Spherical square functions of Marcinkiewicz type
with Riesz potentials

S5 eng

HhRE

~FHH: 2017-12-05
*F—7—NK (Ja):
*—7— K (En):
YRR

X—=ILT7 KL R:
FiT/:

http://hdl.handle.net/2297/47026




SPHERICAL SQUARE FUNCTIONS OF MARCINKIEWICZ
TYPE WITH RIESZ POTENTIALS

SHUICHI SATO

ABSTRACT. We prove a pointwise equivalence between a spherical square func-
tion composed with the Riesz potential and a Littlewood-Paley function aris-
ing from the Bochner-Riesz operators. Also, its application to the theory of
Sobolev spaces will be given.

1. INTRODUCTION

Let
oo 1/2
o) = ([T I+ se-0- 2P E)

Then p(f) = v(J(f)) is the function of Marcinkiewicz, where I(f)(z) = [; f(y) dy.
If fe LP(R), 1 < p < oo, we have

(L.1) (Ol = 11 £l

which means that there exist positive constants ¢, ¢» independent of f such that

cillfllp < Mlu(Hllp < c2llFllp-

In other words, we have [[v(f)|l, ~ ||f'|l, if f is in the Sobolev space W!?(R),
1<p<oo.

The Marcinkiewicz function was introduced by J. Marcinkiewicz [5] in 1938 in
the setting of periodic functions on the torus T. It can be used to investigate
properties of functions such as differentiability and finiteness of norms in function
spaces. Zygmund [10] proved a periodic analogue of (1.1), which was conjectured
in [5]. The non-periodic version (1.1) was proved by Waterman [8].

The Marcinkiewicz function is a kind of Littlewood-Paley functions; u(f) can be

realized as )
[e%s) d 1/2
un@ = ([ wes@r )

where ¢, (z) = t~'(t7 ") with ¢(z) = x[0,1)(#) — X[=1,0](%); here xg denotes the
characteristic function of a set . We observe that

o +0) + fe— ) - 2f(x) = / (f(z — 16) — f(x)) do(6),

So
where do is a uniform measure on S° = {—1,1} such that o({—1}) = 1, o({1}) = 1.
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In this note we assume that n > 2 and consider the square function

1/2
4\
t )

for appropriate functions f, where do is the Lebesgue surface measure on S™~!.
Then D*(f) with a = 1 can be regarded as a generalization to higher dimensions
of v(f). We shall see that D*(f) also can be used to characterize Sobolev norms.
This will be accomplished through a relation between D*(f) and another square
function arising from the Bochner-Riesz operators. Let

S2(f)(x) = / FO - R2(€?)? 78 ag = HE, « f(x)
|€|l<R

(12) D)) = ( [Tl [ a=m- sayase)

be the Bochner-Riesz mean of order 4 on R", where
H}} \(v) = R"H(Ra), H”(x) = xT(8+ la|~ /291, 1, o(2n]a])

with J, denoting the Bessel function of the first kind of order v and f is the Fourier
transform defined as

fle) = i f@)e>™ @ dr, (,8) =z
" k=1

We recall a Littlewood-Paley operator og, Re(8) > 0, defined from the Bochner-

Riesz means as

(13 op(fa) = ( | ronsina| %R)/

— </goo ‘_Qﬁ (Szg(f)(x) - S]gil(f)(l‘)) ‘2 d_}é%)lﬂ,

where Re(3) denotes the real part of the complex number 3 and 0r = 8/0r. Also,
let I, be the Riesz potential operator defined as

(1.4) L.(N(©) = ™ F(©).

Let 8(R™) be the Schwartz class of rapidly decreasing smooth functions on R".
Let 8o(R™) be the subspace of S$(R™) consisting of functions f with f vanishing in
a neighborhood of the origin. We shall prove the following.

Theorem 1.1. Let 0 < a < 2. Then if 8 = a + 5, we have

o3(f)(@) = D* (1 f)(x)
for f € 8(R™), where D*, I, and o are as in (1.2), (1.4) and (1.3), respectively.

Here os(f)(x) = D*(I,f)(r) means that there exist positive constants A, B
independent of f and x such that

Aop(f)(z) < D*(Iaf)(x) < Bog(f)(x)-

A version of Theorem 1.1 was shown in [4] for the range 0 < a < 1. In this note
we shall extend this range of @ to 0 < @ < 2. The difference from [4] that enables
us to improve the range of a mainly comes from the estimate in part (1) of Lemma
2.5.

In Section 2, we shall give an almost self-contained proof of Theorem 1.1 except
that Lemmas 2.2, 2.3 from [9] and the formula (2.9) are taken for granted. In
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Section 3, applications of Theoerm 1.1 to the theory of Sobolev spaces will be
given.

2. PrRoOOF OF THEOREM 1.1

For a fixed function f € 8o(R™) and a fixed point x € R, let

(2.1) o(t) = otz f) = / fla —ty') do(y'),

Sn—1
2D 80 =8l ) = tgeltin )=~ [ (V- t))doly)

where Vf(z) = (01 f(z),...,0.f(2)), 0; = 0/0z;.
Let Rea > —n. Define

—

(2.3) I*(f)() = €1/ (8),

and for Re 3 > —1 consider

(2.4) SpI*f)(z) = / FOIE1(1 = R2|¢P)P 2@ de = ROLYP, « f(a),

|¢]<R
where
@)= [ e [Py i) g
l€]<1
_ ! n+a 2\8 —(n—2)/2 dr
= r (1 —r*)"2x(r|z|) J(n_g)/2(27rr|a:|) -
0
_ n/2 ! n+a 2\3 dT
= @m)? [ )V gy p ral) T
0
with

V,(r) =r="J,(r).
We write the formula in (2.4) by using ¢ in (2.1).
Lemma 2.1. Suppose that Rea > —n, Re3 > —1. Let

! dr
log(s) = (2#)"/2/ el — rz)ﬂV(n_2)/2(2m‘s) -
0

Then we have

ds

S e A A

Proof. By (2.4) we have
Sp(I°*f)(@) = R*LEA « f(a) = B | (o —y) L% (v) dy.
Rn
Using polar coordinates and recalling the definition of L*? in the last integral, by

(2.1) we reach the conclusion.
a

We use the following formulas.
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Lemma 2.2. If Re(u) > —1, Re(v) > —1, ¢t > 0,

tu+1

)/0 T (ts)s*TH(1 — s?)” ds.

Turenn® = om0

This can be rewritten as
1 ! 2p+1 2
Virws1() = om0 / V()5 (1~ 52)" ds.

Lemma 2.3. If 0 < Re(p) < Re(v) +1/2,

- B I'(p/2)
/0 TV, (t) dt = v—HFID(y — p/2 4+ 1)

See [9, p.373] and [9, p.391] for Lemma 2.2 and Lemma 2.3, respectively.
We need the expression of og(I®f) in (2.7) below. To obtain it we show the
following.

Lemma 2.4. Let Rea > —n, Re3 > 0. Then
RORSRH(I* f)()

S 1
= —25(2#)"/21%“/ 6(s/R)s™ ! ds/ pret2(] — 7"2)[3*11/”/2(27#5) %
0

0

Proof. We first compute ROg(R™"*Ig(Rs)) as follows.

1
ROR(R"* 1, 3(Rs)) = Rog |(2m)"/2 R /0 Pt (1 — 2PV, 9 2 (2T Rrs) %]

R 2\ 8
n/2 n+a r dr

R r2\ " dr
= R(27r)"/2/0 rmteg (1 - ﬁ) (2r° R™)V(_2) /2 (27rs) .

= ROgr

1
_ d
= 2ﬂ(27r)”/2R"+"/ Pt (1 - r2)ﬂ ! 7“2‘/(",2)/2(271'}37“3) ?T
0

Therefore, from Lemma 2.1 it follows that
(25) RORSHIf)(x)

o'} 1 _ d
= 2ﬂ(27r)"/2R"+°‘/ o(s;x, f)s" ! ds/ rte (11— 7“2)’8 ! *Vin—2)/2(2mRrs) 71“
0 0

By Lemma 2.2 we have

u 1
/ V(n,g)/z(Qﬂ'Rrs)s"_l ds = u"/ Vin-2)/2 (27 Rrsu)s™ ' ds
0 0
=u"T(1)V,/2(2nr Ru) = u"V, /2(27r Ru).
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Thus applying integration by parts in (2.5), we see that
RORSR(I* f)(x)

o'} 1
= —26(27r)"/2R"+“/ ©'(s) ds/ Pt (1 - rz)’g Lp2gn w/2(2m Rrs) dr
0 0 r

o'} 1
= —2ﬂ(27r)”/2R"+"/ f(s)s" " ds/ Pt (1 - r2)571 r°Vo 2 (2w Rrs) %
0 0

= —26(2m)"/?R* /00 8(s/R)s" ' ds /1 rrtet? (1 — r2)571 Viy2(27rs) %,
where ¢(s) = ga(s;a:,f)o and 6(s) = 0(3;3:,(}) are as in (2.1) and (2.2), respectively.
This completes the proof. a
For appropriate complex numbers «, 3, let
(2.6) ®, 5(s) = s> /1 prtetl (1 - r2)ﬁ_1 Vo2 (2mrs) dr
and 0

O.(t) =t “0(t) =t “0(t;z, f).
Then Lemma 2.4 implies that
o d
RORSHI1)(@) = ~2020)""* [ @0s(o)ba(sh™) S
0
for Rea > —n, Re 8 > 0. Define
Kop(u) = =2602m)"*®q5(e"),

O (u) = O, f) = fale ™), Ou) =6 ).

Then by change of variables s = eV, R = e" we have
RORSH(I*f / Ko 30)0a(u —v)dv,

and hence by (1.3),

(2.7) oo (I ) (2)? = /Oo Ko % O (1) s

In proving Theorem 1.1 we need Proposition 2.10 below. To show it we first
state some properties of @, and K, (Lemmas 2.5 and 2.6).

Lemma 2.5. We have the following estimates for ©,, a € C.

(1) |04 (u)| < CevRel@e=2u for 4 > 0;

(2) ifu<0, |O4(u)] < C’ euRe(a) gmu for any m > 0.
Further, we have similar estimates for the derivatives (d/du)*©., k=1,2,.... In
particular, O, € 8(R) if Re(a) < 2.
Proof. Recall that 6(t) = — [._.(ty', Vf(x —ty')) do(y') and O (u) = e**0(e™").
Thus, part (2) follows easily since |Vf(z)| < Cp(1 4 |z[) ™™ ! and |z — e ¥y'| >

—lz| > e ¥/2if e > 2|z|.

To prove part (1), we note that

) == [ (V@ = 1) = T f(a) drls)
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since [g,_1 (ty',w) do(y') = 0 for any w € R*. So 0(t) = O(t*) as t — 0, which
proves part (1).

By a direct computation, we can prove the result for the derivatives (d/du)*©,
similarly. a

Lemma 2.6. The following results hold for K, 3, o, 3 € C.
(1) If Re(a) > —n — 2 and Re(B) > 0,

| Ko p(u)] < CopelRe@u gy e R
(2) If Re(a) > —n/2 — 2 and Re(B) > 0,
|Kop(u)] < Co ge/ZHReelu g e R,
(3) If —n/2 > Re(a) > —n/2 — 1 and Re(B) > 0, then
| Kop(u)] < Cape™, uweR,
where § = min(n + Re(a), — Re(a) —n/2) > 0.

Proof. Since V;, /5 is bounded, by (2.6) we have part (1), where we assume that
Re(a) > —n — 2 and Re(B) > 0 for the integrabilities on [0,1] of r"**1 and
(1- r2)ﬁ_1, respectively. By (2.6), we also have

1
D, 5(s) = (277)_”/23"+"/2/ P/ 2ot (1- r2)571 Jny2(2mrs) dr.
0

This implies part (2). Part (3) follows from the estimates of (1) and (2). O
Let
(29 G(a.0) = [ Ka+ Ou(wg(u)du,

where g € C°(R). By Lemmas 2.5 and 2.6, the convolution K, g * ©, can be
defined and G(a, 8) is analytic in a and 3 if Re(a) > —n — 2, Re(8) > 0. Also, if
—n/2 > Re(a) > —n/2 — 1 and Re(3) > 0, then K, 5,0, € L*(R); in this case we
have

Gl = [ R (680 (03(—0) de.

An explicit form of the Fourier transform of K, 3 needed is stated in the next
result.

Lemma 2.7. If —n/2—1 < Re(a) < —n/2 and Re(B) > 0, then I?aﬁ(f) =T, 5(£),
where

o pl€) = 27 p/2-aoms L+ o = 2mig) DD (wic + D(S)

(—a/2+ mi& + DD(mié+ 1+ 6) -~
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Proof. Let —Re(a) —n < Re(¢) < —Re(a) —n/2 and —n/2 — 1 < Re(a) < —n/2,
Re(8) > 0. Then by Fubini’s theorem we have

~ C /oo ¢
K, - = “Kq
8 (_2m e 6(u) du

— 00

00 1
= —2ﬂ(27r)"/2/ grtote-l </ prrett (1 - rz)ﬁ_l Va2 (2mrt) dr) dt
0

0
1 [e%s)
= —2ﬂ(27r)"/2/ prtatl (1 — rz)ﬁ_l (/ t"*““*an/z(Qﬂ'rt) dt) dr.
0 0

Using Lemma 2.3, we see that

/ t"+“+<—1Vn/z(27rrt)dt:(27rr)‘”_a_c/ etV o (1) dt
0 0

_ —n—a—Con/2+a —1 F((n+a+C)/2) n—a—
= (2m) e T(—a/2—(/2+1) R

Thus

7 ¢

Koy <—27ri>

_ ,/Tfn/ —a—C(o9n/2+a+(— F((n+a+C)/2) ! — _ —

= —2p3(2m) /2o CQn/2Hatc 1F(—a/2—C/2+1)/0 (1 =2 tar

_aenfrma—c L((n+a+0)/2) Sy ' —¢/2(1 _ p\B-1

= 07 F(—a/2 — C/2 n 1) 2 /0 t (1 t) dt

_ yig e Lntat0/2) T=¢/2+ V0@
D(—a/2—(/24+1)T(=¢/2+1+8)"

Putting ( = —27i&, € € R, we reach the conclusion. O

In proving Proposition 2.10 we also need the following.

Lemma 2.8. Let ¥, 3 be as in Lemma 2.7 and

H(a,f) = / T W5 (OB (€)(~6) de.

— 00

Then H(a, B) is analytic in o and B if —n < Re(a) < 2, Re(B) > 0.
To prove this we apply the following.

Lemma 2.9 (asymptotic formula for the gamma function). Let a, £ € R, a > 0.
Then we have

i P@+iol
1m =
le]—o00 \/2me7IEl/2|¢|a—1/2
This is well-known. In Section 4, we shall give a proof for completeness based
on the formula

L(z)

im — " —=1.
Re(z)>¢>0,]z| =00 y/2me—222—1/2

(2.9)

Proof of Lemma 2.8. We can see that ¥, g(¢) is analytic in «, § for —n < Re(a) <
2, Re(B) > 0, if ¢ is fixed. By Lemma 2.9, | ¥, 5(¢)| behaves like |¢|Re(e)~Re(#)+n/2-1
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if | is sufficiently large. Also we note that ¥, g(£) is continuous and does not van-
ish in a, 8, £ with —n < Re(a) < 2, Re(8) > 0, £ € R™. Thus we have

(210)  A(L+ €Y RI/2L < g (@) < B(1+ [gl)Rele) Rel@) /21

with some positive numbers A and B independent of &.

Using (2.10), since § € $(R) and O, is bounded and analytic for Re(a) < 2
by part (1) of Lemma 2.5, we can see H(a, ) is analytic for —n < Re(a) < 2,
Re(p5) > 0. O

Now we are able to prove the following.

Proposition 2.10. Let —n < Re(a) < 2, Re(8) > 0. Then

(T N@? = [ K x 0alPdu= [ 10 p(@PIOLOF de.

— 00

<
<

Proof. We recall that G(«, ) in (2.8) is analytic in o and g for Re(a) > —n — 2,
Re(8) > 0 and that H(«, ) is analytic for —n < Re(a) < 2, Re(f8) > 0 (Lemma
2.8). Further, by Lemma 2.7 we have G(a, 8) = H(a, ) if —n/2 — 1 < Re(a) <
—n/2 and Re(3) > 0. Thus by analytic continuation we see that G(a, 8) = H(a, ()
if —n < Re(a) < 2, Re(B) > 0. So, we have |G(a, 8)| = |H(a, B)| if —n < Re(a) <
2, Re(B) > 0. Thus, taking the supremum over g in the unit ball of L?(R) and
recalling (2.7), we get the conclusion. O

On the other hand, for D*(f) in (1.2) we have the following result.

Proposition 2.11. Let ©, be as in Lemma 2.5. Suppose that 0 < Re(a) < 2.
Then

D@ = [ o - 2riel 21 de.

— 00

Proof. We note that

[ e =) = 12)) dr(®) = ot f) = p(Oia, 1) = [ Bleria, 1) T

and

1
 oltia )= o0, ) = [ 78t ) -

9 1/2
@ ([ dt
D(f)(w) = (/ t) .

By the change of variables r = e, t = e~
oo 0 2 00
prer = [ |[ erentu—vao| au= [~ Wa@rBaOR de

where 94 (u) = e*“Xx{u<o} (#) and hence
. 0 _ 1
z/Ja(f):/_ooe € du:m.
Here we note that 1, and ©, are in L'(R) and in L*(R) if 0 < Re(a) < 2 (see
Lemma 2.5 for ©,). This completes the proof. O

Thus

1
/ r 8, (try, f)
0 7‘

* we have
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Proof of Theorem 1.1. Let 0 < a < 2. Then we note that
(@/2)(1 +[¢]) <l + 2mig] < 2m(1 + [¢]).

By this and (2.10) it follows that |a—27i¢|~! and | ¥, 5(£)| are pointwise equivalent
as functions of £ if § = a + n/2. Using the pointwise equivalence and the formulas
of Propositions 2.10 and 2.11, we have og(I*f)(z) = D*(f)(z) for f € So(R™).
Substituting I, f for f and recalling (1.4), (2.3), we reach the conclusion. O

3. APPLICATIONS

Let D, I, and og be as in (1.2), (1.4) and (1.3), respectively. Define
(3.1) Sa(f)(x) = D*(Laf)(x)

for f € 8(R™). Then, some LP estimates for S,, 0 < a < 2, are shown in [7] with
weights for 1/2 < a < 2, which are useful in characterizing the Sobolev spaces
of order a (see [1] for relevant results). When 1 < a < 2, the result is proved
by applying a theorem of [6] for the boundedness of Littlewood-Paley operators.
When 0 < @ < 1 it is shown by using Theorem 1.1 for « € (0,1), which is due to
[4], and applying known properties of o3. The result for the case @ = 1 is due to
[3]. Here, we focus on the case 1/2 < a < 2. Then, more precisely, we can find the
following result in [7].

Theorem A. Suppose that 1/2 < a < 2, w € A,, 1 < p < co. Let S, be as in
(3.1). Let f € 8(R™). Then

1Sa(Hllpew = N Fllp,e-

We recall the weight class A, of Muckenhoupt. A weight w belongs to A,,
1<p<oo,if

sup <|B|1/Bw(a:) da:) <|B|1/Bw(a:)1/(p1) dm)pl < o0,

where the supremum is taken over all balls B in R” and |B| denotes the Lebesgue
measure of B (see [2] for the A, class). The weighted L? space is defined as L?,
with the norm

1 = 151 = ([ 18P0 an)

Theorem A is due to [3] when a = 1, as mentioned above. We can now give a
different, proof of this by applying Theorem 1.1 as follows. Since it is known that
0y /241 is bounded on LE for all p € (1,00) and w € A, (see [7]), by Theorem 1.1
with @ =1 we have

151 (N)llp.w < Cllfllpw

for f € S(R™). The reverse inequality follows from this by duality as in [7].

Similarly, we can give another proof of Theorem A for a € (1,2), which was
proved in [7] from a result of [6], by applying Theorem 1.1 and the boundedness of
Opn/24+a ON LY, with w € A, 1 < p < oo.



10 SHUICHI SATO

4. PROOF OF LEMMA 2.9

By (2.9) to prove Lemma 2.9 it suffices to show

o 22 (@122

|€_ZZZ_1/2| Cl2 (a—1/2)/2
< g < (1)

)

where z = a + i, £ # 0.
To prove (4.1), we first note that
|Zz71/2| — e(a71/2) 10g|z|67§argz — (a2 +62)(a71/2)/267|£|arg(a+i|£|),
where —7/2 < argz < w/2. We write arg(a + i|¢|) = arctan(|¢|/a). Define a
function F' on [0,00) by F(z) = arctan(l/z), z > 0, F(0) = w/2. Then by the
mean value theorem, we have
a 1
w/2 —arctan(|¢|/a) = F(0) — F(a/|é|) = 5 ———
/ (I€l/a) = F(0) = F(a/[¢]) GEES
for some 1 € (0,a/|¢|). Thus
et elél(n/2—arg(atil¢])) — g—an®/(n*+1)

and hence
(42) |efzzzfl/2| — efa(a2 _+_62)(a71/2)/267ﬂ'|£|/2e\§\(ﬁ/27arg(a+i|£|))
B B a2 (a—1/2)/2 I
_ o mlel/2jgpe /2 <1+§_2> p—an/ (n?+1)
Since

e~ /(@48 £ gman®/(*+1) 1
from (4.2) we obtain (4.1). This completes the proof of Lemma 2.9.
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