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Pointwise convergence of Cesàro and Riesz means

on certain function spaces
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Communicated by V. Totik

Abstract. We consider a function space QA on the unit sphere of R3, which

contains L logL log log logL, and prove the spherical harmonics expansions of

functions in QA are summable a.e. with respect to the Cesàro means of the

critical order 1/2. We also prove that a similar result holds for the Bochner–

Riesz means of multiple Fourier series of periodic functions on R
d, d ≥ 2.

1. Introduction

Let

Qd = {x ∈ R
d : −1/2 < xi ≤ 1/2, i = 1, 2, . . . , d}, x = (x1, . . . , xd),

be the fundamental cube in the d-dimensional Euclidean space R
d. For f ∈ L1(Qd)

we consider the Fourier series

f(x) ∼
∑

ane
2πi〈n,x〉, n = (n1, n2, . . . , nd) ∈ Z

d,

where 〈n, x〉 = n1x1 + · · ·+ ndxd and

an =

∫

Qd

f(x)e−2πi〈n,x〉 dx, dx = dx1 . . . dxd,

is the Fourier coefficient. The Bochner–Riesz means of order δ of the series are

defined by

T δ
R(f)(x) =

∑

|n|<R

(

1− |n|2
R2

)δ

ane
2πi〈n,x〉,
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where |n| = (n2
1 + · · ·+ n2

d)
1/2.

According to [2], we define a space QA (Qd) to be the collection of measurable

functions f for which we can find a sequence {fj} of non-negative measurable

functions such that

|f | ≤
∞
∑

j=1

fj , N({fj}) :=
∞
∑

j=1

(1 + log j)‖fj‖1 log
(e‖fj‖∞

‖fj‖1

)

< ∞; (1.1)

let ‖f‖QA = inf N({fj}), where the infimum is taken over all such {fj}. Then, the

space QA is a logconvex quasi-Banach space and a subspace of L logL (see [2, 9]).

Define T δ
∗ (f)(x) = supR>0 |T δ

R(f)(x)|. Let α = (d− 1)/2 (the critical index).

Then we shall prove the following.

Theorem 1. There exists a positive constant C such that

‖Tα
∗ (f)‖1,∞ = sup

λ>0
λ|{x ∈ Qd : Tα

∗ (f)(x) > λ}| ≤ C‖f‖QA ;

consequently,

lim
R→∞

Tα
R(f)(x) = f(x) a.e. for f ∈ QA (Qd).

It is known that L logL log log logL is a proper subspace of QA (see [2]).

Thus, Theorem 1 implies the following.

Theorem 2. If f ∈ L logL log log logL(Qd), then

lim
R→∞

Tα
R(f)(x) = f(x) a.e.

The convergence a.e. for f ∈ L logL log logL(Qd) was proved in [17].

If we write TN (f) = Tα
N (f) when d = 1, then TN+1(f) is the Nth partial sum

of the Fourier series of f . For f ∈ L2(Q1), there is a result of L. Carleson [5] which

shows that {TNf} converges a.e. (see also [7]). Let T∗f = supN≥1 |TNf |. R. Hunt

[8] proved the restricted weak type estimates:

sup
λ>0

λ|{x ∈ Q1 : T∗(χA)(x) > λ}|1/p ≤ Cp2(p− 1)−1|A|1/p, 1 < p < ∞, (1.2)

where χA denotes the characteristic function of a set A ⊂ Q1. By (1.2) R. Hunt [8]

proved the convergence a.e. of {TNf} for f ∈ L(logL)2(Q1). P. Sjölin [12] showed

that (1.2) can be used to prove the convergence a.e. for the class L logL log logL(Q1).

Applying (1.2) more efficiently, N. Yu. Antonov [1] proved that {TNf} converges

a.e. if f ∈ L logL log log logL(Q1). Theorem 2 can be regarded as a generalization

of this result to higher dimensions.

To prove Theorem 1 for d ≥ 2 we use the following estimates:
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Lemma 1. Let 1 < p ≤ 2, d ≥ 2. Then there exists a constant C independent of p

such that

sup
λ>0

λ|{x ∈ Qd : Tα
∗ (f)(x) > λ}|1/p ≤ C(p− 1)−1‖f‖p.

We write δ = σ + iτ , σ, τ ∈ R. Lemma 1 was proved in [17] by using the

following two results and analytic interpolation.

Lemma 2. Suppose f ∈ L1(Qd), d ≥ 2 and σ > α. Then

‖T δ
∗ (f)‖1,∞ ≤ Aσe

π|τ |(σ − α)−1‖f‖1,

where Aσ remains bounded as σ → α.

Lemma 3. Suppose that f ∈ L2(Qd), d ≥ 2. Then

‖T δ
∗ (f)‖2 ≤ Aσe

π|τ |‖f‖2, σ > 0.

See Lemma 12 and Theorem 7 of [15] for Lemmas 2 and 3, respectively.

Sjölin–Soria [13] extended results of [1] to more general settings. We can apply

results of [13] to prove Theorem 2 for d ≥ 2. Indeed, we easily see that Theorem 2

for d ≥ 2 follows from Lemma 1 and methods of [13, Section 3] (see Remark at the

end of Section 3 of [13]). When d = 1, Theorem 1 is due to [2]. The result also can

be proved by using the estimate (1.2) and Antonov’s idea. More precisely, when

d = 1, Lemma 7 (a key estimate) below is first proved for characteristic functions by

applying (1.2) and the transition from characteristic functions to general functions

f can be carried out by Antonov’s idea. We can prove Theorem 1 by Lemma 1 in

the same way in higher dimensions. In fact, our proof of Theorem 1 for d ≥ 2 is

more straightforward; to prove Lemma 7 the application of the idea of Antonov

is not needed, since the estimate of Lemma 1 is not restricted to characteristic

functions (see Section 2).

We have analogous results for the Cesàro means of spherical harmonics ex-

pansions. Let Hk be the space of the spherical harmonics of degree k on Σd, where

Σd = {x ∈ R
d+1 : |x| = 1} is the unit sphere in R

d+1. We recall that the space Hk

consists of the restrictions to Σd of harmonic homogeneous polynomials of degree k.

Let

Hkf(x) =

∫

Σd

Z(k)
x (y)f(y) dµ(y),

where dµ is the Lebesgue surface measure on Σd normalized as µ(Σd) = 1 (we also

write |E| = µ(E) for a set E ⊂ Σd), and Z
(k)
x ∈ Hk is the zonal harmonic of degree
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k with pole x ∈ Σd:

Z(k)
x (y) =

(

2k

d− 1
+ 1

)

Γ(d/2)Γ(d+ k − 1)

Γ(d− 1)Γ(k + d/2)
P

((d−2)/2,(d−2)/2)
k (〈x, y〉)

=

(

2k

d− 1
+ 1

)

P
((d−1)/2)
k (〈x, y〉).

Here P
(α,β)
k is the Jacobi polynomial and P

(λ)
k is the Gegenbauer polynomial de-

fined by (1− 2tr + r2)−λ =
∑∞

k=0 P
(λ)
k (t)rk. We consider the spherical harmonics

expansion f ∼ ∑∞
k=0 Hkf and the Cesàro means of order δ defined by

Sδ
nf =

1

A
(δ)
n

n
∑

k=0

A
(δ)
n−kHkf, n = 0, 1, 2, . . . , δ = σ + iτ,

where

A
(δ)
k =

Γ(k + δ + 1)

Γ(k + 1)Γ(δ + 1)
=

(

k + δ

k

)

, σ > −1 (1.3)

(see [19, Chap. III]). We refer to [4, 6, 14, 18] and [16, Chap. IV] for relevant results.

Let Sδ
∗(f)(x) = supn>0 |Sδ

n(f)(x)|. If we define the space QA (Σd) analogously

to QA (Qd), we have the following result (we focus on the case d = 2).

Theorem 3. There exists a positive constant C such that

sup
λ>0

λ|{x ∈ Σ2 : S
1/2
∗ (f)(x) > λ}| ≤ C‖f‖QA

for f ∈ QA (Σ2), which implies

lim
n→∞

S1/2
n (f)(x) = f(x) a.e. for f ∈ QA (Σ2).

Theorem 3 implies the following result as Theorem 1 implies Theorem 2.

Theorem 4. If f ∈ L logL log log logL(Σ2), then

lim
n→∞

S1/2
n f(x) = f(x) a.e.

See [4] for the convergence a.e. of {S1/2
n f} for f ∈ Lp(Σ2), p > 1. The proof

of Theorem 3 is similar to that of Theorem 1, with the following estimates:

Lemma 4. Let 1 < p ≤ 2. Then we have

sup
λ>0

λ|{x ∈ Σ2 : S
1/2
∗ (f)(x) > λ}|1/p ≤ C(p− 1)−1‖f‖p

for a positive constant C independent of p.
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Let

Mf(x) = sup
r>0

|B(x, r)|−1

∫

B(x,r)

|f(y)| dµ(y),

where B(x, r) = {y ∈ Σ2 : |y − x| < r}, x ∈ Σ2. To prove Lemma 4 we need the

following two results.

Lemma 5. Suppose that f ∈ L1(Σ2) and α < σ < 1, where α = 1/2. Then

Sδ
∗(f)(x) ≤ Aσe

Bτ2

(σ − α)−1(Mf(x) +Mf(−x)).

The constant Aσ remains bounded as σ → α.

Lemma 6. Suppose that f ∈ L2(Σ2). Then

‖Sδ
∗(f)‖2 ≤ Aσe

Bστ
2‖f‖2, σ > 0.

The constants Aσ and Bσ are bounded on any compact subinterval of (0,∞).

We can find Lemma 6 in [4]. Using Lemmas 5 and 6, we can prove Lemma 4

by analytic interpolation (see Section 4). We shall prove Lemma 5 in Section 3 by

applying methods of [10].

2. Proof of Theorem 1

We assume that d ≥ 2. In proving Theorem 1 we use the following result.

Lemma 7. Suppose that f ∈ L∞(Qd), f 6= 0. Then

‖Tα
∗ (f)‖1,∞ ≤ C‖f‖1 log

(e‖f‖∞
‖f‖1

)

.

Proof. By homogeneity we may assume that ‖f‖∞ = 1. For λ > 0, let m(λ) =

inf1<p≤2 λ
−p(p− 1)−p. Then, observing that ‖f‖pp ≤ ‖f‖1, by Lemma 1 we have

|{x ∈ Qd : Tα
∗ (f)(x) > λ}| ≤ Cmin (1,m(λ)‖f‖1) .

This will imply the conclusion, if we note that m(λ) = λ−2 when λ ≥ e−2 and

m(λ) ∼ λ−1 log(1/λ) when λ < e−2.

Let f ∈ QA (Qd). To prove Theorem 1, we may assume that f ≥ 0. For any

ǫ > 0 there exists a sequence {fj} of non-negative bounded functions such that

f =
∑

fj and N({fj}) ≤ ‖f‖QA + ǫ (see [2, p. 149]). Since L1,∞ is a logconvex
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quasi-Banach space (see [9]) and Tα
∗ is a sublinear operator, using Lemma 7 we

have

‖Tα
∗ (f)‖1,∞ ≤ C

∑

j

(1 + log j)‖Tα
∗ (fj)‖1,∞

≤ C
∑

j

(1 + log j)‖fj‖1 log
(e‖fj‖∞

‖fj‖1

)

= CN({fj}) ≤ C(‖f‖QA + ǫ).

Letting ǫ → 0, we get the conclusion.

3. Proof of Lemma 5

Let

S(δ,λ)
n (cos v) = (A(δ)

n )−1
n
∑

k=0

A
(δ)
n−k2(k + λ)P

(λ)
k (cos v),

where 0 < λ < 1, 0 ≤ v ≤ π, 0 < σ < 1, δ = σ + iτ . Then, S
(δ,1/2)
n (〈x, y〉) is

the kernel of the operator Sδ
n. In [10, p. 121], S

(δ,λ)
n (cos v) was represented by the

contour integrals as follows:

1

2
A(δ)

n S(δ,λ)
n (cos v) =

1

2πi

∫

L1

ϕ(z) dz +
1

2πi

∫

L2

ϕ(z) dz +
1

2πi

∫

L3

ϕ(z) dz, (3.1)

where

ϕ(z) =
λ(1 + z)zn+δ+2λ

(z − 1)δ(1− 2z cos v + z2)λ+1
.

Let

i(δ,λ)n (v) =
λ sin(δπ)

π

∫ 1

0

un+δ+2λ

(1− u)δ(1− 2u cos v + u2)λ+1
du,

I (δ,λ)
n (v) =

exp (−i [(n+ λ+ (δ + 1)/2)v − (λ+ δ + 1)π/2])

(2 sin v)λ(2 sin(v/2))δ+1

sin(λπ)

π
×

×
∫ 1

0

u−λ(1− u)n+δ+2λ

(1− uτ(v/2))δ+1(1− uτ(v))λ
du,

J (δ,λ)
n (v) =

exp (i [(n+ λ+ (δ + 1)/2)v − (λ+ δ + 1)π/2])

(2 sin v)λ(2 sin(v/2))δ+1

sin(λπ)

π
×

×
∫ 1

0

u−λ(1− u)n+δ+2λ

(1− uτ(−v/2))δ+1(1− uτ(−v))λ
du,
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where τ(v) = (1 + i cot v)/2. Then, according to (3.1), it follows that

1

2
A(δ)

n S(δ,λ)
n (cos v) = (n+ λ)I (δ,λ)

n (v)− (δ + 1)I
(δ+1,λ)
n−1 (v) + i

(δ,λ)
n+1 (v)+

+ i(δ,λ)n (v) + (n+ λ)J (δ,λ)
n (v)− (δ + 1)J

(δ+1,λ)
n−1 (v)

(3.2)

(see [10]). Put

K(n, δ, λ, v) =
4(n+ λ)

Γ(λ)
C(n, δ, λ)

cos [(n+ λ+ (δ + 1)/2)v − (λ+ δ + 1)π/2]

(2 sin v)λ(2 sin(v/2))δ+1
,

L(n, δ, λ, v) =
−4(δ + 1)

Γ(λ)
C(n, δ, λ)

cos [(n+ λ+ δ/2)v − (λ+ δ + 2)π/2]

(2 sin v)λ(2 sin(v/2))δ+2
,

where

C(n, δ, λ) =
Γ(n+ δ + 2λ+ 1)

Γ(n+ δ + λ+ 2)
;

and also

R1(n, δ, λ, v) = 2(n+ λ)I (δ,λ)
n (v) + 2(n+ λ)J (δ,λ)

n (v)−K(n, δ, λ, v),

R2(n, δ, λ, v) = −2(δ + 1)I
(δ+1,λ)
n−1 (v)− 2(δ + 1)J

(δ+1,λ)
n−1 (v)− L(n, δ, λ, v),

R3(n, δ, λ, v) = 2i
(δ,λ)
n+1 (v) + 2i(δ,λ)n (v).

Then (3.2) implies that

S(δ,λ)
n (cos v) = (A(δ)

n )−1(K(n, δ, λ, v) + L(n, δ, λ, v) +R1(n, δ, λ, v)+

+R2(n, δ, λ, v) +R3(n, δ, λ, v)).
(3.3)

We need the following results.

Lemma 8. Let x > −1, y ∈ R. Then |A(x+iy)
n | ≥ |A(x)

n | and |A(x+iy)
n | ≤ ec(x)y

2

A
(x)
n ,

where c(x) = (1/2)
∑∞

k=1(x+ k)−2 and A
(x+iy)
n is as in (1.3).

Lemma 9. Suppose 0 < λ < 1, 0 < σ < 1. Let C(n, δ, λ) be as above. Then

|C(n, δ, λ)| ≤ C(n+ 1)λ−1,

where the constant C is independent of δ and λ.

Lemma 8 is in [3]. Lemma 9 can be proved by using the formula

lim
Re(z)≥c>0,|z|→∞

Γ(z)√
2πe−zzz−1/2

= 1.
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Let |π/2− v| ≤ (π/2)(n/(n+ 1)). By [10, pp. 130–133] and Lemma 9 we have

|R1(n, δ, λ, v)| ≤ CeB|τ | C(n, σ, λ)

Γ(λ)|n+ σ + λ+ 2|
n+ 1

(sin v)λ+1(sin(v/2))σ+1

≤ CeB|τ | (n+ 1)λ−1

(sin v)λ+1(sin(v/2))σ+1
,

|R2(n, δ, λ, v)| ≤ CeB|τ | C(n, σ, λ)

Γ(λ)|n+ σ + λ+ 2|
1

(sin v)λ+1(sin(v/2))σ+2

≤ CeB|τ | (n+ 1)λ−1

(sin v)λ+1(sin(v/2))σ+1
.

Also, by [10, pp. 122–123] and estimates similar to the one in Lemma 9

|R3(n, δ, λ, v)| ≤ C
| sin(δπ)|Γ(1− σ)

(sin(v/2))2(λ+1)

(Γ(n+ σ + 2λ+ 1)

Γ(n+ 2λ+ 2)
+

Γ(n+ σ + 2λ+ 2)

Γ(n+ 2λ+ 3)

)

≤ C(n+ 1)σ−1 | sin(δπ)|Γ(1− σ)

(sin(v/2))2(λ+1)
.

Since |A(δ)
n | ≥ |A(σ)

n | and A
(σ)
n ∼ (n + 1)σ (see Lemma 8 and [19, Chap. III]), if

|π/2− v| ≤ (π/2)(n/(n+ 1)), we have

|Rj(n, δ, λ, v)/A
(δ)
n | ≤ CeB|τ | (n+ 1)λ−1−σ

(sin v)λ+1(sin(v/2))σ+1
, j = 1, 2, (3.4)

|R3(n, δ, λ, v)/A
(δ)
n | ≤ C

| sin(δπ)|Γ(1− σ)

(n+ 1)(sin(v/2))2(λ+1)
. (3.5)

By Lemma 9 we have

|K(n, δ, λ, v)/A(δ)
n | ≤ Ce(π/2)|τ |

(n+ 1)λ−σ

(sin v)λ(sin(v/2))σ+1
. (3.6)

Similarly,

|L(n, δ, λ, v)/A(δ)
n | ≤ C(1 + |τ |)e(π/2)|τ | (n+ 1)λ−σ−1

(sin v)λ(sin(v/2))σ+2
. (3.7)

We also need the following.

Lemma 10. Let 0 < λ < 1, 0 < σ < 1, δ = σ + iτ , 0 ≤ v ≤ π. Then

|S(δ,λ)
n (cos v)| ≤ Cecτ

2

(n+ 1)2λ+1.
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Proof. By [18, p. 168], we have |P (λ)
n | ≤ CA

(2λ−1)
n . Using this and Lemma 8, we

see that

|S(δ,λ)
n (cos v)| ≤ C|A(δ)

n |−1
n
∑

m=0

|A(δ)
n−m|(m+ λ)A(2λ−1)

m

≤ Cλ|A(δ)
n |−1

n
∑

m=0

m+ λ

m+ 2λ
|A(δ)

n−m|A(2λ)
m

≤ Cecτ
2 |A(σ)

n |−1
n
∑

m=0

|A(σ)
n−m|A(2λ)

m

≤ Cecτ
2 |A(σ)

n |−1A(σ+2λ+1)
n ≤ Cecτ

2

(n+ 1)2λ+1 .

By (3.3)–(3.7) and Lemma 10, we have

|S(δ,λ)
n (cos v)| ≤ CeBτ2

(n+ 1)λ−σ((n+ 1)−1 + sin v)−λ−σ−1, (3.8)

where 0 ≤ v ≤ π, λ = 1/2, 1/2 < σ < 1. Suppose 〈x, y〉 = cos v, x, y ∈ Σ2. Then

sin v ∼ |x− y| if 〈x, y〉 ≥ 0 and sin v ∼ |x+ y| if 〈x, y〉 ≤ 0. Thus (3.8) implies

|S(δ,λ)
n (〈x, y〉)|

≤
{

CeBτ2

(n+ 1)λ−σ((n+ 1)−1 + |x− y|)−λ−σ−1, if 〈x, y〉 ≥ 0,

CeBτ2

(n+ 1)λ−σ((n+ 1)−1 + |x+ y|)−λ−σ−1, if 〈x, y〉 ≤ 0.

(3.9)

Since Sδ
nf(x) =

∫

Σ2

S
(δ,1/2)
n (〈x, y〉)f(y) dµ(y), the conclusion of Lemma 5 easily

follows from (3.9).

Remark. In fact, we can prove estimates of the type in [6, Theorem (3.21)], partly

improving (3.9). We do not need those estimates here; for our purpose (3.9) suffices.

4. Proofs of Lemmas 4, 6 and Theorem 3

We first prove Lemma 6.

Proof of Lemma 6. When δ > 0, we have ‖Sδ
∗(f)‖2 ≤ Aδ‖f‖2 (see [4, Lemma

(3.5)]). If δ = σ + iτ , σ > 0, τ ∈ R, we write

Sδ
n(f) = (Aδ

n)
−1

n
∑

k=0

A
(σ−ǫ)
k A

(ǫ−1+iτ)
n−k Sσ−ǫ

k (f),

where 0 < ǫ < σ. Using Lemma 8 as in [4], we have Sδ
∗(f) ≤ ec(ǫ−1)τ2

Sσ−ǫ
∗ (f).

Combining these results, we reach the conclusion of Lemma 6.



Author’s personal copy

Acta Scientiarum Mathematicarum 80:1–2 (2014) c© Bolyai Institute, University of Szeged

138 S. Sato

Proof of Lemma 4. Let 1 < p < 2, 1/p = (1 − θ)/2 + θ, α = (1 − θ)c + θb,

where c = α − (1/2)(1/p − 1/2), b = α + (1/2)(1 − 1/p), α = 1/2. We note that

θ = 2(1/p− 1/2), 1/4 ≤ c ≤ α, α ≤ b ≤ 3/4.

Define Tzf = S
δ(z)
0 f , δ(z) = (1− z)c+ zb, 0 ≤ σ ≤ 1, z = σ + iτ , τ ∈ R. Here

Sδ
0 is a linear operator approximating Sδ

∗ defined by Sδ
0f(x) = Sδ

n(x)f(x), where

n(x) is a suitable non-negative mapping from Σ2 to Z, so that {Tz} is an analytic

family of linear operators which is admissible in the sense of [11] (see also [16, Chap.

V, Section 4]).

We apply the analytic interpolation theorem on the Lorentz spaces Lp,q due

to [11]. Note that Re(δ(iτ)) = c ∈ [1/4, 1/2]. Thus Lemma 6 implies

‖Tiτf‖2,2 ≤ C0e
B0τ

2‖f‖2,2 (4.1)

for some B0, C0 > 0. By Lemma 5 and the L1 −L1,∞ boundedness of the maximal

operator M we have

‖T1+iτf‖1,∞ ≤ C1(p− 1)−1eB1τ
2‖f‖1,1 (4.2)

for some B1, C1 > 0, since Re(δ(1 + iτ)) = b. Interpolating between (4.1) and (4.2),

we get

‖Sα
0 f‖p,p′ = ‖Tθf‖p,p′ ≤ Aθ‖f‖p,p,

where

Aθ ≤ C(p− 1)−θ ≤ C(p− 1)−1.

Therefore

‖Sα
0 f‖p,∞ ≤ C‖Sα

0 f‖p,p′ ≤ C(p− 1)−1‖f‖p,
from which Lemma 4 follows.

To prove Theorem 3, we note that by Lemma 4, similarly to the case of Tα
∗ ,

we can prove

‖S1/2
∗ f‖1,∞ ≤ C‖f‖1 log

(e‖f‖∞
‖f‖1

)

(4.3)

if f ∈ L∞(Σ2), f 6= 0. Also, as in the case of Tα
∗ , the estimate (4.3) readily implies

‖S1/2
∗ f‖1,∞ ≤ C‖f‖QA, from which the almost everywhere convergence follows.
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