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Pointwise convergence of Cesaro and Riesz means
on certain function spaces
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Communicated by V. Totik

Abstract. We consider a function space 2.4/ on the unit sphere of R®, which
contains L log Llogloglog L, and prove the spherical harmonics expansions of
functions in 2.7 are summable a.e. with respect to the Cesaro means of the
critical order 1/2. We also prove that a similar result holds for the Bochner—
Riesz means of multiple Fourier series of periodic functions on R%, d > 2.

1. Introduction
Let
Qu={zecR¥:—1/2<2;<1/2,i=1,2,...,d}, x=(21,...,24),

be the fundamental cube in the d-dimensional Euclidean space R%. For f € L'(Qq)
we consider the Fourier series

flx) ~ Z ane®™ ) = (ny,ng, ..., ng) € 79,
where (n,x) = nijx1 + -+ 4+ ngxyq and
an = (m)e_%””’x) dr, dr=dz...dzg,
Qa

is the Fourier coefficient. The Bochner—Riesz means of order § of the series are
defined by

i) = Y (1- 1) g et
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where |n| = (n? + - +n2)Y/2,

According to [2], we define a space 2.47(Q4) to be the collection of measurable
functions f for which we can find a sequence {f;} of non-negative measurable
functions such that

|f\<ng7 NUEY = 30+ log)l fltog (T212) <o 1)
j=1

151l

let || f|| 2z = inf N({f;}), where the infimum is taken over all such {f;}. Then, the
space 247 is a logconvex quasi-Banach space and a subspace of Llog L (see [2,9]).

Define T%(f)(z) = suppso |T%(f)(z)|. Let o = (d — 1)/2 (the critical index).
Then we shall prove the following.

Theorem 1. There exists a positive constant C such that
721 e = 5PN (& € Q' T2 (£)(a) > M| < Ol
>
consequently,

lim TH(f)(x) = f(z) a.e. for f € 24(Qq).

R—o0

It is known that Llog Llogloglog L is a proper subspace of 247 (see [2]).
Thus, Theorem 1 implies the following.

Theorem 2. If f € Llog Llogloglog L(Q4), then
Jim TR(f)(2) = fz)  ae
—00

The convergence a.e. for f € Llog Lloglog L(Q4) was proved in [17].

If we write Tn(f) = T (f) when d = 1, then Ty 41 (f) is the Nth partial sum
of the Fourier series of f. For f € L?(Q1), there is a result of L. Carleson |5] which
shows that {Tn f} converges a.e. (see also [7]). Let T, f = supy~; |Tn f|- R. Hunt
[8] proved the restricted weak type estimates: -

sup A[{z € Q1 : Tu(xa)(@) > MNYP < Cp*(p—1)"HAMP, 1<p<oo, (1.2)

A>0
where x4 denotes the characteristic function of a set A C Q1. By (1.2) R. Hunt [§]
proved the convergence a.e. of {T f} for f € L(log L)*(Q1). P. Sjélin [12] showed
that (1.2) can be used to prove the convergence a.e. for the class L log L loglog L(Q1).
Applying (1.2) more efficiently, N. Yu. Antonov [1] proved that {Tn f} converges
a.e. if f € Llog Llogloglog L(Q1). Theorem 2 can be regarded as a generalization
of this result to higher dimensions.

To prove Theorem 1 for d > 2 we use the following estimates:
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Cesaro and Riesz means on certain function spaces 131

Lemma 1. Let 1 < p <2, d> 2. Then there exists a constant C' independent of p
such that

ililg/\l{w € Qa: T () (@) > MVP < Clo— 1) flp-

We write 6 = o + i1, 0,7 € R. Lemma 1 was proved in [17] by using the
following two results and analytic interpolation.

Lemma 2. Suppose f € L'(Qq4), d > 2 and o > «. Then
IT2(F)ll1,00 < Aoe™ (o = a)7HI £,
where A, remains bounded as o — «.
Lemma 3. Suppose that f € L*(Qq), d > 2. Then
IT2 ()2 < Aoe™ | fll2, o >0,

See Lemma 12 and Theorem 7 of [15] for Lemmas 2 and 3, respectively.

Sjolin—Soria [13] extended results of [1] to more general settings. We can apply
results of [13] to prove Theorem 2 for d > 2. Indeed, we easily see that Theorem 2
for d > 2 follows from Lemma 1 and methods of [13, Section 3] (see Remark at the
end of Section 3 of [13]). When d = 1, Theorem 1 is due to [2]. The result also can
be proved by using the estimate (1.2) and Antonov’s idea. More precisely, when
d =1, Lemma 7 (a key estimate) below is first proved for characteristic functions by
applying (1.2) and the transition from characteristic functions to general functions
f can be carried out by Antonov’s idea. We can prove Theorem 1 by Lemma 1 in
the same way in higher dimensions. In fact, our proof of Theorem 1 for d > 2 is
more straightforward; to prove Lemma 7 the application of the idea of Antonov
is not needed, since the estimate of Lemma 1 is not restricted to characteristic
functions (see Section 2).

We have analogous results for the Cesaro means of spherical harmonics ex-
pansions. Let /7. be the space of the spherical harmonics of degree k on X;, where
Yy = {z € R™! . |z| = 1} is the unit sphere in R4, We recall that the space ./,
consists of the restrictions to ¥4 of harmonic homogeneous polynomials of degree k.
Let

Hyf(x) = / 29 () £ () dia(y),

where dy is the Lebesgue surface measure on ¥, normalized as pu(X4) = 1 (we also
write |E| = u(E) for a set E C £4), and Z*) € 4, is the zonal harmonic of degree
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k with pole x € ¥g:

_(_2k D(d/2)T(d +k — 1) ((d-2)/2,(d-2)/2)
Z9() = <d—1 H) I‘(d—l)F(kz—i—d/Z)P’Cd T ()

2k _
= (27 1) PP )

Here P,Ea”ﬁ ) is the Jacobi polynomial and P,E/\) is the Gegenbauer polynomial de-
fined by (1 — 2tr +72)"* =372 P,E’\)(t)rk’. We consider the spherical harmonics
expansion f ~ Y77 Hyf and the Cesaro means of order ¢ defined by

1 n
Sof =~ 2 ALHS, =012, G0,
n k=0

where
> —1 (1.3)

40 _ L(k+o+1)  (k+0
FOOTk+1Dr@6+1) \ k)
(see [19, Chap. III]). We refer to [4,6,14,18] and [16, Chap. IV] for relevant results.
Let S2(f)(z) = sup,,=q |SS(f)(w)]. If we define the space 247 (34) analogously
to 247 (Qq), we have the following result (we focus on the case d = 2).

Theorem 3. There exists a positive constant C such that

sup Al{w € ¥ ; SY2(f) (@) > MY < C|lf | 20

for f € 247 (5,), which implies
lim SY2(f)(x) = f(z) a.e. for f € 24(%,).

n— oo

Theorem 3 implies the following result as Theorem 1 implies Theorem 2.
Theorem 4. If f € Llog Llogloglog L(%5), then
ILm SY2f(x) = f(z) ae.
See [4] for the convergence a.e. of {S,l/zf} for f € LP(X3), p > 1. The proof
of Theorem 3 is similar to that of Theorem 1, with the following estimates:

Lemma 4. Let 1 < p < 2. Then we have

sup Al{z € 2 : S (f)(@) > AHYP < Co— )Y /],
A>0

for a positive constant C' independent of p.
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Let
M(z) = sup | Bla,r)| " /B Wy,

r>0

where B(z,r) = {y € X2 : |y — z| < r}, € £3. To prove Lemma 4 we need the
following two results.

Lemma 5. Suppose that f € L*(33) and o < o < 1, where a = 1/2. Then
SUN@) < ApeP™ (0 = 0) (M f(x) + Mf(~2).
The constant A, remains bounded as o — «.
Lemma 6. Suppose that f € L*(33). Then
IS2Dl2 < Aee” 7 || fll2; o > 0.
The constants A, and B, are bounded on any compact subinterval of (0, 00).

We can find Lemma 6 in [4]. Using Lemmas 5 and 6, we can prove Lemma 4
by analytic interpolation (see Section 4). We shall prove Lemma 5 in Section 3 by
applying methods of [10].

2. Proof of Theorem 1

We assume that d > 2. In proving Theorem 1 we use the following result.

Lemma 7. Suppose that f € L>®(Qq), f # 0. Then

1T (Nlheo < Cllf 1 log (e”j:”jo)

Proof. By homogeneity we may assume that ||f|.c = 1. For A > 0, let m(\) =
inf;<p<o A7P(p — 1)7P. Then, observing that || f||} < |[f|[1, by Lemma 1 we have

{z € Qa: T2 (f)(x) > A} < Cmin (L, mA)|[ f]l1) -

This will imply the conclusion, if we note that m(\) = A\=2 when A\ > ¢=2 and

m(A) ~ A" log(1/)) when A < e™2. -

Let f € 247(Qq). To prove Theorem 1, we may assume that f > 0. For any
€ > 0 there exists a sequence {f;} of non-negative bounded functions such that
= f;and N({f;}) < |Ifll2wr + € (see [2, p. 149]). Since L'* is a logconvex
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quasi-Banach space (see [9]) and T is a sublinear operator, using Lemma 7 we
have

T2 oo < OF(1+ 108 DT
J

<031 +log )| o (1Ll
J

£l

) = CN(ED < CI 2w +6):

Letting € — 0, we get the conclusion.

3. Proof of Lemma 5

Let

n

S,(f”\)(cosv A(é) -1 ZA 2(k+A) P( )(cosv),
k=0

where 0 < A < 1,0 < v <7 0<o0<1,6=o0c+ir. Then, Sr(f’l/z)«x,y)) is
the kernel of the operator S2. In [10, p. 121], IS (cosv) was represented by the
contour integrals as follows:

1
A(J)S(‘s A (cosv) = 5 z/ z)dz + 7/ z)dz + —Z p(2)dz, (3.1)

L3
where
( ) _ )\(1+Z)Zn+5+2)\
e = (z —1)%(1 — 2z cosv + 22) 1"
Let
: 1 n+64+2X
16N () = Asin(dm) / u du.
T o (1 —u)9(1 —2ucosv + u2) 1

X n+A+(0+1)/2)v—(AN+6+ 1)r/2]) sin(Amw
990 = SRCUONS 4D/ 5 )02 inlhr)

! A1 — )T
X /0 (1 = ur(v/2))5+1(1 — ur(v))* du,
(50 () = ERLOFAT O+ D)/2)v = A+ + D/2)) sin(Ar)
n - (2sinv)A(2sin(v/2))d+1 -

1 u_)‘(l _ u)n+6+2/\ "
. / 0~ wr (o)D) (1 ar(—o)r ™
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where 7(v) = (1 +4cotv)/2. Then, according to (3.1), it follows that

1
SADSIN (cosv) = (n+ XAV @) = (6 + DIV ) + i) )+

PV @)+ (04 0) £V @) = 6+ 1) 7,5 )
(3.2)
(see [10]). Put

_A(n+N) cos[(n+A+(6+1)/2)v— A+ +1)7/2]
K(n,9,2,v) = WC(”’(S’ A (2 sinv)* (2 sin(v/2))+1 ’
=40 +1) cos[(n+A+68/2)v—(A+ 0 +2)7/2]
L, 0,2, 0) = =55 —C(n,0,) (25in ) (25in(v/2))3+2 ’
where
T4 d+42)+1)
Cn N = T s At
and also

Ri(n,8,\,0) = 2(n+ NN (0) + 2(n + \) £V (v) — K(n,d,\,v),

Ry(n, 8, M v) = —2(6 + 1).7 7Y (0) — 2(6 + 1) 71N (0) = L(n, 6, \,v),

n—1
Rs(n, 8, A\, v) = 207 (0) + 20V (v).

Then (3.2) implies that

SON (cosv) = (AD)TH(K (n,8,\,v) + L(n, 8, \,v) + Ry(n, 8, \,v)+

(3.3)
+ RQ(”v 57 >‘7 ’U) + R3(n7 57 )‘5 ’U))

We need the following results.

Lemma 8. Letz > —1, y € R. Then |AT™)| > |AT)| and |ATTY)] < eswv* [,
where c(z) = (1/2) 72 (x + k)2 and AT s as in (1.3).

Lemma 9. Suppose 0 <A <1,0< o < 1. Let C(n,d,\) be as above. Then
|C(n,6,))] < C(n+1)*,
where the constant C' is independent of 6 and \.

Lemma 8 is in [3]. Lemma 9 can be proved by using the formula

lim I'(2)

————————————— 1.
Re(2)>c>0,|z|—00 v/2me—227—1/2
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Let |7/2 —v| < (w/2)(n/(n+1)). By [10, pp. 130-133] and Lemma 9 we have

Cn, o, \) n+1
5 )\ < BlTI e
|Ba(n, 0,4, v)| < Ce T(A\)[n+ o + X+ 2| (sinv) M (sin(v/2))7H
< CeBI™! (n+ DA
- (sinv) M 1(sin(v/2))o+1’
C(n,o,\) 1
< B|t| >
|Ra(n, 6, \,v)| < Ce T(A)|n+ o + A+ 2| (sinv) 1 (sin(v/2))7+2
(n+1)A1

Bl .
< O o (sim(v/2))7 1

Also, by [10, pp. 122-123] and estimates similar to the one in Lemma 9

[R3(n,0,A,v)| < C

|sin(0m)|I'(1 —o) (T(n+o+2X+1) T'(n+o+22+2)
(sin(0/2))20:1) ( T(nt2)+2) | Tn+2r+3) )
o1 |sin(ém)|T'(1 — o)

<C(n+1) (Sin(0/2)) 207D

Since [AY)| > |AY| and AL ~ (n 4 1)° (see Lemma 8 and [19, Chap. III]), if
|7/2 —v|] < (7/2)(n/(n+ 1)), we have

( + 1)A—1—U

_ )| < CBI] _
|RJ(n7§7 A7U)/An |— C@ (sinv) +1 (Sin(’U/Q))OJ'_l’ J 1727 (34)
sin(67)|T(1 — o)
Ra(n, 6,1, 0)/AD)| < 5 3.5
[H3(n, 0, A, 0) [A7] < (n+ 1)(sin(v/2))2(+1) " (3:5)
By Lemma 9 we have
)\7
O < g/l (1)
|K(n,d,\v)/A))| < Ce (50 o) (sim(0/2)) 7+ (3.6)
Similarly,
1))\—0—1
I A0 < o1 (/2| (0 _ _
| (n,é,)\,v)/ n |—C( +|7’|)6 (sinv))‘(sin(v/Q))"+2 (3 7)

We also need the following.
Lemma 10. Let0< A< 1,0<o0<1,0=0+ir, 0<wv <m. Then

1SN (cosv)| < Ce™ (n + 1)1
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Proof. By [18, p. 168|, we have |P( | < CA? Y Using this and Lemma 8, we
see that

158N (cosv)] < ClAD T ST 1AL, [(m + X) AR

m=0

i +A 6 A
< ONAD[TY AR, 1A%
m:Om+2)\

Ce™ |AD 713 1AL, AR

m=0

< CGCTQ|A7(10)|_1A£LU+2>\+1) < 06072 (n+ 1)2)\+1 )
By (3.3)-(3.7) and Lemma 10, we have
|S@N (cosv)| < CeB™ (n+ D 7 ((n+1)"! +sinv) 7771 (3.8)

where 0 < v < 7w, A=1/2,1/2 < o < 1. Suppose (z,y) = cosv, x,y € . Then
sinv ~ |x —y| if (x,y) > 0 and sinv ~ |z + y| if (z,y) < 0. Thus (3.8) implies

|53 (2, )]

e P () g i gy 20, (39)
T e D (A DT ey () 0.
Since S f(x) fz S 1/2)(<33 y)) f(y) du(y), the conclusion of Lemma 5 easily

follows from (3 9).

Remark. In fact, we can prove estimates of the type in [6, Theorem (3.21)], partly
improving (3.9). We do not need those estimates here; for our purpose (3.9) suffices.

4. Proofs of Lemmas 4, 6 and Theorem 3

We first prove Lemma 6.

Proof of Lemma 6. When § > 0, we have [|S2(f)|l2 < As|fll2 (see [4, Lemma
(35)]). fd=0+1ir, 0 >0, 7 € R, we write

n
SZ(f) _ (Afz)_l z:A](Qo—fe)Asle:lirzT)S}cj—e(f)7
k=0
where 0 < ¢ < o. Using Lemma 8 as in [4], we have SO(f) < ec(e_l)TQSZ_E(f).

Combining these results, we reach the conclusion of Lemma 6. -
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Proof of Lemma 4. Let 1 < p < 2, 1/p = (1—-6)/2+60, a = (1 — 8)c + 0b,
where ¢ = a — (1/2)(1/p—1/2), b = a+ (1/2)(1 — 1/p), a = 1/2. We note that
0=2(1/p—1/2),1/4<c<a,a<b<3/4

Define T, f = Sg(z)f, 0(2)=(1=2)c+2b,0<0<1,z=0+1ir, 7 € R. Here
S§ is a linear operator approximating S¢ defined by S§f(x) = Sz(x)f(x), where
n(zx) is a suitable non-negative mapping from X5 to Z, so that {7} is an analytic
family of linear operators which is admissible in the sense of [11] (see also [16, Chap.
V, Section 4]).

We apply the analytic interpolation theorem on the Lorentz spaces LP'4 due
to [11]. Note that Re(d(it)) = ¢ € [1/4,1/2]. Thus Lemma 6 implies

2
1T fll2,2 < Coe™™ || fl2,2 (4.1)

for some By, Cy > 0. By Lemma 5 and the L' — L> boundedness of the maximal
operator M we have

_ 7-2
ITigirfllieo < Cilp—1) "7 | f

for some By, Cy > 0, since Re(6(1 +i7)) = b. Interpolating between (4.1) and (4.2),
we get

1,1 (42)

||ng||p,p’ - ||T0f||p,P’ < AG”f“p,pv

where
Ag<Clp—1)"?<Cp-1)"L

Therefore

155 Flp.oe < ClUSE Fllpwr < Clo =D £1lp,

from which Lemma 4 follows. -

To prove Theorem 3, we note that by Lemma 4, similarly to the case of T,
we can prove

1/2 ellfll
182 Flh.e < Cl s tor (<5 (43)

if f € L°(3,), f #0. Also, as in the case of T, the estimate (4.3) readily implies
||Si /2 fll1,00 < C|fll 24, from which the almost everywhere convergence follows.
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