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ABSTRACT 

Traffic flows in real-life transportation systems vary on a daily basis. According to traffic flow 
theory, such variability should induce a similar variability in travel times, but this “internal con-
sistency” is generally not captured by existing network equilibrium models. We present an internal-
ly-consistent network equilibrium approach, which considers two potential sources of flow variabil-
ity: i) daily variation in route choice and ii) daily variation in origin-destination demand. We partic-
ularly aspire to a flexible formulation that permits alternative statistical assumptions, which allows 
the best fit to be made to observed variability data in particular applications. Joint probability dis-
tributions of route⎯and therefore link⎯ flows are derived under several assumptions concerning 
stochastic driver behavior. A stochastic network equilibrium model with stochastic demands and 
route choices is formulated as a fixed point problem. We explore limiting cases which allow an 
equivalent convex optimization problem to be defined, and finally apply this method to a real-life 
network of Kanazawa City, Japan. 
 
Keywords: network equilibrium, stochastic demand, route choice, consistency, variability.  
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1. Introduction, Review & General Framework 
 

In recent years, topics under the broad heading of “network reliability” have received an in-
creasing share of research attention. A considerable body of work now exists on explanatory models 
that relate traveler behavior (especially route choice) to variation in service levels offered by the 
available alternatives (e.g. travel time variation), or to the inconvenient consequences of that varia-
tion (e.g., arriving late at a destination). Mirchandani & Soroush (1987) proposed an extension to 
the well-known Stochastic User Equilibrium (SUE) model, in which the actual travel times are ran-
dom in addition to travelers’ perceptions of them. To analyze the effect of traffic information, Arnott 
et al. (1991) introduced random capacity into network equilibrium, whereby informed users were 
aware of the variations while uninformed users based their routing decisions on long-term expecta-
tions. Chen et al. (2002) formulated the “capacity reliability” concept, considering the probability 
that a network can serve a given level of demand, given stochastic variations in the link capacities 
(subsequently, also with stochastic variation in the demands themselves). Lo & Tung (2003) and Lo 
et al. (2006) formulated a probabilistic user equilibrium model under link capacity variations.  

More recently, Nie (2011) proposed a percentile user equilibrium model based on random varia-
tions in capacity. Yin & Ieda (2001), Yin et al. (2004) and Watling (2006) developed network equi-
librium models under the assumption of exogenously-specified travel time distributions. Chen & 
Zhou (2010), assuming an exogenously-specified lognormal travel time distribution, proposed a 
model in which travelers aim to minimize their “mean-excess travel time”. Several authors have 
explicitly considered the impact of stochastic supply and demand on network equilibrium, including 
Shao et al (2006), Siu & Lo (2008), and the studies of adverse weather by Lam et al. (2008) and 
Sumalee et al. (2010). On a different, but related, theme of network robustness, Waller et al. (2001) 
and Waller & Ziliaskopoulos (2006) investigated how a planner’s uncertainty in the mean demand 
level affects errors in equilibrium traffic forecasts, and Zhang et al. (2011) introduced the concept of 
expected residual minimization into stochastic-flow network equilibrium.  

Clearly there have been many developments to the array of tools available for the analysis of 
stochastic networks. The purpose of this paper is to highlight an issue that, to some degree, is com-
mon to any such method of analysis, namely that of the internal consistency between the assump-
tions made regarding stochastic variation of various components of the traffic system, and in partic-
ular how this may be resolved within the context of an equilibrium approach. One approach adopted 
in several reliability/robustness analyses is to view the variability as external to the equilibrium 
process, in that the approach generates random input data to which some conventional notion of 
equilibrium is applied. As argued in Clark & Watling (2005), such an approach seems less appropri-
ate for studying network unreliability due to day-to-day variability, since it is unlikely that the trav-
elers in the transport system will be able to equilibrate on a daily basis. In this paper, on the other 
hand, we consider what ‘equilibrium’ might mean in a daily varying system. While we could con-
sider more complex model forms and sets of assumptions, our focus will be on a relatively ‘stripped 
down’ class of models, in which we return to the basic foundation of SUE, and explore how we 
might formulate it in a coherent way when we may have stochastic, day-to-day variation (a) in the 
OD demands and/or (b) in the route choices given any demands. 

Consistently incorporating the resulting distributions of both route flow and route travel time 
into network equilibrium is a non-trivial problem. Consider, as a starting point, the conventional 
SUE model, in which route utility is a sum of a systematic part (typically, the mean travel time) and 
a random residual term. Although the random term introduces a stochastic element, the flows in the 
SUE model are regarded as deterministic. However, once the equilibrium route choice proportions 
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have been computed, a probability distribution of route flows between each origin-destination (OD) 
pair could be derived, ex post facto, as a multinomial distribution (Sheffi, 1985, p.281), which could 
then be combined to generate a probability distribution of link flows and thence link travel times. 
However, for a non-linear travel time function t(x), this will induce an inconsistency; for example, 
since under a random flow X, it is the case that E[t(X)] ≠ t(E[X]) (see Watling, 2002a), it follows 
that the mean travel times on which the flow distribution was predicated are not equal to the mean 
travel times that would arise from a post-analysis of the model.  

One approach to addressing this inconsistency is to use Markov processes to model the uncer-
tain, dynamic evolution of networks⎯see Watling & Cantarella (2013a, 2013b) for recent reviews 
of this literature. (The Markov process approach is compared, both theoretically and numerically, 
with network equilibrium models of the kind studied in the present paper in Watling, 2002b). We do 
not adopt this approach in the present paper, but rather present an extended formulation of the SUE 
model that is able to accommodate such variability. The general framework we present is both a 
synthesis and extension of several existing works in the literature.    

A generic description of a network equilibrium mechanism with stochastic flows and travel 
times is presented in Fig. 1. Since stochastic travel behavior is the main contributor to stochastic 
network flow, we consider that route choice and/or demand (i.e. whether a traveler makes a trip) 
could be represented as stochastic variables. Allowing for the possibility of the modeler to represent 
either route choice or demand as a deterministic or stochastic entity, and given that the case in 
which both are deterministic is already handled through conventional network equilibrium ap-
proaches, there are four important classes of stochastic-flow network equilibrium problems which 
we shall address: i) stochastic route choice with deterministic demand, ii) deterministic route choice 
with stochastic demand, iii) stochastic route choice with stochastic demand (or “doubly-stochastic” 
demand and route choice), and iv) “compound” stochastic route choice with stochastic (or deter-
ministic) demand.  

Table 1 presents existing approaches that fall within our framework. Class i includes the model 
of Watling (2002a), who addressed the consistency problem between distributions of flow and trav-
el time through a second-order approximation based on multinomial route flows, thus equilibrating 
the first and second order flow moments (means, variances, and covariances). Class iii includes the 
extension of this model to include binomial demand variation, as described in Watling (2002c). Also 
within Class iii, Nakayama and colleagues presented a similar modeling approach (though not re-
quiring any approximation) assuming negative-binomially distributed demand and stochastic route 
choice (Nakayama & Takayama, 2006; Nakayama, 2007), whereas Clark & Watling (Appendix A, 
2005) suggested an approach for consistently modeling Poisson variation. 

The purpose of this paper is to first bring together, under a common theoretical framework, 
these previous approaches to consistent modeling of stochastic flows and travel times. In doing so, 
we aim to highlight a broader range of assumptions that could be adopted within this overall 
framework; these alternative assumptions are useful when fitting to observed data (some may fit 
better than others) or because they may have more attractive theoretical properties or be more con-
ducive to efficient large-scale computation. Aside from the general theoretical framing of the prob-
lem, our specific technical contributions within this general framework are highlighted in Table 1. A 
general formulation is presented as a fixed point problem. We subsequently establish the existence 
of solutions to such models we consider. We also examine limiting or approximate cases, which are 
appealing as they may be formulated as tractable optimization problems, which is both useful for 
solution and can be used to establish uniqueness. We conclude by presenting an application of such 
an approach to the real-life road network of Kanazawa city in Japan.  
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In summary, then, the key contributions of the paper are:  
i. To synthesize, and propose new possibilities to, previous studies on the problem of stochas-

tic network equilibrium with stochastic flows, as shown in Table 1. 
ii. To prove the existence of network equilibrium with stochastic flows in all presented models. 

iii. To develop establish limiting models, and to formulate these as convex optimization prob-
lems, and hence to prove the uniqueness of solution of such problems.  

iv. To illustrate the approach with a numerical application to a realistic network.  
 
 

2. General Formulation of Network Equilibrium with Stochastic Flows 

 
In this paper, we aim to present a generalized framework for modeling stochastic network equi-

librium with stochastic route and link flows. All of the models have four common, and internally 
consistent, elements. Firstly, the stochastic route flows give rise to stochastic link flows, simply by a 
linear transformation from the route flow vector random variable to the link flow vector random 
variable. Secondly, the stochastic link flows give rise to stochastic link travel times, through a 
transformation of the link flow variables implied by the link performance functions (i.e. those func-
tions that relate given link flows to given levels of congested link travel times). Thirdly, the stochas-
tic link travel times give rise to stochastic route travel times, simply by a further linear transfor-
mation of the relevant vector random variables. Fourthly, expectations (means) of the stochastic 
route travel times are fed into a Random Utility Model (RUM), which is used to describe the rela-
tive desirability of the route alternatives.  

The way that these four common and consistent elements are then utilized varies between the 
different types of model within our framework. The different types of model vary in the way in 
which they ‘generate’ the stochastic route flows. Within our framework, we suggest there are four 
important classes to identify: 

Class i: OD demand is deterministic, whereas travelers are assumed to make probabilistic decisions 
in their choice of route. That is to say, the RUM provides a probability of an individual traveler se-
lecting a route in any particular trip, and so random variation in the route flows arises due to the 
given population of travelers playing out these random choices of route over repeated ‘trials’, which 
may be assumed to represent the particular days on which they make journeys. 

Class ii: OD demand is stochastic, whereas travelers are assumed to make deterministic decisions in 
their choice of route. In this case, the RUM provides a fixed proportion of the aggregate OD de-
mand that selects each route. Variations in the route flows now only arise due to the fact that these 
fixed proportions are applied to randomly-varying OD demands.  

Class iii: OD demand is stochastic, and additionally⎯conditional on the decision to travel⎯ trav-
elers are assumed to make probabilistic decisions in their choice of route. This is an extension of 
Class i, with the RUM providing a conditional probability of an individual traveler selecting a route, 
given that the decision to travel has been made. Random variation in the route flows thus arises due 
to two sources: (a) the total demand is randomly varying, and (b) given the demand realized on any 
one occasion (e.g. day), the population that have chosen to travel on that day play out a random 
choice of route.  

Class iv: As extensions of Class i and Class iii, now we also suppose that the route choice probabil-
ities vary about some mean probability level (the RUM giving these mean levels). This class in-
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cludes three distinct sources of random variation: (a) in OD demand, (b) in the route choice proba-
bilities (about the mean probability from the RUM), and (c) in the traveler route choices given the 
realized probabilities. We shall refer to (b) and (c) together as compound stochastic route choice.  

Before proceeding further, we shall now introduce some basic common concepts and notation. 
Throughout this paper, route choice is assumed to be described by random utility discrete choice 
models. A utility function is supposed to generate the deterministic (or systematic) utility, where 
throughout we assume that the deterministic utility is a continuous function of the mean route travel 
time1. We also suppose that the travel time ta(xa) on the a-th link depends only on the flow xa on the 
a-th link, and not additionally on the flows on other links, i.e. so-called ‘separable’ link travel time 
functions. Furthermore, we assume that ta(xa) is a polynomial of order n.  

The notation throughout this paper is summarized in Table 2. When Y is given, then the mean 
link travel time, which satisfies consistency condition 4 in Fig. 1, may be calculated as 
E[ta(Xa)] = )]([E ,11 ijija

J
j

I
ia Yt i δ== ΣΣ (≠ ta(E[Xa]), for non-linear ta(·). Efficient methods for calculating 

the mean travel time from the random link flow distribution are developed in Lo & Tung (2003), 
Nakayama (2007), and Ng & Waller (2010).  

Though stochastic, our modeling framework comprises standard elements of a ‘demand-side’ 
(which incorporates the distributions of OD demand levels and route choice) and a ‘supply-side’ 
(which links the flow and travel time distributions). From the ‘demand-side’, then, the joint proba-
bility distribution of the route flow vector Y is identified if we are given (a) the OD demand distri-
bution for each OD movement, and (b) the (random utility) model which maps the travelers’ per-
ceptions of deterministic utilities onto route choice probabilities, conditional on the demand. The 
process of connecting these distributions together in a consistent way follows the steps illustrated in 
Fig. 1.  

From the ‘supply-side’, the link flow probability distribution is consistently determined from 
the transformation X =ΔY . The mean link travel time under such a stochastic flow model is then 
given by )]([E][E aaXaT XtT aa = . The details of how to construct this function are described later 
(Section 3.6), but are not important for the present section; the important issue for our present dis-
cussion is that such a mean travel time function exists, which captures the effect of the stochastic 
flow variation. The mean route travel time is then also a function of p, since: the mean route travel 
time depends on the mean link travel times, the mean link travel times depend on the distribution of 
link flows, the distribution of link flows depends on the distribution of route flows, and the distribu-
tion of route flows depends on p (as well as other parameters). Under the models we consider, the 
deterministic utility υij⎯as a continuous function of the mean route travel time⎯is then also a con-
tinuous function of p. The deterministic utility υij(p) is therefore defined for all Ω∈ ~p , through this 
construction process. If f(.) denotes the utility function which transforms the mean route travel time 
into the deterministic utility, then we are saying that: υij(p) = f(μij) where μij = Σa δa,ij EXa[ta(Xa)] 
where X =ΔY  and where the distribution of Y is parameterized by p . 

The vector-valued function φ(p) is used to denote the RUM evaluated at deterministic utilities 
υij(p) when the input route choice is given by p, i.e.: 

                                                        
1 This function may be non-linear so as to capture, for example, different attitude of travellers to risk. As an al-
ternative, a natural extension of the formulation presented would be to suppose that the utility function depends on 
other elements of the random distribution of travel times, such as higher order moments. Our reason not to present 
such an extended formulation above is that we felt the additional complication distracted from the main thrust of 
the present paper. 
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What is exactly meant by p and therefore by the term ‘input route choice’ depends on the par-
ticular type of model adopted. In the four classes of model above, the interpretations are for the four 
classes i–iv above: i) the probabilities of a randomly-selected traveler choosing the alternative 
routes; ii) the deterministic proportions of travelers choosing the alternative routes; iii) the condi-
tional probabilities of a randomly-selected traveler choosing the alternative routes, given that a de-
cision to travel has been made; and iv) the means of the conditional probabilities to choose the al-
ternative routes as described in i) or iii). The word ‘input’ is used to indicate that the relevant prob-
abilities/proportions/conditional-probabilities/mean-probabilities are assumed to be given as a 
‘known’, and so the υij(p) are then constructed from the mean route travel times, that is the expecta-
tions of the route travel time random variables. These latter random variables are constructed from 
the link travel time random variables, which are in turn constructed from the link flow random var-
iables, which are in turn constructed from the route flow random variables. Each of the different 
classes has a different way of generating these last, route flow random variables, from the input p 
and the other assumptions/inputs of the model. This last step will be the focus of Section 3, which 
follows.  

By constructing υij(p) in this way, and then applying Eq. (1), the resulting RUM provides in 
φ(p) an output route choice⎯that is to say, for any given class of model, it provides an interpreta-
tion of route choice as an output which is presumed to coincide with the interpretation of route 
choice relevant to p. Requiring consistency of the input and output route choice is then the common 
mechanism for requiring network equilibrium in all the cases considered. That is to say, in all our 
presented models of network equilibrium with stochastic flows, we enforce the fixed point condi-
tion: 

( )pp φ=    ( Ω∈ ~p ) . (2) 

We remark that in all of the classes considered, if the link travel time functions are linear in the 
link flows, then Eq. (2) defines a conventional Stochastic User Equilibrium condition (Sheffi, 1985). 
In practice, such linearity is of course highly unlikely to hold, and so the quite different notions of 
equilibrium that emerge from the different classes of stochastic flow model merit their own particu-
lar investigation. 
 
 
3. Flow Distributions on Stochastic Network Equilibrium 
 

In the present section we explore particular model specifications that fall within the framework 
described in Section 2. In order to implement the approach described, the key question we need to 
ultimately address in each case is: in what way does the distribution of route flows Y depend on the 
choices from the random utility model p, as defined in Section 2? This is the element that differs 
according to the model specification. Once this element is derived, we are then able to derive υij(p) 
and φij(p), and hence have a well-defined problem (2) to solve. In fact, since in all specifications we 
shall consider, we suppose that given p, any two routes serving different OD movements are statis-
tically independent2, then since the route flow vector Y = (Y1, Y2…YI)T our primary task is to de-
                                                        
2 Clearly in equilibrium OD movements must be related, due to their interactions on a common network, which 
our approach captures of course. Statistical independence here is more concerned with the question of whether, 
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duce the dependence on p of the distribution of route travel times Yi for each OD movement.  
 
3.1 Class i models: Deterministic OD demand and stochastic route choice 

As described earlier, Class i models are characterized by a situation in which the OD demand is 
fixed, but random variation occurs in route flows due to travelers making randomly varying prefer-
ences. In the case of a single OD movement connected by two routes, each traveler conducts a Ber-
noulli trial, leading to Binomial variation in the total route flows; for more than two routes, the var-
iation is multinomial, and if we assume OD movements to be statistically independent, then the 
route flows are independent across OD movement and multinomially distributed within an OD 
movement. The only issue that makes this non-trivial is the fact that the choice probabilities are not 
fixed a priori, but depend on mean travel times which themselves depend on flows, giving rise to an 
equilibrium condition. This problem is described in detail in Watling (2002a), where it was pro-
posed to approximate the equilibrium condition through a second order approximation, meaning 
that flow means, variances and covariances are equilibrated. However, such an approximation is not 
necessary, and following the logic presented in Section 2, we may specify an exact fixed point con-
dition (2) for such a case based on equilibrating the individual choice probabilities p. As we re-
marked in the opening to Section 3, the key element we require is then the probability distribution 
of route flows  

Thus, we suppose that a route is randomly selected by each driver in any given scenario (e.g. 
day). If the drivers are assumed homogenous, each driver traveling on the i-th OD movement 
chooses the j-th route with the same probability pij. Suppose further that each driver selects a route 
independently of any other driver. Then the joint probability distribution of route flows Yi for the 
i-th OD movement is multinomial with parameters ni and pi, where ni is the given OD demand as 
described in Table 2. Inserted into Eqs. (1) and (2), this allows a fixed point condition to be defined 
on p as individual choice probabilities. 
 
3.2 Class ii models: Stochastic OD demand and deterministic route choice 

In contrast with Class i models, where the variation is all due to variations in individuals’ route 
choice preferences, Class ii models suppose all the variation to be due to variability in the OD de-
mand levels. In this case, the RUM gives rise to a p which is assumed to represent the fixed propor-
tion of the OD demand choosing a particular route.  

The first question, then, is: what are sensible candidate distributions for modeling stochastic OD 
demand? In practice, the choice of distribution should be resolved through empirical evidence, and 
our proposal is that this is achieved by considering the ratio of the observed OD demand variance to 
the mean, and matching this to the known theoretical properties of the underlying discrete and 
non-negative models: 

• binomial distribution if the variance of the demand is less than its mean; 

• Poisson distribution if the variance and mean of the demand are (approximately) equal; and 

• beta-binomial or negative binomial distribution if the variance of the demand exceeds its mean.  

These candidate distributions offer the modeler a range of possibilities to use for any particular 
case-study, which can be chosen on the basis of the observed variability in the actual demand data. 
                                                                                                                                                                                        
before making a trip on a particular day, a traveler’s choices might depend on the pre-trip choices of other travel-
ers on that day. This may occur, for example, if OD demand is correlated due to seasonal, special event or weath-
er-related factors. A natural extension of the approaches presented would be to suppose some correlation between 
OD movements which might occur. 
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This includes the possibility that different distributions may be suitable for different OD movements 
on the same network.  

Of course, these are not the only candidate distributions, but in the following paragraphs we 
provide a ‘deductive’ justification for suggesting them. Such a deductive justification may also 
prove useful in cases where it is not feasible to obtain empirical evidence of the mean and variance 
in OD demand; in such cases, a suitable distribution might be hypothesized, and the impact of dif-
ferent levels of assumed variance investigated as a form of sensitivity analysis. Our deductive justi-
fication is based on the concept of latent drivers. Each latent driver randomly decides whether to 
make a trip. The realized demand is the number of latent drivers who actually make trips. The ran-
dom travels of latent drivers lead to stochasticity in the demand. We assume that the latent drivers 
are homogeneous and mutually independent. Then, it follows that the demand is independent be-
tween OD pairs. Since the latent drivers are assumed homogenous, they share a common trip prob-
ability π. Whether or not a driver makes a trip constitutes a Bernoulli trial, when the trip probability 
π is given and fixed, while drivers’ decisions are independent. Therefore, the demand generated by 
νi latent drivers follows a binomial distribution, namely Ni ∼ [νi, π]. Thus we have a justification 
for the binomial as a candidate distribution. 

The variance of a [νi, π] variable, namely νiπ (1−π), is smaller than its mean, νiπ . It is 
well-known that as π approaches 0, the variance of the demand converges to the mean, and the dis-
tribution tends to the Poisson, an approximation of the binomial distribution (Stuart & Ord, 1994). 
Thus, the Poisson might be justified as a candidate distribution by virtue of the fact that it approxi-
mates the binomial variation described above. However, it may only fit a limited number of situa-
tions; for example, with Poisson-distributed demand, the coefficient of variation may be too small 
in comparison with observed data, especially if the mean demand is high.  

In real traffic networks, the trip probability may itself vary over different decisions of whether 
to make a trip, for example due to variations in the activity patterns that motivate trip-making. For 
such a situation, we may consider the case of a randomly-distributed trip probability following a 
beta distribution on the interval [0, 1 ] ; conditional on the realized probability, drivers make a Ber-
noulli trial of whether to travel. The resulting OD demand probability distribution is a compound of 
the binomial and beta distributions, known as the beta-binomial distribution (Johnson et al., 1993). 
The mean and variance of a beta-binomial random variable, [νi, iπ , γi], are ii πν  and 

)1(])1()([ iiiiii ππνγγν −++ , respectively, meaning that provided the number of latent drivers νi  
is sufficiently large, a much greater variance may arise than with binomial or Poisson distributed 
demands. Indeed, the variance of a beta-binomially distributed demand may exceed its mean, ren-
dering it suitable for cases with relatively large variation. The negative binomial distribution simi-
larly permits larger variance, as illustrated in Nakayama (2007) and Nakayama & Takayama (2006). 

Having chosen a suitable distribution to represent OD demand variation, the second issue is 
how this is integrated with the route choice element, which in Class ii models is assumed determin-
istic, with the fixed route choice proportions pij provided by the RUM.  

The first possibility we consider is that of binomially distributed OD demand. The situation is 
visualized as follows: Consider that the latent drivers travelling on the i-th OD movement are di-
vided into as many groups as there are routes available for that movement. Suppose, for this given i, 
there is a proportion pij of latent drivers in the j-th group. When a latent driver in the j-th group 
makes a trip, he always takes the j-th route. In other words, each latent driver has planned his route 
before making a trip and merely decides at random whether to travel. The number of latent drivers 
traveling on the i-th OD movement and in the j-th group are denoted νi  and pijνi, respectively. Since 
the probability of whether to make a trip is fixed, the homogenous population of drivers share a 
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common π. Under these conditions, the route flows within each group are binomially distributed, 
Yij∼[pijνi,π]3. In addition, the Yij  are mutually independent, because randomness of Yij  results on-
ly from random travel decisions of latent drivers in the j-th group of the i-th OD movement. 

The binomial distribution has the property of partial reproducibility; that is, 
N1 + N2 ∼ [ν1+ ν2 , π] when N1 ∼[ν1 , π] and N2 ∼[ν2 , π]. Therefore,  

],[,~
11

πνπν i

J

j
iiji

J

j
ij
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⎦

⎤
⎢
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The mean and variance of Yij∼[pijνi,π] are π pijνi = μij and π(1−π)pijνi = (1−π)μij =σij
2  respec-

tively. Clearly, E[Ni] = iμ~ =Σ iJ
j 1= μij and Var[Ni] = 2~
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Thus, the variances of the demand, link flow and route flow are all (1−π)  multiples of their means.  
A second possibility considered is that of Poisson-distributed OD demands. One (but not the 

only) justification for such an assumption would be as an approximation of the binomial model 
above, since [νi ,π]→[ iμ~ ] as π  approaches 0, and we have Yij∼[μij], where iμ~ =πνi and 
μij = pij iμ~ . The Poisson distribution has the property of strong reproducibility (Stuart & Ord, 1994, 
p.395). Therefore, Xa ∼[ma]= [ Σ I

i 1= Σ iJ
j 1= δa,ij μij ]. Since the variance and mean of a Poisson dis-

tribution are equal, we have σij
2 =μij and sa

2 = ma.  
A third possibility we consider is that the OD demand follows a beta-binomial distribution. 

This distribution has one more parameter than the binomial distribution, and permits a more flexible 
behavior of the demand. Assuming common π  and that (νi + γi )/(γi + 1) is constant, the variance of 
the demand is proportional to its mean, because the mean and variance of [νi, iπ , γi] are ii πν  
and )1(])1()([ iiiiii ππνγγν −++ , respectively. Setting (νi + γi )/(γi + 1) =η, we obtain 
γi = (νi−η )/(η−1) .  These are applicable when γi  increases as νi  increases or when γi  is sufficiently 
larger than νi . In many cases, νi  is sufficiently large, and νi / γi ≈η−1. In the former case, 
Yij∼[pijνi,π , (νi−η )/(η−1) ] yields σij

2 =η (1− π )μij. Similarly, we obtain sa
2 =η (1− π )ma.  

It is not always appropriate to set (νi + γi )/(γi + 1) =η. In general, the variance of [νi,π ,γi ] is 

)1(
1)~(~)1(

1
~ 2

+
−

+=−
+
+

=
ii

i
iiiiiii

i

ii
i γπ

ππγμμππν
γ

γνσ . (5) 

due to iii πνμ =~ . The above implies that, as the mean iμ~  increases, the variance 
2~

iσ  increases by 
second order in the mean. As mentioned above, the beta-binomial distribution has an extra parame-
ter, which imparts greater flexibility to the demand. Therefore, the beta-binomial distribution admits 
both linear and quadratic relationships between the mean and variance of the flow. 

The fourth possibility we consider is the possibility for the OD demand to follow a negative 
binomial distribution. Like the binomial distribution, the negative binomial distribution has the 
property of partial reproducibility. The mean and variance of Yij (∼[pijαi ,β]) are pijαiβ =μij and 
pijαiβ(1+β) = (1+β)μij, respectively. Clearly, E[Ni] = iμ~ =Σ iJ

j 1= μij and Var[Ni] = 2~
iσ =Σ iJ

j 1= σij
2 =  

                                                        
3 Since we cannot ensure in the subsequent equilibrium process that pijνi is necessarily a natural number, such a 
binomial distribution may not be well-defined. We thus make a pragmatic approximation by adopting the gamma 
function as an extension of the factorial function, since Γ(y +1) = y! when y is a natural number. In this way the 
binomial probability of a [n,π] variable when n is non-integer is presumed to be 
Γ(n +1) π y(1−π)n−y/ [ Γ(y +1) Γ(n − y +1)] . 
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(1+β) iμ~ . Furthermore, ma =Σ I
i 1= Σ iJ

j 1= δa,ij μij =βΣ I
i 1= αi  Σ iJ

j 1= δa,ij pij, and sa
2 = Var[Xa] =  

β(1+β)Σ I
i 1= αi  Σ iJ

j 1= δa,ij pij = (1+β) ma. 
If the OD demand follows any of the binomial, Poisson, beta-binomial or negative binomial 

distributions and route choice is deterministic, the variances of the demand, link flow, and route 
flow are all constant multiples of their means, and are defined as follows: 

⎪⎩

⎪
⎨
⎧

′≠′≠

′=′==
=′′

)or(otherwise0

andif2

,
jjii

jjiiijij
jiij

σμρ
σ  (6) 

ii μρσ ~~ 2 =  (7) 

aa ms ρ=2 , (8) 
where 

⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

⎥
⎦

⎤
⎢
⎣
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=
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],[~if1

η
ηνπνπη

βαβ
μ
πνπ

ρ

i
ii

ii

ii

ii
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N
N
N









 (9) 

Thus, from the collection of expressions above, we are able to fully characterize the route flow dis-
tributions for each of the four candidate choices of OD demand distribution (as well as information 
on the link flow distributions, useful for computing the expected link travel times). This is then used 
in Eq. (1) to solve Eq. (2) in p, where p is in this class denotes the equilibrium proportions of flow 
on the alternative routes.  

 
3.3 Class iii models: Stochastic OD demand and stochastic route choice 

In Class iii models there are two components of random variation in the route flows, namely 
OD demand variation and random variation in route choice conditional on the OD demand. This is 
an extension of Class i, with route choice conditional on the demand described by a multinomial 
distribution. Three consistent formulations of such a class have already been described in detail in 
the literature, and so are simply summarized here for completeness (the source papers may be con-
sulted for further details): 
• Watling (2002c) compounded binomial OD demand variation with a multinomial distribution 

for conditional route choice, resulting in a multinomial distribution for the unconditional route 
flows.  

• Clark & Watling (2005, Appendix A) compounded Poisson OD demand with multinomial con-
ditional route choice, whereby the resulting (unconditional) route flows follow independent 
Poisson distributions.  

• Nakayama & Takayama (2006) and Nakayama (2007) compounded negative-binomially dis-
tributed demand with multinomial conditional route choice, with the resulting route flows then 
following a negative multinomial distribution.  

The route flow distributions are used to solve Eq. (2) given Eq. (1), this time with the equilibrium 
process acting on p as the conditional probabilities to choose the altenative routes, given that a de-
cision to travel has been made. 
 
3.4 Class iv models: Compound stochastic route choice 
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Class iv models extend those in either Class i (deterministic demand) or Class iii (stochastic 
demand) by supposing two contributory sources to variation in route flows aside from whether the 
OD demand varies: the route choice probabilities, and the traveler route choices given the realized 
route probabilities. In Classes i and iii, the multinomial route choice model assumes that all drivers 
choose routes with fixed and common probabilities, whereas in class iv we suppose the route choice 
probabilities themselves to be randomly distributed, according to a Dirichlet distribution (a general-
ization of the beta distribution). Conditional on the realized probabilities, each driver randomly se-
lects a route. The distribution of route choice probabilities is given by Pi ∼[ ip , ri]. In this case, the 
route choice input, p, introduced in Section 2 is the vector of mean route choice probabilities. This 
route choice is referred to as compound stochastic, since it combines variation in the route choice 
probabilities with variation in the choice itself. 

If the OD demand is fixed (i.e. we aim to generalize Class i), the resultant route flows are a 
compound of multinomial and Dirichlet distributions, known as the Dirichlet-compound multino-
mial distribution. The joint probability fYi(yi)  is ( ) ( ) )](!)([]![ 1 ijiijijiij

J
jiiii prypryrnrn i Γ+ΓΠ+ΓΓ = . 

The mean, variance, and covariance of this distribution are as follows (Mosimann, 1962):  

ijiijij pnY == ][Eμ  (10) 
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⎪
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ijijiji
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jiijjiijσ , (11) 

The parameter ir  can be interpreted as a variance scale parameter. According to Eq. (11), the vari-
ance of route flows enlarges as ir  increases. We shall call this compound stochastic route choice 
‘Dirichlet-compound multinomial route choice.’  

If the OD demand is stochastic (i.e. we aim to generalize Class iii), then it is natural to consider 
the Dirichlet-compound multinomial distribution for conditional route choice when the demand is 
assumed to follow a beta-binomial distribution. In order to do so, we now introduce a hypothetical 
link, where yi0 is the number of no-travel latent drivers; that is, yi0 =νi− ni . Let pi0 =1− iπ , and pi0  is 
the probability of no-travel because iπ  is the mean trip probability as mentioned before. Set 
ri = γi iπ . As a compound of beta-binomial distribution4 and Dirichlet-compound multinomial dis-
tribution, we then obtain the following for the unconditional route flows: 

∏
= Γ

+Γ
+Γ

Γ
=

=

i

iiii
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j ijiij

ijiij

ii

ii

iNini

py
py

ngff
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|

)(!
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)(!

)()()(

γ
γ

γν
γν

yy YY

. (12) 

The above is the probability function of the Dirichlet-compound multinomial distribution. Thus, the 
route flows between a single OD pair follow the Dirichlet-compound multinomial distribution. The 
link flows are given by the sum of Dirichlet-compound multinomial distributed route flows. The 
sum of Dirichlet-compound multinomial distributed variables does not necessarily follow the Di-
                                                        
4  The probability function of beta-binomially distribution, [νi, iπ , γi], is as follows: =)( iN ng

i
 

{ } { })]1(,[B!)!()]1(,[B! iiiiiiiiiiiiiii nnnn πγπγνπγνπγν −−−+−+  where B(x,y) is the beta function, and B(x,y)= 
Γ(x)Γ(y)/Γ(x+y).  
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richlet-compound multinomial, because it does not have the property of reproducibility or partial 
reproducibility. It is, therefore, difficult to derive a clear form of link distribution. However, the 
consistent mean travel time can directly be calculated from the route flow distribution (e.g., Naka-
yama, 2007).  

Once derived, the appropriate route flow distribution may be used in Eq. (1) to solve Eq. (2) in 
p, where the equilibrium process now defines a self-consistent p as the mean route choice probabil-
ities. 

 
3.5 Approximate Flow Distributions 
3.5.1 Multivariate normal distributed flows 

If the demand is sufficiently large and the number of routes is limited, the central limit theorem 
dictates that the route flows Yi approximate the multivariate normal distribution. We formally es-
tablish this result in Appendix A. For practical applications, it is important to examine how large the 
demand is required for the normal approximation to be reasonable, and how accurate it may be as 
an approximation to some other model such as those presented in sections 3.1–3.4. Such a question 
has been studied well. For example, according to the textbook of Hald (1952), as a rule-of-thumb it 
is suggested that the normal approximation to the binomial distribution will likely be adequate 
when n≥ 36, though the required level of accuracy may differ between contexts. 

Assuming that the just-described conditions hold, the vector of all route flows follows a multi-
variate normal distribution, Y ],[~ Σμ . Because X =ΔY, then X also follows a multivariate nor-
mal distribution, [m,S], whose mean vector m and variance-covariance matrix S, are given by 

μΔm =  (13) 
TΔΣΔS = , (14) 

where we have exploited the property of [μ,Σ] (Stuart & Ord, 1994, p.512). One practical diffi-
culty that may arise in some cases is that TΔΣΔ  may be singular if it contains some ‘redundant’ 
link variables, however these may be discarded as follows: If the a-th and (a +1)-th links directly 
connect to the (a +2)-th link, the start node of the (a +2)-th link, which is also the end node of the 
a-th and (a +1)-th links, is neither the origin nor the destination (the latter is described by 
Xa+2 = Xa+1 + Xa), then the variance-covariance matrix of Xa, Xa+1, and Xa+2 cannot be defined. To 
remedy this problem, one of the three links should be abbreviated, because the link flow can be 
computed from the remaining two link flows. Otherwise, the component column (or row) vectors of 

TΔΣΔ  are not linearly independent. Consequently, TΔΣΔ  is non-invertible and the joint probabil-
ity density function of X is undefined. 

The route flow is normally distributed when each latent demand is sufficiently large. If Eqs. 
(6)−(8) in Class ii are satisfied, the route flows approximately follow the independent normal dis-
tribution given by 

],[~ ijijijY μρμ[ . (15) 

From Eqs. (13) and (14) we then have for the corresponding link flows that: 

])(diag,[],[~ TΔμΔμSmX ρΔ= [[ . (16) 

 
3.5.2 Poisson distributed flows in large-scale networks 

The probability density function of a normal distribution is, of course, symmetric and allows 
negative values. An alternative that does not possess such properties is the Poisson, and so in this 
section we explore the possibility to adopt this as an approximating model. As is well-known, the 
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binomial distribution [n, p] is approximated by the Poisson distribution [n p] if n p is finite and p 
is sufficiently small. Therefore, it may be justified to assume that any route flow with low probabil-
ity of being selected is approximately Poisson distributed. The accuracy of the Poisson approxima-
tion has already been studied well: the maximum difference between the binomial and limiting 
Poisson probabilities ([n, p] and [n p]) is given as μ2e−μ|1−μ/2|/n + O(n−2) where μ = np (Stuart & 
Ord, 1994, p.171). Thus, the accuracy depends on n and p.  

In practice, then, in which situations might we justify an assumption that p is “sufficiently 
small” to apply the Poisson approximation? One possibility could be a case, such as a large grid 
network, where there are many similar route possibilities, since in such a case the selection proba-
bilities of most routes should be small but non-zero because they are assigned by the RUM. How-
ever, the assumption that all route choice probabilities are sufficiently small would be difficult to 
justify for all OD movements in many real life cases, given the evidence that drivers tend to select 
from a relatively small number of routes, and given the existence of major highways which are 
likely to be dominant in their proportional allocation of demand.  

A second, and perhaps more plausible, case is an argument that does not rely on limiting distri-
butions. In particular, the assumption of uncorrelated Poisson route flows may be justified in an al-
ternative theoretical way, following Clark & Watling (2005): if the OD demand flows are Poisson 
distributed, and the route flows conditional on the demands are multinomial, then the unconditional 
route flows are exactly Poisson and uncorrelated. It then follows that link flows, though correlated, 
have marginal distributions which are also Poisson. The Poisson condition arises as we are effec-
tively seeing route choice as sampling from a time-homogeneous Poisson process, and the uncorre-
lated property arises as we can think of stochastic demand being as if we add an addition ‘no-travel’ 
hypothetical route for each OD movement, with no conservation bound then required on the sum of 
route flows in the extended network (conservation of total route flows by OD movement being the 
reason for the negative correlation in the multinomial model of conditional route choice). This re-
sult does not require the OD demands to be large, the network to be large, nor the route choice 
probabilities to be small, as it is not a limiting result. The strongest assumption it makes is that OD 
demands follow a Poisson distribution, and the reasonableness of this assumption should be verified 
with actual data, on a case-by-case basis. 

Since the Poisson approximation offers a simple mathematical treatment of traffic assignment, 
it is therefore worthy of consideration, though of course we should keep in mind its potentially lim-
ited applicability. Certainly it has been a model of some interest to transportation researchers, e.g. 
van Zuylen & Willumsen (1980). 

In the cases when we may assume pij sufficiently small that the Poisson approximation to the 
Binomial is valid, we may then have that Yij approximately follows a Poisson [ni pij] (= [μij]) dis-
tribution. In multinomial route choice, the route flows are not independent between a given OD pair. 
In this case, the covariance of flows on the j-th and j´-th routes between the i-th OD pair is −ni pij pij´. 
However, the covariance can be assumed as 0 because ni pij is finite and pij´ is sufficiently small. In 
other words, each route flow can be assumed to follow an independent Poisson distribution. Then 
Xa ∼[ma]= [Σ I

i 1= Σ iJ
j 1= δa,ij μij], as described in Section 3.2.  

 
3.6 Existence of Equilibrium Solutions 

In the present section we consider existence of solutions to the equilibrium model (2) for each 
of the models defined in the previous section.  

Now, clearly the set Ω~  as defined in Table 2 is compact, and as given by Eq. (1), φ(p)∈Ω~ . In 
addition, if υij(p) is continuous, φ(p) is also continuous from Eq. (1). If φ(p) is continuous, the fixed 



 

14

point problem has at least one solution, according to Brouwer’s fixed point theorem (e.g., Ortega & 
Rheinboldt, 1970). Let us assume that the travel time functions ta(xa) are continuous and strictly in-
creasing on xa ≥ 0. Existence of solutions then hinges on the continuity of the mean link travel time 
in p, which in turn depends on the specific link flow probability function fXa(xa) and on the travel 
time function ta(xa).  

In the case that each route flow is binomially distributed⎯which applies to (the marginal dis-
tributions of) the multinomial flows in Class i, the binomial case in Class ii, and the multinomial 
case in Class iii⎯the mean link travel time is given by: 
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δ , (17) 

where yia = Σ iJ
j 1= δa,ij yij and pia = Σ iJ

j 1= δa,ij pij. Because ni is given and fixed, the above is a function of 
p, namely, )(pat . Because a finite sum of continuous functions is itself continuous, implying that 
the route mean travel time is continuous, )(pat  is continuous w.r.t. p. By the same reasoning, the 
mean travel time is continuous w.r.t. p if the route flows are beta-binomially distributed. 

It is more complicated to examine the continuity of mean travel time with the normally distrib-
uted flow. Normally distributed flows can become negative, albeit with small probability. We as-
sume that ta(xa) = ta(0) = τa on xa < 0 5. The mean link travel time is given by the indefinite integral of 

dxsmxxts aaaa ∫ −−∞
∞− ]2)(exp[)()2/1( 22π , and is a function of ma and sa. Unlike the definite inte-

gral, dxxfxt aXa∫
∞
∞− )()(  is not necessarily continuous even though both fXa(xa) and ta(xa) are contin-

uous. 
If {ξi} (i = 1, 2…) is a sequence of continuous functions, and if the ξi uniformly converge to ξ, 

then ξ is continuous (see Theorem 7.12 in Rudin (1976)). If |{ξi(m)}| ≤ϖi and if Σϖi converges, 
then Σξi(m) is uniformly convergent (Theorem 7.10 in Rudin (1976)). Now set 

dxxfxtsm i
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a
i a∫= 0 )()(),(ξ . Defined as a definite integral, ),( aa

a
i smξ  is seen to be continuous 
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Clearly, since e−0.5x2 < e−0.5x when |x| > 1, ta(x) fXa(x) ≤ ϖ a(x) on a real field. Applying integration by 
parts, and assuming that a mean travel time exists, we obtain 
∫
∞
+ ↓↑ sm

a dxx2 )(ϖ = )(2)2( 2 ∞−+ −∞
↓↑ aa teesmt π = 22)2( esmta π↓↑ + , because limxØ∞ ta(x)/ex = 0 

since ta(xa) is a polynomial function. Similarly, we can confirm that the value of ∫ ↓↑ −
∞−

sm a dxx2 )(ϖ  is 
finite. Being a definite integral of a finite function, ∫ ↓↑

↓↑

+
−

sm
sm

a dxx2
2 )(ϖ  is guaranteed finite-valued. 

According to the above theorems, the finiteness of ∫ ∞∞− ϖ a(x)dx implies (uniform) convergence of 
∫ ∞∞− ta(x) fXa(x)dx. Thus, ∫ ∞∞− ta(x) fXa(x)dx is continuous w.r.t. ma and sa. As mentioned in Section 
3.5.1, the mean and variance of approximately normal-distributed flow is equal to those of the orig-
inal flows. Therefore, ma and sa are given by μ and Σ of the original distributions. The mean and 
variance of route flows are determined by p if the type of route flow distribution is given, as de-
scribed in Sections 3.1−3.4. Accordingly, the mean travel time of normally distributed link flow is 
considered as a function of p, namely, )(pat . In conclusion, we have confirmed that the function of 
                                                        
5We assume that ta(xa) is strictly increasing on xa ≥ 0, but may not be on xa < 0. The continuity of ta(xa) w.r.t xa is 
guaranteed on a real field. 
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mean link travel time is continuous w.r.t. p in the case of normally distributed route flows.  
The negative binomial and Poisson distributes are discrete, but, unlike the binomially distrib-

uted case, the mean travel time with negative-binomially or Poisson distributed flows is given by 
the infinite series of ∑ ∑∞

=
∞

== 0 01
)()(][E x x aXaaa A a xfxtT . Due to the infinite series, even if each 

)()( aXaa xfxt a  is continuous, ][E aT  is not necessarily continuous, as described above. Although, 
for the limited space, the detail of the proof is omitted, uniform convergence of E[Ta] may be shown, 
and, then the proof proceeds as for the above normally-distributed case. 

From the above discussion, then, we infer that a solution exists to the fixed point problem (2) 
for the model specifications presented in Section 3. 
 
 
4. Convex Optimization Problem of Network Equilibrium with Stochastic Flows 
 

The general formulation of network equilibrium with stochastic flows is given by the fixed 
point problem (2) defined in Section 2. While there exist a variety of general-purpose algorithms for 
solving fixed point problems in transportation networks (e.g. Liu et al, 2009; Cantarella et al, 2013), 
which might be applied to problem (2), an attractive and efficient alternative for practical applica-
tions is a formulation as a convex optimization problem. Since some of the proposed models pre-
sented in Section 3 may be formulated as convex optimization problems, we discuss these below. 
We do not intend to suggest these as ‘recommended models’, as opposed to the more complex 
models which may not admit a convex optimization formulation, but rather we intend to point out 
efficient formulations that exist for at least a subset of the models in Section 2.  
 
4.1 Formulation 

An example of models that can be reformulated as convex optimization problems are those 
models that exist in Class ii, when we adopt the multinomial logit model, with a utility function that 
is linear in the route travel time (with scale parameter θ ) .  

As mentioned in Table 2, )( aa mc  is the function that calculates the mean travel time on the a-th 
link from the mean link flow. In all the models in Class ii, sa

2 = ρma and σij
2 = ρμij as mentioned in 

Eqs. (6) and (8), and mean link travel time is a function solely of ma. For example, if the link flow is 
Poisson distributed and if ta(xa) = τa[1+0.15(xa/ςa)4], the mean travel time function is 

])76(15.01[)( 4234
aaaaaaaa mmmmmc ςτ ++++= ; the same principle can be applied to derive  

functions )( aa mc  for the other (non-Poisson) models in Class ii.  
The model with multinomial-logit-type deterministic route choice and stochastic demand can 

therefore be formulated as the following optimization problem: 
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The above is similar to Fisk’s formulation (Fisk, 1980), but uses mean link travel times and route 
flows instead of deterministic link travel times and route flows. Therefore, we can confirm that the 
above problem solves the stochastic network equilibrium with deterministic logit-type route choice 
in the same manner of Fisk (1980), but in this case with stochastic demand. 
  
4.2. Uniqueness of Equilibrium  
4.2.1 Normally distributed flow case 

Let us investigate uniqueness of the equilibrium in the optimization problem of Eqs. (19)–(22). 
Clearly, the feasible domain of this problem is convex. If the objective function of Eq. (25) is 
strictly convex, the optimization problem has a unique equilibrium. To demonstrate that the objec-
tive function is convex, it is sufficient to show that the Hessian matrix of the objective function is 
positive definite. 

The second derivative of ζ in Eq. (19) is given by 
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where aaaa dmcdmc =′ )( , which is mentioned in the next paragraph. The above gives the compo-
nent of the Hessian matrix of ζ. Let “2ζ denote the Hessian matrix of ζ. Then, 
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For u = (u11,u12…uIJi)
T ∫ 0, the first term on the right-hand side of the above equation is positive and 

the second term is non-negative if )( aa mc ′ > 0. Therefore, “2ζ is positive definite, and ζ is convex if 
)( aa mc ′ > 0. 

In Class ii, Xa ∼ [ma, ρma] as mentioned in Eq. (16), if ma is sufficiently large. Because ta(xa) is 
polynomial, )( aa mc <∞ on 0 ≤ ma ≤ m↑. Furthermore, )( aa mc  is continuous. The derivative of 
mean travel time function is given as 
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In the region of [0, m↑]×(−∞,∞), ∫ ∞∞− ta(x) fXa(x)dx is uniformly convergent as mentioned in Sec-
tion 3.6. Therefore, when ∫ ∞∞− {∂[ta(x) fXa(x)]/∂ma}dx is uniformly convergent, we can interchange 
integration and differentiation as follows (e.g. Theorem 9.42 in Rudin (1976)):  
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Because of Xa ∼ [ma, ρma], 
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We can confirm that ∫ ∞∞− {∂[ta(x) fXa(x)]/∂ma}dx is uniformly convergent in the same manner of Sec-
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tion 3.6. Let la(x) = x2 − (ρ+ ma)ma, and, then 
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Because ta(⋅) is strictly increasing and ta(0) = τa, ( ) )()()()( xlxlmmxlt aaaaaaa τρ ≥++ . There-
fore,  
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since xdxfmmx aXaa∫ +−∞
∞− )(])([ 2 ρ = 0)()()( 222 =+−+=+−∫∞∞− aaaaaaX mmmsmmxdxfx a ρρ  

due to sa
2 = ρma. Thus, )( aa mc ′ > 0 is confirmed, so )( aa mc is strictly increasing. Therefore, the op-

timization problem of Eqs. (19)−(22) is proved to have a unique equilibrium. Also, the problem is 
convex. 
 
4.2.2 Poisson distributed flow case 

When the link flow is Poisson-distributed, the mean travel time function is given as 
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In addition, the derived function of the mean travel time can be written as 
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In terms of the Poisson distribution, the above becomes 
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Note that ta(xa) is strictly increasing as described above. Thus, )( aa mc ′  > 0 when ma ≥ 0, whereby 
the mean travel time function )( aa mc  is strictly increasing. Therefore, the uniqueness of the opti-
mization problem is guaranteed.  
 
 
5. Numerical Examples 
 
5.1. Simple Network Case 

A simple example is first considered, with a Class i model selected so as to illustrate some gen-
eral features of the stochastic flow models presented (in the following section, we shall consider 
Class ii models). We consider four example networks, all serving a single OD movement joined by 
parallel links/routes, but with differing numbers of routes in each case (2, 4, 10 and 20). All net-
works consist of an even division between A-type routes and B-type routes; so the network with ten 
parallel routes has five A-type and five B-type routes. The travel time functions of the A-type and 
B-type routes are tA(xA) = 10[1+ (xA/100)2] and tB = 20[1+ 0.25(xB/100)2], where tA and tB are the 
travel times and xA and xB are the flows of the A-type and B-type routes, respectively. The fixed OD 
demand levels in the four cases are proportional to the number of routes available, namely 300, 600, 
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1500 and 3000. The multinomial logit model is adopted for the random utility model, with scale 
parameter θ = 0.5 in all cases.  

The mean travel times are given by E[10{1+ (XA/100)2}] = 10[1 + {Var[XA] + (E[XA])2}/1002]  
and E[20{1+ 0.25(XB/100)2}] = 20[1 + 0.25{Var[XB] + (E[XB])2}/1002] , where XA and XB are the 
random variables of flows of the A-type and B-type routes, respectively.  

Since all four example networks are made up of an even split between the two kinds of routes, it 
is easy to ascertain that the same flow is carried on routes of the same type, regardless of the total 
number of routes. Therefore, it is sufficient to consider one pair of A-type and B-type route flows, 
xA and xB, in each example. Fig. 2(a) illustrates the mean flows on A-type routes in the case with 
multinomial (binomial) route choice (Class i model, Section 3.1), those with the Poisson approxi-
mation (Section 3.5.2), and for comparison the conventional SUE flows. We have not illustrated the 
mean of the approximate normally distributed route flow (Section 3.5.1), since it coincides with that 
of the underlying multinomial model. Fig. 2(a) indicates that the flows in the conventional SUE 
case are different from the others; this is due to the mean travel time functions including the term 
for the variance in flows, which impacts on the assignment of flows when equilibrating. The mean 
flows of the binomial (Class i) model approach those of the Poisson approximation as the number 
of routes (and OD demand) increases, as would be expected. In this simple example, the difference 
between binomially distributed and approximately Poisson distributed flows may not be that great.  

Unlike conventional SUE models, the solution of network equilibrium with stochastic flows is 
influenced by the absolute levels of the flows involved, not simply the flow rates. We illustrate this 
by parameterizing the demands and capacities by h > 0, such that the demands in the 2-route, 
4-route and 10-route networks are 300h, 600h, and 1500h, respectively, and the capacities on both 
links are 100h. Figure 2(b) illustrates the resulting equilibrium solutions for where 0.1 ≤ h ≤ 2. The 
SUE flow on the A-type route in the 2-route network is 10[1+ (300hp)2/(100h)2] = 10(1+ 9 p2), 
where p is the probability of choosing the A-type route, and so the SUE flows are invariant to h. In 
the stochastic flow model, on the other hand, the mean A-type flows in the three networks are 
10[1 + 3p(1−p)/h + 9 p2], 10[1 + 6p(1−p)/h + 9 p2] and 10[1 + 15p(1−p)/h + 9 p2], respectively, which 
depend on h. These expressions (as illustrated in the figure) demonstrate that the mean binomially 
distributed flows approach the SUE flow as h → ∞, but that for finite h, the stochastic models in 
this study have different properties from SUE. 
 
5.2. Kanazawa Road Network Case 

In this subsection, we apply both a normal approximation model (Section 3.5.1) and a Class ii 
model (Section 3.2) to the real-life network of Kanazawa in Japan. The network consists of arterial 
roads interconnected by 140 nodes and 467 links. The time period considered is the morning peak 
hour, i.e. 7:00 a.m.–8:00 a.m., and the mean OD demands were derived from a person trip survey in 
the Kanazawa urban area. The travel time functions used are of the standard BPR-type, 
ta = τa[1 + 0.15(xa/ςa)4]. We consider first the use of the (approximate) normally distributed flow 
model (as described in Section 3.5.1), before considering other more complex forms. For practical 
applications, we believe this to be a starting point, since the normal approximation is relatively sim-
ple to implement, and so is more convenient for policy-testing; alternative, more complex distribu-
tions may then be tested to consider to what extent their equilibria depart from those of the simple 
model. The parameter ρ in Eq. (15) of the normal approximation represents an index of dispersion 
(variance to mean ratio) for the OD flows. We did not have direct information on variation in OD 
flows, so instead set ρ to the average index of dispersion in flows obtained from a year of weekday 
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hourly link flow data6 from 7:00 a.m.–8:00 a.m., recorded by traffic counters. This gave rise to a 
value of ρ = 42.0. We assume the logit scale parameter θ = ∞, i.e. the objective function of the opti-
mization problem in Section 4.1 consists solely of the first term on the right-hand-side of Eq. (19). 
The resulting stochastic flow network equilibrium problem was numerically solved by the 
Frank-Wolfe algorithm. 

The resulting equilibrium solution was compared with observed link flows. The correlation co-
efficient between the observed and mean equilibrium link flows was calculated as 0.914, and this 
shows an apparently reasonable correspondence between the two. Detailed results from the model 
are illustrated in Fig. 3. Fig. 3(a) illustrates the equilibrium standard deviations in link travel times, 
where a number of critical links may be observed which greatly influence variations in trip times. 
Figure 3(b) presents the coefficients of variation (CVs) of link flows in the network. Many links 
with high CVs are located near Route 8, one of the main national roads in Japan. Consequently, the 
demand of access/egress to/from Route 8 is large. However, the access/egress roads are of lower 
capacity than Route 8, and their travel time reliability is low. Thus the results are plausible and spe-
cific to the local details of the network, in spite of assuming a common index of dispersion across 
all OD movements. 

The parameter ρ, we might expect, is highly influential in describing the variability of flows 
and travel times. To examine the influence of ρ on the variability, three other cases with ρ = 10, 21, 
and 84 are considered. Figure 3(c) shows the mean of CVs of link flows and travel times, respec-
tively. We find from the figure that the mean CVs become higher as ρ increases. The means of CVs 
of link travel times are higher than those of link flows. The travel times are more variable than the 
link flows, because the roads are congested, and a slight increase in link flow is amplified in terms 
of travel time. However, in this case there is relatively little feedback effect from the level of travel 
time variation to the equilibrium mean link flows: the correlation coefficients between the observed 
and calculated mean link flows in the four cases with ρ = 10, 21, 42 and 84 are from 0.912 to 0.914, 
and there is no significant difference. 

Now we explore the use of alternative, more complex models, and in this case we shall focus 
on those in Class ii (Section 3.2). Since the parameter ρ is greater than 1, the negative binomial dis-
tribution is a candidate. Fig. 4 shows the scatter plots between mean link flows of the negative bi-
nomially and approximately normally distributed cases. The correlation coefficient between them is 
0.99994, and they are almost the same. Thus, the normal approximation is a fairly accurate ap-
proximation to the negative binomial Class ii model, in the case of the Kanazawa road network.  

As discussed in Section 3.2, the mean of a [α,β] variable is αβ , and ρ = 1+β .  The mean of 
the a-th link flow is ma, so the a-th link flow follows a [ma/β ,β] = [ma/(ρ−1), ρ−1] distribu-
tion. The mean of the observed link flows in the network was 879.2 (pcu/hr), and the maximum of 
the observed link flow was 3,585. Fig. 5 illustrates the probability function of a negative-binomially 
distributed link flow whose mean is 879.2, [879.2/(ρ−1), ρ−1], with ρ = 10, 21, 42 and 84. Fig. 
5 also includes each probability density function of the approximate normal distribution. As we can 
see, the average link distribution with ρ = 10 is quite close to the normal distribution. The distribu-
tion becomes skewed and diverges from the normal distribution as ρ gets larger. Thus the accuracy 
of the normal approximation depends on the parameter, ρ. Fig. 6 shows the probability function of a 
negative-binomially distributed link flow whose mean is 1,600 and 3,200, with ρ = 42. Fig. 5(c) and 
Fig. 6 illustrate that the link distribution approaches the normal distribution as the mean enlarges. 

                                                        
6A better method that might be explored in the future may be to reconstruct variances in the OD flows from 
variances in link counts, as these may be somewhat different; a method such as that developed by Hazelton (2000) 
might be explored for this purpose, if extended to the case of congested networks..   
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Thus, we confirm that the normal approximation is reasonable for the link flows in the Kanazawa 
road network.  

 
 
6. Conclusions 
 

Most previous network equilibrium models, including SUE models, presuppose that network 
flows are deterministic. This study examined network equilibrium models with stochastic flows. 
Although several authors have considered such a problem, few have considered the issue of how to 
consistently formulate network equilibrium in such a case, such that the assumptions regarding sto-
chastic variation are followed in all aspects of the equilibration process. In order to address this is-
sue, we have set out a general framework and have proposed four classes of model that fit within 
this framework. Each class is based on a different use and interpretation of the RUM in this context, 
and each leads to a different (but internally consistent) representation of variability in route flows, 
link flows, link travel times and route travel times. We establish formulations of these models as 
fixed point problems, establish existence of solutions to the resulting fixed point problems, and 
propose approximation methods that may be applicable in some scenarios. We show that in a lim-
ited number of cases, it is possible to formulate these problems as a convex optimization problem, 
similarly to the optimization problem of logit-based SUE. We have applied some of the proposed 
models to the Kanazawa road network, where it was seen to give rise to plausible phenomena. 

In future research, it should be considered how stochastic factors other than demand and route 
choice, such as random capacities, could be incorporated within such a general framework, while 
still ensuring consistency. Furthermore, we assumed independent drivers, and hence independent 
demand, but as the work of Duthie et al. (2011) implies, neglecting the correlation among demands 
may lead to a mis-estimation. Considering correlated demands and identifying the demand distribu-
tions from the actual day-to-day data are therefore also important areas for future work. In the past, 
estimating a mean OD demand matrix has proved sufficiently challenging in practice, but emerging 
data sources provide the potential for more precise tracking of daily OD demands, and hence the 
possibility in the future to obtain direct information on levels of OD demand variability. 

In the paper, we prove uniqueness of optimization problems of the models in Class ii and with 
Poisson distributed flows in all classes in the present paper, but it would be useful in the future to 
extend these results so as to establish uniqueness for other models with stochastic flows. In Watling 
(2002a) this was achieved for some limited cases in terms of link flow moments; a fruitful area of 
work may be to consider extending this work for the wider class of models considered in the present 
paper. It would also be fruitful to explore consistent formulations under other behavioural mecha-
nisms, especially those related to risk, in which travellers may respond to aspects of the route travel 
time distribution other than its mean. 
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Appendix A: Justification of normal approximation 
 

We consider the behavior of a single (latent) driver. Define the mean vector and vari-
ance-covariance matrix as follows: 
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Thus, the distribution of route flows between the same OD pair approaches multivariate normal 
when the demand is sufficiently large.  
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