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Abstract - When simulating electric machines, the mag-
netic field analysis and the circuit calculation are coupled
closely. We present a method in which the combination
of Maxwell’s equations and circuit equations is solved
simultaneously. The tableau approach as nodal formula-
tion is applied to the circuit model. This paper describes
a new generalized approach for considering the external
networks in the harmonic balance finite element method

we proposed. The approach is applied to the analysis of

a magnetic frequency tripler with circuit elements.
INTRODUCTION

There is sometimes the necessity to analyze electric machines
including the external magnetizing circuit. But the consideration
of the magnetizing circwit in the field analysis often suppresses
the flexibility of the FEM analysis [1], [2]. Meanwhile a previous
paper has repcrted that zero-dimensional finite elements could
be used to circuit model {3;.

The authors developed the harmonic balance finite element
method (HBFEM) for the analysis of the time-periodic eddy-
current problems in the nonlinear AC devices {4]. In the process
of HBFEM, it is important to calculate both the field and circuit
procedures simultaneously because of nonlinearity. The tableau
approach is well-known as nodal formulation in the pumerical
analysis of the lumped circuit model [5]. We combine HBFEM
with the circuit equation expressed by the tableau approach.

HBFEM AND TABLEAU APPROACH

Let us discuss the generalized model shown in Fig.1. The fig-
ure shows the schematic diagram in which the domain of field
problems by FEM and the circuit equations for the networks are
coupled. In this model, we consider the time-periodic problems
with an AC magnetizing source.

HBFEM is the steady-state analysis for the nonlinear dy-
namic magnetic field problems in the harmonic domain [4]. For
time-periodic eddy-current problems with magnetic saturation,
the vector potential A' and applied current density J, can be
expressed in 2-D Cartesian coordinates as

A= 3 {Aim sin{mwt) + A, cms(mwt)} (1)
m=1,3,5...

Jo = > {Jms sin(mut) + Jop cos(muwt) } (2)
m=1]1,35..

where each variables have odd-order harmonics. The subscripts s
and ¢ denote the sine- and cosine-components and the superscript
1 indicates the node number.

In order to consider the nonlinear B-H curve H{B(t)} of a
core, we express the magnetic reluctivity during a single cycle as

v(t) = vy + Z

m=24,6..

{Vms sin{mwt) + v cos(mwt)}  (3)

where vy, Vm,, and v, are the coefficients of the Fourier trans-
formation [4). |

Fig.1 Model with the combination of FEM and
circuit equation

Substituting (1)-(3) into the Galerkin’s equation, we obtain
the matrix equation for a first order triangular element, e, as the
coefficients of sin{mwt) and cos(muwt)
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where A i1s the area of a triangular element And the column
vectors {Af, } and {K: } are given by

1}

{ac) = {4y, a,, A, a2, 4, 2 ) (s
A

_— T
{Km} — “é'"{ Jms Jmc Jma Jm-: Jm.t Jm.c } (6)
The superscripts 1, 2, and 3 denote the node number of a tn-
angular element. The coefficients S,, are given in reference [4].
Here, the block matrix D, is the reluctivity matrix describing
the nonlinearity of the core, then

Dmrn = D{gk—l){zk-lj

2V0 — Va(2k—1)c
¥2(2k—1)s

2k —1)(2kz ~1)

Vako=k1de = V2(kydky—1)c

 V2(ky~ky)s T V2(k) 4k ~1)s

B | e Uh:.-h—a
p—

Vi 2k1)s ]
2vg + Vaak—1)c
D, .. =

J
—Va(ky—ky)s T V2(ky +k3—1)s
F?{k} -k )e + u?{k1 +ko—1)c

(7)

1

The harmonic matrix N,, is expressed by

N,,; = (8)

m 0

0 wm‘

The system equation for the entire region of interest is arranged
by the conventional FEM procedure [4]. Based on (4), the system
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equations for the fundamental, third,and h-th order components

are o .
Hul{a:} =— 3 [H,{AYF +{K£]}
1=3.5h,...k . )
Hul{A:} = - Y [H3, {4 + {Ks}
9=1,5,...A (g)

HolAY =— 5 Hu{APF +{K)

1=1,3,..h—1

where {K,} is the driving term of the applied current. As higher
harmonic components decrease gradually in the physical model,
we have the system equations for harmonic components up to
h-th order. The first term on the right-hand side means that
the harmonic components except the j-th order affect the j-order
harmonic. We apply the iterative calculalion process to (9). The
superscripts k and (k — 1) denote the k- and {k — 1)-th iterations.

To formulate the magnetizing circuit, we consider the nodal
formulation, thus the tableau approach which is known in the
circuit analysis [5]. When considering the circuit model with n
nodes and b branches, we obtain one matrix equation

L0 SAT)({#}) [ 0
y z 0 [ {} 1=* {v"} ] (10)
G A, 0 - {v"} 0

This formulation involves three matrix equations, the Kirchhoff’s
voltage law, the constitution equations, and the Kirchhoff’s cur-
rent law in reference {5]. The column vectors {v°}, {v"}, and {:°}
include all branch voltages, node voltages, and branch currents.
A, is the {n — 1) x b incident matrix. The column vector {v**}
consists of voltage sources and the induced voltage. The matrices
'z and y are the impedance and admittance.
In order to combine these expressions with HBFEM, we for-
mulate the tableau approach for time-periodic solution. The volt-
age and current at branches are expressed by

i(t) =
v(t) =

> {Imssin{mut) + I cos(muwi)}

m;i,a...{vm in(mt) + Vo cos(murt)} (11)

m=1,3,5...

Hence the equation for a resistor with resistance Ry, in the branch
'k is given by

Lzl allizhmafz) o

where the subscript m denotes the m-th order harmonic.

The equations for a capacitor with capacitance Cy,, and an
inductor with inductance L), are respectively

Ims Ckl 0 Vm’ —_ Vmﬁ
{ Im.; } = L;.JNm { 0 Ckl. } { Vmc } - [ma] { thE }(13)

(VoY cona [ 2 Y et { B} a0

By using (12)-(14), Eq.(10) for the m-th order harmonic can be

rewritten in the following form;

10 -AT){{vi}° 0
Yy Zm O {{r;} >={{v,;“}} (15)
0 A, O {V} | 0

The relations between the field variables {A.,}, {K..} and the

circuit variables {I2}, {V:"} are given by

{V'} = Ca {4x} (16)
{K.} = G{}]} (17)

where the generation of the matrices C,, and G are given in

reference [1]. By combining (9) and (15), the system equation
for m-th order harmonic is expressed as

e
Ly :
1y (T v (Y
oar ) Ly

where {V'"} 1s the voltage source and {F,,} is given by

" [Huw] 0 -G 0
0 I 0o -—-AT

~Cm Ym &m 0
0 0 A, 0

o

F#EM
{Ful =~ > [HxH{A4Y (19)

1=13,...h

The HBFEM system equation for the whole magnetic field and
circult equation are obtained.

ANALYSIS OF MAGNETIC FREQUENCY TRIPLER

We apply the HBFEM to the magnetic frequency tripler with
five-legged core shown in Fig.2. This is a typical model of a
nonlinear magnetic device with circmit elements at both the input
and output sides.

This device contains a five-legged core, three magnetizing coils
and two secondary coils connected in series as an output. The
magnetic legs with the u-, v-, and w-phase windings operate in
saturation level and the third harmonic voltage, one of the gen-
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Fig.2 Magnetic frequency frequency tripler
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Fig.3 Network model for the tripler
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erating harmonics, is produced as output. The half of the cross
section of the magnetic core is the analytical domain for the 2-D

HBFEM. For simplicity of calculation, the hysteresis of the core
is neglected and the B-H curve is approximated by

H(B) = 100B + 40B° (20)

Figure 3 shows the circuit network at both the input and
ouiput sides. The node and branch are numbered in the graph
as shown in Fig.3(b). The voltages V,, V,, and V,, are the induced
voltages at an input side. V,; and V,; are the secondary winding
voltages. The matrices A, Y,, and Z,, are given by

I I
-1 1 I 21
A, = 1 I ( }
-1 I I 1]
|1
|
|
I
Y. = I (22)
|
[Br)
I
I
0
0
—[r.]
o .
Lo = R 23
ﬂ (23)
e |
_[Xru]
~[A] |

where I is the 2 x 2 unit matrix. The column vectors are given

by

{AM} = {A;ln.s Ai:c A-?ns Amz'nc, ' A:n,s A:m: }T
{Vni} — { V;ms V;mc Vb?m: Vb;r:m{: lfn'.:r?ms Vb?mc }T
{Irt;a.} = {Ib],ms Ig,mc Iim.s ‘I‘Emc Ig.ms Ig,mc }T
{Vf:} — {Vrim.s an,mr: Vnz,m: Vrﬁmc V:,ms V-.-:mc T
Vo'l = A Vaems Vame Vime Viume 0 U
(24)

Figure 3 shows the flux distributions for each harmonics up
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Fig.4 Flux distribution for fundamental, third and
fifth harmonics
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to 5-th order in the five-legged core. The waveforms of the flux
densities and the circuit variables are shown in Fig.4. The results

show that the fundamental and thrid harmonic are the major
components.

CONCLUSIONS

This paper proposed the system equation for HBFEM taking into
account both the field problem and the circuit equation simulta-
neously. The formuiation of the tablean approach is identical to
that of FEM and then the generation of the whole system equa-
tion 1s very easy. The approach provides a powerful tool for the
magnetic field problems coupled with circuit equations.
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Fig.5 Waveforms of the flux densities, currents and voltages



