sy is
bounded on LP(R™) for all p € (1,00).

This can be proved by combining results of [28] and the weight theory of [12].
We shall give the proof in Section 5.

The Marcinkiewicz integral uq(f) of Stein [36] (see also Hormander [19]) is
defined by puq(f) = Sy (f) with

(@) = |27 Q") x o, (J2])  for 2 € R\ {0},
where z' = z/|z|, @ € L'(S"™"), [g.-1 Qdo =0.
Al-Salman, Al-Qassem, Cheng and Pan [1] proved the following.
Theorem F. pgq is bounded on LP(R™) for all p € (1,00) if Q € L(log L)*/?(S™~1).

See Walsh [42] for the case p = 2. In Section 3, we shall consider an analogue of
Theorem F on homogeneous groups.

3. LITTLEWOOD-PALEY FUNCTIONS ON HOMOGENEOUS GROUPS

We consider Littlewood-Paley functions on homogeneous groups. We also regard
R™, n > 2, as a homogeneous group with multiplication given by a polynomial
mapping. So, we have a dilation family {A¢};~0 on R™ such that

Atx = (talmlat(wm% N )tanmn)a T = (1'1,- v >xn)7

with some real numbers aq, ..., a, satisfying 0 < a; < as <--- < a, and such that
each A, is an automorphism of the group structure (see [18], [41] and [25, Section 2
of Chapter 1]). We also write H = R™. H is equipped with a homogeneous nilpotent
Lie group structure; the underlying manifold is R™ itself. We recall that Lebesgue
measure is a bi-invariant Haar measure, the identity is the origin 0 and 27! = —z.
Multiplication zy, x,y € H, satisfies the following.

(1) A¢(zy) = Az Ay, z,y € H, t > 0;

(2) (ux)(ve) =ur+vr, z € H, u,v € R;

(3) if z=uy, z=(21,-.-,2n), 2k = Pi(x,y), then

Pi(z,y) = 21 +y1,
Pi(z,y) =z, + yr + Ri(z,y) for k > 2,
where Ry, (x,y) is a polynomial depending only on @1, ..., Zg_1,Y1,- -, Yk—1-

We have a norm function r(z) satisfying the following.
(1) r(Asz) = tr(x), for all ¢ > 0 and = € R?;
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(2) r is continuous on R™ and smooth in R™ \ {0};
(3) r(x +y) < Ni(r(z) + r(y)), r(zy) < Nao(r(z) + r(y)) for some positive
constants Ny, No;

4) r(z ') =r(z);
(5) if & ={z € R : r(z) = 1}, ¥ coincides with S"~1;
(6) there exist positive constants ¢, ¢z, 3, ¢4, a1, @2, 81, B2 > 0 such that

alz|*™ <) < eofx* ifr(z) > 1,
cslz|?t < r(x) <cqlz)? if r(z) < 1.

Let v = a; + - -- + a, (the homogeneous dimension of H). Then dz = t"~! dS dt,
that is,

R"f(:v) dr = /0 /E F(AB) 1 dS() dt

with dS = wdo, where w is a strictly positive C'* function on ¥ and do is the
Lebesgue surface measure on ¥ as above.
The Heisenberg group Hj is an example of the homogeneous groups. Let

(z,y,u)(z",yu') = (z+ 2,y + ¢y, u+u + (zy —yz')/2)

for (z,y,u), (x',y',u') € R®. Then, with this group law, R? is the Heisenberg group
H; . A dilation is defined by

At (.’IJ, Y, U’) = (t.’IJ, ty: tzu) (2_Step)‘
Also, we can adopt
A, y,u) = (tz, 2y, £Pu)  (3-step)

as an automorphism dilation.
For a function f on H, let

fi() = 6.f(x) =t77 f(A] ).

Convolution on H is defined as

frgle /f

Then (fxg) xh=f*(gxh), (f+g)"=g* fif f(z) = f(z 1),
We consider the Littlewood-Paley function on H defined by

s = ([Tireser )"

where ¢ is in L'(H) and satisfies (2.1). Let Q be locally integrable in H \ {0}. We
assume that  is homogeneous of degree 0 with respect to the dilation group {4;},
which means that Q(A;z) = Q(z) for z # 0, t > 0. Also, we assume that

(3.1) / Q(6)dS(8
Let ug = Sg with
(3.2) U(z) =r(z) "z )xo(r(@), a>0,

where 2’ = A, )1z for x # 0. The spaces LP(¥), L(log L)*(X) are defined with
respect to the measure dS.
We recall a result of Ding and Wu [11].
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Theorem G. We assume in (3.2) that a = 1 and that Q is a function in Llog L(X)
satisfying (3.1). Then pq is bounded on LF(H) for p € (1,2] and is of weak type
(1,1).

The result on the L? boundedness of Theorem G was improved by [10] as follows.

Theorem 1. ugq is bounded on LP(H) for all p € (1,00) if Q is in L(log L)'/*(%)
and satisfies (3.1).

To prove Theorem 1 we decompose ¥(z) =3, 2k (k) (), k € Z, where
W (z) = 2747 (2)" Q2 )x (1,227 Fr (@)
A change of variables and the property §,0; = d, of operators d; imply
Sy f(@) = Sy f(2) = Sy f(2).
Thus, by the sublinearity we have
Suf(z) <> 25 Sy f(z) = caSyo f(2).

k<0

(See [16] for this observation.) So, we consider a function of the form

(3-3) U(z) = £(r(z))

where £ is in A (see [33]) for some 1 > 0 and supported in the interval [1,2].
Now we recall the definition of A7, (the definition of A7, 1 < ¢ < oo, can be
found in [33]). Let h be a locally integrable function on Ry = {t € R:¢ > 0}. For
€ (0,1], define O

2R dT'
w(ht) = sup / Ih(r — ) — h(r)] 2,
|s|<tR/2JR r

where the supremum is taken over all s and R such that |s| < tR/2 (see [34]).
Define A7, 5 > 0, to be the family of the functions A such that

[|h||lan = sup t "w(h,t) < cc.
te(0,1]

Let A7, = L (R )NA" with ||h||xn. = [|h||loo + ||P|[an for h € A7 . Then A7 C AZ2
lf 7]2 S 771.
Theorem 1 is a consequence of the following.

Theorem 2. Let U be as in (3.3). Then Sy is bounded on LP(H) for all p € (1,00)
if Q is in L(log L)*/?(X) and satisfies (3.1).

Extrapolation arguments using the following estimates can prove Theorem 2 (see
[32]).

Theorem 3. Suppose that ¥ is as in (3.3) with Q belonging to L*(X) for some
s € (1,2] and satisfying (3.1). Let 1 < p < co. Then

1Sw flly < Cys = )7 2IIRLI£1lp,

where the constant C, is independent of s and €.
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For F € L(log L)*(X), a > 0, recall that

F F
||F||L(logL)a:inf{A>02/u|: g<2+| |>] ngl}.
s A A

Then, under the assumptions of Theorem 2, we can in fact prove that
(3.4) 15w fllp < ColllLog 172l f1lp

for a constant C}, independent of (2, which is not stated explicitly in Theorem 2.
We shall give a proof of (3.4) in Section 6 by applying Theorem 3.

To prove Theorem 3 we apply certain vector valued inequalities, which will be
controlled by a maximal function of the form

M (f)(z) = sup| £ # il ()]

Lemma 1. Let U be as in (3.3) and p > 1. Suppose that Q is in L*(X). Then
1My fllp < CplI2UL NI £l
For § € X, let
My f(z) = =sup < / |f(z(A0) )| dt

be the maximal function on H along a curve homogeneous with respect to the
dilation A;. To prove Lemma 1, we apply a result of M. Christ [7].

Lemma 2. Let p > 1. Then, there exists a constant C, independent of 6 such that
1Mo fllp < Coll fllp-

We can easily prove Lemma 1 by applying Lemma 2.

Proof of Lemma 1. By a change of variables, we have

T Ine: /f:ry )], (y) dy

:/1 /Ef(x(Aste)*l)|Q(9)g(s)|371 ds(6) ds

My f(z) < Cll0]o / Mo £(2)[0(6)| dS(6).

Thus, Minkowski’s inequality and Lemma 2 imply the conclusion. a

It follows that

As indicated in [7], if we consider the Heisenberg group with 2-step dilation,
then Lemma 2 can be proved by the boundedness of a maximal function along a
curve in R? (see (7.5)), which was studied by [40]. In Section 7, we shall give a
straightforward proof of this fact.

Let H = L?((0,00),dt/t). For each k € Z and p > 2 we consider an operator T}
defined by

(Te()(@)) (B) = Tl ) (@,8) = F * Tula)xpup (0741),

where ¥ is as in (3.3). The operator T} maps functions on H to H-valued functions

on H and we see that
1/2 1/2
dt P dt
£+ @) 7) ([ 1revor )
1

ITi(F) (@)l = (/

k+1
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By Lemma 1, we have the following vector valued inequality, which will be useful
in proving Theorem 3.

Lemma 3. Let 1 < s < co. Then

1/2 1/2
(§]nwma> scmMWWMh<§]mﬂ

k k

s

We can apply the converse of Holder’s inequality and Lemma 1 to prove this (see
[13]).
4. OUTLINE OF THE PROOF OF THEOREM 3

Let ¢ be a C* function supported in {1/2 < r(z) < 1} such that [¢ = 1,
#(z) = d(x), p(xz) > 0 for all z € H. For p > 2, we define

Ak:5pkf1¢—(5pk¢, keZ.
Then, supp(Ay) C {p*1/2 < r(z) < p*}, Ay = Ay, and

> A=,
k

where ¢ is the delta function.
We decompose

Fr¥y(z) =Y Fi(x,t),

jeZ
where
Fj(m, t) - Z f * Aj+k * \Ijt(m)X[pk7pk+1)(t).
kEZ
Define
1/2
o0 dr\ ** p dt
Ujf(z) = (/ |Fj (2, 1) 7) = (Z/ | * D+ | 7)
0 A

1/2
(Z T (f * Aj+k)|§c> :

k

Lemma 4. Let 1 < s <2 and p = 25" Then, there exist positive constants C, €
independent of s and Q € L*(X) such that

U £ll2 < C(s = 1)~ /227 QL1 ]]2-
We choose v; € C§°(R), j € Z, such that
supp(v;) C {t € R: p! <t <p*2}, 4 >0,
logQZz/Jj(t) =1 fort>0,

JEZ
[(d/dt)™;(t)] < em|t|™™ form =0,1,2,...,
where ¢, is a constant independent of p > 2. Decompose

r(z)Y =
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where
Q(:L”) 1

(@) )10

b (tr(x)) &

with

2

(=)

Ky(z) = r(2) X,2)(r(z))-

We observe that S; is supported in {p? < r(z) <2p/T2}. Let
LY (z) = Lt r(2)) S ().
Then by the restraint of the support of £ we have

k+3
\I’t(l')X[pk7pk+1)(t) = Z LS:L)(Z')X[pk7pk+1)(t).
m=k—3
Consequently,
k+3
Fj(a:,t) = Z Z f* Aj+k * LS? (m)X[pk’pk+l)(t).
k€Z m=k—3

Using this expression of F; and an analogue of the estimates in Lemma 1 of [33] (see
also [9] for related results on product homogeneous groups), which can be proved
by methods based on Tao [41], we can prove Lemma 4.

Now we are able to prove Theorem 3. First we recall the Littlewood-Paley
inequality

1/2
(Zumﬁ) <Collflle, 1<7 <0,
k

T

where C, is independent of p. Let 1 < p < 00, p = 25’, 1 < s <2 ByLemma 3
and the Littlewood-Paley inequality we have

1/2
(4.1) NU;(Hl- = (Z T (f Aj+k)|§c>
k

T

1/2
< C(log p)' /|11 (Z |f Akl2>
k

< C(logp)' Q011 £l
for all r € (1,00). Also, by Lemma 4
(4.2) 1U; fll2 < C(log p)* /22~ F Q|| £ |2-
Thus, interpolating between (4.1) and (4.2), we have
1U;£1lp < Cllog p)' 22~ FIQYL 1 £ 1l

with some € > 0, which implies

I1Sw flly <D 11U flly < Cols = )7L £ 1lp-
i

This completes the proof of Theorem 3.
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5. A PROOF OF PROPOSITION 1
Let
f&) = [ f@e 9 dr
R’n

be the Fourier transform of f, where
<1‘,£>:Z$]‘£j, m:(mla"'vmn)a Ez(glaagn)
7j=1

To prove Proposition 1 we apply the following Fourier transform estimates.
Lemma 5. Let ¢p € L*(R"). Suppose that 1) is compactly supported and satisfies
(2.1). Then

2
/ [t (t€)|* dt < C min (€], |¢]7°) forall €€R?
1
with some € € (0,1).
Also, we need the following,.

Lemma 6. Suppose that v is a function in L?>(R™) with compact support. Let
weA. Ifv=w orw™!, then we have

2
sup/ / |f e ()| dtv(@) da < C|I £
keZ JR™ J1

For a proof of Lemma 5 see [28].

Proof of Lemma 6. When v = w, Lemma 6 was proved in [28] (the author has
learned from [12] that Lemma 6 is also valid for v = w™' and that it is useful for
application). Now we recall the proof. We may assume that supp(¢) C {|z| < 1}.
Then, by Schwarz’s inequality we see that

1 % (@) < 11 / @ —y)P dy.

ly| <t

Since w € Ay, integration with respect to the measure w(x) dx gives

(5.1) / 1 % (@) wiz) de < I3 / F)Pem / w(z) de dy

le—y|<t
< Cull / £ @) Pw(y) dy

uniformly in ¢. Also, by duality we can prove the uniform estimate

62 [ifen@l e @ de < Culll} [ 1)o@ d.
The conclusion easily follows from the estimates (5.1) and (5.2). O

We choose ¥ € C* that is supported in {1/2 < |{| < 2} and satisfies
D W =1 for £#0.
JEL
Define . _
D;i(f)(§) =¥(2)f()  for jeT,
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and decompose

friu(m) = Fi(a,t),

JEZ
where

t) = Dji(f ) (@) xpze 2041 ().

kEZ

0w = ([ meor?) v

We write 4; = {27179 < |¢| < 2'77}. Then, by the Plancherel theorem and
Lemma 5 we see that

Let

ok+1 , dt
(5.3) LGRS / / IDj i (% ) (@)

ok+1 dt R 9
<k20/m (/ g 7) sl d
<o min(2ter 2 [Fof de

kEZ Ajtr
—elj] 2|

<cr iy /A F@] de

Since the sets A; are finitely overlapping, (5.3) implies that
(5.4) IT5(£)13 < C2 V|15 = c2~ V|| £I5.

Let w € A;. If v = w or w™!, by Lemma, 6 and the Littlewood-Paley inequality
for L2 (note that v € As) we see that

2k+1

dt
(5.5) 175 ()17 Dje(f) *u(@)]” = v(x) da
RO Y LA t
< ZC’/ Djr(f)(@)) v(x) da
kEZ
< CIfI.

Thus, by interpolation with change of measures between (5.4) and (5.5)

(5.6) IT5 (2, < €272 £ e

for a € (0,1). Choosing a so that w'/® € Ay, by (5.6) we have
I1T5(f)llzz < G272 £ 2.

From this it follows that

(5.7) 1S6(Hllez < DN (Hllez < Cllf ez

JEZL

Let M be the Hardy-Littlewood maximal operator (see Section 2) and M,(f) =
(M (|£]*)(z))"/*. To prove Proposition 1, by Theorem D we may assume that p < 2.
Now we apply the idea of [12]. If 1 < s < p/(2 — p), then M (|f]*>"?) is in A; (we
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may assume that 0 < M,(|f|>"P) < oo) and M, is bounded on LP/(?>=P). Thus by
Hoélder’s inequality and (5.7) with v = M,(|f|>~?)~!, we have

[ SNy ds= [ Su(p@PALAE)@) ML) @)/ do

< ( / SulD @M1 7)) ! dm)p/2 ([ anarP-r@pre» dm)lm

<c ( [ 1#@P ML) @) dw)m 112077

p/2
=¢ (/ |F (@)1 ()"~ d“’) LI =)
=CIIfII5-
This completes the proof of Proposition 1.

6. PROOF OF (3.4)

We can prove Theorem 2 by extrapolation arguments using Theorem 3. More
specifically, we can prove the estimate (3.4).

Let a > 0. We define the space N, (X) to be the class of the functions F € L}(X)
for which we can find a sequence {F,,}5°_; of functions on ¥ and a sequence
{bm }2>_; of non-negative real numbers such that

(1) F=30_ bnFn,

( ) Supm>1 ||F ||1+1/m S ]-
(3) fZF dS =0,

(4) Yo m, < .

For F' € Ny (%), let

IFll, = inf > mb,
=1

where the infimum is taken over all such non-negative sequences {b,,}. We note
that [, FdS = 0if F € No(%).

By well-known arguments we have the following (see [43, Chap. XII, pp. 119-
120] for relevant results).

Proposition 2. Suppose that F € L'(X) and a > 0. Then, the following two
statements (1), (2) are equivalent:

(1) F e L(log L)*(¥) and [y, FdS = 0;
(2) F € No(X).
Moreover,
(3) there exist positive constants A, B such that
1FNzgogzye < AllFlING,  1Fllx, < BlIF||L(o0g )=
for F € N,(%).
To prove Proposition 2 we use the following two elementary results.

Lemma 7. Let 1 < p < oo,a > 0,2 > 2. Then, there ezists a positive constant C,
depending only on a such that

z(logx)® < Co(p— 1) %aP.
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This was also used in [32].

Lemma 8. Let f be a continuous, non-negative, convez function on [0, 00) such that
f(0) = 0. Suppose that a series 220:1 cray, converges, where ¢, > 0, 220:1 cr <1,

ar € C. Then
f( ) <> erf (lax) -
= k=1

> cray,

k=1
Proof of Proposition 2. We first see that part (1) follows from part (2). Let F' €
No(E). We have already noted that [, F/dS = 0. For any € > 0 there exist a
sequence {b,,} of non-negative real numbers and a sequence {F;,} of functions on
¥ with the properties required in the definition of N, (X) such that

1Flln, <Y mm < | Fllx, + e

m=1
Let A = ||F||w, + €. By Lemma 8 with f(z) = z[log(2 + z)]* and ¢, = bi/A, we
have

/Z@ {log (2+@>]“ ds < i A‘lbm/2|pm|[10g(2+|Fm|)]a S,

m=1
It follows from Lemma 7 with p =1+ 1/m that
|Fon| [log (2 + [Fin])]* < Cam®(2 + |F )1/
< Cama21/m(21+1/m + |Fm|1+1/m)
< 20,m(4 4 |Fp |1/ ™).
Thus
/Z @ [log <2 + @)} ' ds < i A 1b,,2C,m® /2(4 +|Ep, |t Y™y dS

m=1

= 3 AT b 2C,m (4S(E) + | F [ H1)
m=1

<Y AT b 2C,m (4S(3) + 1)

1
<2C,(45(2) +1).
This implies that F' belongs to L(log L)*(X) and
1E N gog L) < AX = A(|F|x, + )

for some A > 0. Letting € tend to 0, we see that the first inequality of part (3)
holds.
Next we prove that part (1) implies part (2). We take A > 0 such that

|F] IF1\]°
— — <1.
/E 3 log { 2+ \ ds <1

Let Fy = F/A. We define
Un=1{0€3:2"" <|F\(0)| <2™} form >2,
U, = {0 eX: |F)‘(0)| < 2}
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and decompose F\ =~ | F n,,, where

F,\,m = F\xv,, — 5(2)71/ F\ dS.
U

Note that fF'A,m dS = 0. If we put e,, = S(U,,), m > 1, then

(6.1) IEx i1 ym < 22mem/ (™D for m > 1.
Define
P g-m=te, MMty if e, # 0,
Ao 0, if e, = 0.

Let b, = 27 +1em/ ™+ f51 1 > 1. Then

Fx=> bnFrm, / FymdS = 0.
)

m=1
Also, by (6.1) we see that sup,,>q [[F\mllit1/m < 1. Furthermore, applying
Young’s inequality, we have

(62) Z m®b,, = Z ma2m+lez/(m+1)
m=1 m=1

<2 (m/(m+ 1))me2mtH0+t/myg 49 Z m*2~™ 1/ (m 4+ 1)

||M8

m m=1

8

1
<O moame, +C
m=1

<C [ R og(z + IFA]))" ds+C
)
<C.
Collecting results, we see that F' € N, and, since F' = Efno:l Abpy F\ s

> m b > A F I,

m=1
which combined with (6.2) implies that ||F||x, < BA for some B > 0. So, taking
the infimum over A\, we get the second inequality of part (3). O

Let 2 and ¥ be as in Theorem 2. By Proposition 2 we can decompose () as

Q= i Do Qoms
m=1

where sup,,,>1 [|Qm|[141/m < 1 and each Q,, satisfies (3.1), while {b,,} is a sequence
of non-negative real numbers such that °_, m'/?b,, < co. Accordingly,

= Qm(z")
Let 1 < p < co. By Theorem 3 with s = 1+ 1/m we have

1Sw,,, fllp < Com"2bml|Qunll111/ml| fllp < Com' bl I,
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which implies
1Sw fllp < D ISw,. flln < Z m' by (| f -
m=1

Taking the infimum over {b,,} and applying Proposition 2, we get

15w fllp < CpllUn, I fllp < CpBlIQ L gog )22l F1lp-

This completes the proof of (3.4).

7. MAXIMAL FUNCTIONS ON THE HEISENBERG GROUP WITH TWO-STEP
DILATION

We give a proof of Lemma 2 for the maximal function My on the Heisenberg
group H; with 2-step dilation by applying the boundedness of the maximal function
Mg on R? (see (7.5)).

Let 6 = (01,02,03) € S? and dp = |#16203]. We may assume that dp # 0. Let

Tyx = (91_1331,92_13:2,951333).
It is convenient to define a group law u og v on R? so that
Tyx 09 Toy = Ty(xy).
If u = Tyx, v = Tyy, this requires that

U Oy vV = Tgﬂj Op Tgy = Tg(a:y)
=To(x1 + Y1, %2 + Y2, 73 + Y3 + (T1y2 — y122)/2)
= (07 (=1 +y1),05 (22 + y2), 05 (23 + y3) + 05 (21y2 — y122)/2)
= (U1 + v1,Uus + v2,u3 + v3 + (293) 0102(U1U2 - ’1)1U2)).
Since Ayx = (tz1, twe, t2x3), if a(t) = (¢,t,t%),

Fa(A0)™) = F(T, (Toz) 09 a(t) ™)) = fo((Toz) 09 a(t) ™),
where fo(z) = f(T; 'z) and a(t)~! = (—t, —t,—t?). Thus, by a change of variables,

we have

(7.1)

p
/ (sup / |f(z(A0) |dt> dr = dg/ <sup / | fo(y op alt )| dt> dy.
m \r>0T W \r>0T

Let cg = (263)1010>. Then we note that
Y= (W1,92,¥3) = (0,92 — 91,0) 09 (y1,y1,y3 + coy1(y2 — y1))-
Thus

(7.2) yoga(t)™" = ((0,y2 — y1,0) 09 (y1,y1,¥3 + coy1(y2 — y1))) op a(t)™"
= (0,92 —y1,0) og ((ylaylayii + coyi(y2 — y1)) oo G(t)fl) .



LITTLEWOOD-PALEY OPERATORS 17

By (7.1) and (7.2), applying a change of variables, we have
(7.3)

/(sup /|f (A:0) |dt> dx
m \r>0T

=dy /H1 (sup / | £0((0,y2 — y1,0) 09 ((y1,y1,y3 + coy1(y2 — y1)) 09 a(t) 1)) |dt> dy

r>0 T

| (0 2 [ 110000 o0 (o 1,00) 0 ) >>|dt)pdy.

r>0 T
We observe that

(y1,y1,y3) 0o a(t) " = (yr — t,yr — t,ys — t7).
Thus (7.3) implies that

a0 [, (oh [ a0 i) o

P
Zde/ <sup / |0 ((0,y2,0) 09 (y1 — t,y1 — t,ys — t2)) |dt> dy
Hy

r>0 T
= de/ (/ (M fo,4.(y1,93))" dyn dy3> dys,
R R2
where f9,y2(y1:y3) = f9((07y270) O¢ (ylaylay3)) and

1 ”
(7.5) Mg (y1,y3) = sup —/ lg(yr — t,ys — t*)| dt.
r>0T Jo
It is known that

IMgllLe@z) < CpllfllLewz), p>1
(see [40]). Applying this and a change of variables, we see that

(7.6) o [ ([, ant0r,00)” i i) e

< 0gda [ ([ Uoantonwl” dosdie)
R R

= Cpdo / | fo(y1,y1 +y2,y3 — coyry2)|” dyr dya dys
Hy
= cpdo [ 1w dy
Hy
=Gy | 1fWl dy.
Hy
Combining (7.4) and (7.6), we get the conclusion.

8. LITTLEWOOD-PALEY OPERATORS RELATED TO BOCHNER-RIESZ MEANS AND
SPHERICAL MEANS

Let

S(f) (@) = /w FO@ - R2(eR) it ag = 13, + f(a)
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be the Bochner-Riesz mean of order § on R™, § > —1, where
H (@) = n0(6 + Dla|~ /5 7, 5 5 (2]

with J, denoting the Bessel function of the first kind of order v.
For g > 0, let

M (f)(x) = st / (1= 22 f( — y) dy,

ly|<t
where
RLES]
m2I(f)
By taking the Fourier transform, we can embed these operators in an analytic
family of operators in 3 so that

M@ = [ fla=tm)dsty)
Now we define a Littlewood-Paley operator o5, § > 0, from the Bochner-Riesz

means as

1/2

7@ = ([ I0/om)sin @) Rar)

- ( / T -26 (8P @) - S @) %)/

and also another Littlewood-Paley operator vg, 5+ n/2—1 > 0, from the spherical
means as

wf)@) = ([ @ron (@) v

= ([ 2+ n2 =0 (32 1)0) - 377 (@) ﬂ)/

1/2

t

These Littlewood-Paley functions are related as follows.

Theorem H. Suppose that 6 = f+n/2—1> 0. Then, there exist positive constants
A, B such that for all z € R* and f € S(R™) (the Schwartz space) we have

o5(f)(x) < Avp(f)(z), vs(f)(z) < Bos(f)(z).

This was proved by Kaneko and Sunouchi [21].
Also, we recall a result of Carbery, Rubio de Francia and Vega [5].

Theorem I. If 6 > 1/2 and —1 < « <0, then

[ losD@Plat do < Coa [ 17@)Plal*

R™

See Rubio de Francia [27] for a different proof. Theorems H and I imply the
following.

Proposition 3. Suppose that § > 3/2—n/2 and —1 < a < 0. Then

[ D@ Plel de < Ca [ 1@l .
R~ R™
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Let
M (f)(@) = sup | M7 (/) @)

t>0

The following weighted L? estimate can be deduced from Proposition 3.

Proposition 4. Suppose that Re(8) > 3/2—n/2 and —1 < « < 0. Then O
2
| @] e e < G [ 1@ el e

This is due to [38] when a = 0.
To prove Proposition 4 we use the following relation.

Lemma 9. If Re(a) > Re(a') > —n/2,

2F(a+n/2 VY -
Moc — Ma 1 _ a—ao n+2a 1d .
P = et B g ) :

See [38] and [40, p. 1270].
Proof of Proposition 4. Let k be the smallest non-negative integer such that 1 <

Re(B) + k. Let 3/2 —n/2 < n < Re(B). Then, by Lemma 9 and the Schwarz
inequality we have

MV (f) (@) < CMT(f) (),

1/2
M"Y () (x) —sup< /|M77 I | ds) .

t>0

where

Also, we easily see that

M (f)(z) < Cry(f)(@) + Cryra(f)(@) + -+ + Cvgyr(f)(2) + CMTH(f) (2).

Note that M7k (f) is bounded by the Hardy-Littlewood maximal function if 7
is sufficiently close to Re(8). Thus, applying Proposition 3, we get the weighted
inequality as claimed. O

Define the spherical maximal operator M by

/Sn_l f(z —ty) da(y)‘ :

We note that M(f)(z) = ¢eM?(f)(x). The following weighted norm inequality for
M is due to Duoandikoetxea and Vega [15].

M(f)(z) = sup

t>0

Theorem J. Suppose that n > 2 and n/(n — 1) < p. Then the inequality

[ n@riar<c [ e i
holds for 1 —n < a < p(n —1) —n.

This was partly proved by Rubio de Francia [26].

When a = 0, Theorem J was proved by Stein [38] for n > 3 and by Bourgain [3]
for n = 2. We can find in Sogge [35] a proof of the result of Bourgain which has
some features in common with a proof, also given in [35], of Carbery’s result [4] for
the maximal Bochner-Riesz operator on R?.
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We can give a different proof of Theorem J when n > 3,1 —-n < a < 0 and
p > n/(n — 1) by applying Proposition 4. To see this, first we note that

(5.1 [ @l de<c [ @l i

when 1 < p < 00, —n < a < n(p — 1) and Re(B) > 1, since Mf(f) is point-
wise bounded by the Hardy-Littlewood maximal function. On the other hand, by
Proposition 4 we have

(8.2) /Rn |MZ(f)()P|2]* do < C o |f (@) |2|* da,

if Re() > (2 —n)/2 and —1 < o < 0. By an interpolation argument involving
(8.1) and (8.2), we see that for any p > n/(n — 1) and a € (1 —n,0), there exist
r € (n/(n—1),p) and 7 € (1 — n,a) such that

/ M) @) | dz < © / F@) el de.
R~ Rn

Interpolating between this estimate and the unweighted L" estimate for M, since
T < a <0, we have

| pen@ridr<c [ \erial .

Since r < p < 00, interpolating between this and the obvious L (|x|®) estimate for
M, we get the LP(|z|*) boundedness of M as claimed. (A similar argument can be
found in [29]; see also [30].)

Finally, we prove Theorem J whenn >2,0<a <p(n—1)—nandp >n/(n—1)
by the methods of [15]. We write wq(z) = |z|*. It is known that the pointwise
inequality M(wq) < Cw, holds if and only if @ € (1 —n,0] (see [15]). Let

Tu(g) = w;lM(wag)
for @ € (1 — n,0]. Then, T, is bounded on L, as we see that
(8.3) 1Ta(@)llse < ll9llscllwg ' M(wa)lloo < Cllgllso-

Let r € (n/(n — 1),p). Since M is bounded on L", we have
84 [ M@@re@d = [ M@ d<c [ oo d.
Interpolation between (8.3) and (8.4) will imply that
[ m@@re@dasc [ j@reed.
This can be expressed as
/ M) (@) [Pwe? (x) de < C A | (@) [Pwi™ () da

for any a € (1 — n,0] and r € (n/(n — 1), p), which implies the result as claimed.



(1]
2]

LITTLEWOOD-PALEY OPERATORS 21

REFERENCES

A. Al-Salman, H. Al-Qassem, L. C. Cheng and Y. Pan, LP bounds for the function of
Marcinkiewicz, Math. Res. Lett. 9 (2002), 697-700.

A. Benedek, A. P. Calder6én and R. Panzone, Convolution operators on Banach space valued
functions, Proc. Nat. Acad. Sci. U. S. A. 48 (1962), 356-365.

J. Bourgain Awerages in the plane over convexr curves and mazimal operators, J. Analyse
Math. 47 (1986), 69-85.

A. Carbery, The boundedness of the mazimal Bochner-Riesz operator on L*(R?), Duke Math.
J. 50 (1983), 409-416.

A. Carbery J. L. Rubio de Francia and L. Vega, Almost everywhere summability of Fourier
integrals, J. London Math. Soc. (2) 38 (1988), 513-524.

L. C. Cheng, On Littlewood-Paley functions, Proc. Amer. Math. Soc. 135 (2007), 3241-3247.
M. Christ, Hilbert transforms along curves I. Nilpotent groups, Ann. of Math. 122 (1985),
575-596.

R. R. Coifman and Y. Meyer, Au deld des opérateurs pseudo-différentiels, Astérisque no. 57,
Soc. Math. France, 1978.

Y. Ding and S. Sato, Singular integrals on product homogeneous groups, Integr. Equ. Oper.
Theory, 76 (2013), 55-79.

Y. Ding and S. Sato, Littlewood-Paley functions on homogeneous groups, preprint, 2013.

Y. Ding and X. Wu, Littlewood-Paley g-functions with rough kernels on homogeneous groups,
Studia Math. 195 (2009), 51-86.

J. Duoandikoetxea, Sharp LP boundedness for a class of square functions, Rev Mat Complut
26 (2013), 535-548.

J. Duoandikoetxea and J. L. Rubio de Francia, Mazimal and singular integral operators via
Fourier transform estimates, Invent. Math. 84 (1986), 541-561.

J. Duoandikoetxea and E. Seijo, Weighted inequalities for rough square functions through
eztrapolation, Studia Math. 149 (2002), 239-252.

J. Duoandikoetxea and L. Vega, Spherical means and weighted inequalities, J. London Math.
Soc. (2) 53 (1996), 343-353.

D. Fan and S. Sato, Weak type (1, 1) estimates for Marcinkiewicz integrals with rough kernels,
Tohoku Math. J. 53 (2001), 265-284.

D. Fan and S. Sato, Remarks on Littlewood-Paley functions and singular integrals, J. Math.
Soc. Japan 54 (2002), 565-585.

G. B. Folland and E. M. Stein, Hardy Spaces on Homogeneous Groups, Princeton Univ. Press,
Princeton, N.J. 1982.

L. Hérmander, Estimates for translation invariant operators in LP spaces, Acta Math. 104
(1960), 93-139.

J.-L. Journé, Calderdn-Zygmund Operators, Pseudo-Differential Operators and the Cauchy
Integral of Calderdn, Lecture Notes in Math. vol. 994, Springer-Verlag, 1983.

M. Kaneko and G. Sunouchi, On the Littlewood-Paley and Marcinkiewicz functions in higher
dimensions, Tohoku Math. J. 37 (1985), 343-365.

J. E. Littlewood and R.E.A.C. Paley, Theorems on Fourier series and power series, J. London
Math. Soc. 6 (1931), 230-233.

J. E. Littlewood and R.E.A.C. Paley, Theorems on Fourier series and power series (II),
Proc. London Math. Soc. 42 (1936), 52-89.

J. E. Littlewood and R.E.A.C. Paley, Theorems on Fourier series and power series (III),
Proc. London Math. Soc. 43 (1937), 105-126.

A. Nagel and E. M. Stein, Lectures on Pseudo-Differential Operators, Mathematical Notes
24, Princeton University Press, Princeton, NJ, 1979.

J. L. Rubio de Francia, Weighted norm inequalities for homogeneous families of operators,
Trans. Amer. Math. Soc. 275 (1983), 781-790.

J. L. Rubio de Francia, Transference principles for radial multipliers, Duke Math. J. 58
(1989), 1-19.

S. Sato, Remarks on square functions in the Littlewood-Paley theory, Bull. Austral. Math.
Soc. 58 (1998), 199-211.

S. Sato, Some weighted estimates for Littlewood-Paley functions and radial multipliers, J.
Math. Anal. Appl. 278 (2003), 308-323.



22

(30]

(31]

(32]
33]

34]

(35]
(36]

(37]
(38]
(39]
(40]
[41]

42]
(43]

SHUICHI SATO

S. Sato, Singular integrals and Littlewood-Paley functions, Selected papers on differential
equations and analysis, Translations. Series 2. 215 (2005), 57-78, American Mathematical
Society, Providence, RI.

S. Sato, Estimates for Littlewood-Paley functions and extrapolation, Integr. equ. oper. theory
62 (2008), 429-440.

S.Sato, A note on LP estimates for singular integrals, Sci. Math. Jpn. 71 (2010), 343-348.
S. Sato, Estimates for singular integrals on homogeneous groups, J. Math. Anal. Appl. 400
(2013) 311-330.

A. Seeger, Singular integral operators with rough convolution kernels, J. Amer. Math. Soc. 9
(1996), 95-105.

C. D. Sogge Fourier Integrals in Classical Analysis, Cambridge University Press, 1993

E. M. Stein, On the functions of Littlewood-Paley, Lusin, and Marcinkiewicz, Trans. Amer.
Math. Soc. 88 (1958), 430—-466.

E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Univ.
Press, 1970.

E. M. Stein, Mazimal functions: Spherical means, Proc. Nat. Acad. Sci. U.S.A. 73 (1976),
2174-2175.

E. M. Stein, Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory
Integrals, Princeton Univ. Press, 1993.

E. M. Stein and S. Wainger, Problems in harmonic analysis related to curvature, Bull. Amer.
Math. Soc. 84 (1978), 1239-1295.

T. Tao, The weak-type (1,1) of Llog L homogeneous convolution operator, Indiana Univ.
Math. J. 48 (1999), 1547-1584.

T. Walsh, On the function of Marcinkiewicz, Studia Math. 44 (1972), 203-217.

A. Zygmund, Trigonometric Series, 2nd ed., Cambridge Univ. Press, Cambridge, London,
New York and Melbourne, 1977.

DEPARTMENT OF MATHEMATICS, FACULTY OF EDUCATION, KANAZAWA UNIVERSITY, KANAZAWA

920-1192, JAPAN

E-mail address: shuichi@kenroku.kanazawa-u.ac.jp



