Spherical square functions of Marcinkiewicz type with Riesz potentials

メタデータ	言語: eng
	出版者:
	公開日: 2017-12-05
	キーワード (Ja):
	キーワード (En):
	作成者:
	メールアドレス:
	所属:
URL	http://hdl.handle.net/2297/47026

SPHERICAL SQUARE FUNCTIONS OF MARCINKIEWICZ TYPE WITH RIESZ POTENTIALS

SHUICHI SATO

ABSTRACT. We prove a pointwise equivalence between a spherical square function composed with the Riesz potential and a Littlewood-Paley function arising from the Bochner-Riesz operators. Also, its application to the theory of Sobolev spaces will be given.

1. Introduction

Let

$$\nu(f)(x) = \left(\int_0^\infty |f(x+t) + f(x-t) - 2f(x)|^2 \frac{dt}{t^3}\right)^{1/2}.$$

Then $\mu(f) = \nu(\Im(f))$ is the function of Marcinkiewicz, where $\Im(f)(x) = \int_0^x f(y) \, dy$. If $f \in L^p(\mathbb{R}), 1 , we have$

which means that there exist positive constants c_1 , c_2 independent of f such that

$$c_1 ||f||_p \le ||\mu(f)||_p \le c_2 ||f||_p.$$

In other words, we have $\|\nu(f)\|_p \simeq \|f'\|_p$ if f is in the Sobolev space $W^{1,p}(\mathbb{R})$, 1 .

The Marcinkiewicz function was introduced by J. Marcinkiewicz [5] in 1938 in the setting of periodic functions on the torus \mathbb{T} . It can be used to investigate properties of functions such as differentiability and finiteness of norms in function spaces. Zygmund [10] proved a periodic analogue of (1.1), which was conjectured in [5]. The non-periodic version (1.1) was proved by Waterman [8].

The Marcinkiewicz function is a kind of Littlewood-Paley functions; $\mu(f)$ can be realized as

$$\mu(f)(x) = \left(\int_0^\infty |\psi_t * f(x)|^2 \frac{dt}{t}\right)^{1/2},$$

where $\psi_t(x) = t^{-1}\psi(t^{-1}x)$ with $\psi(x) = \chi_{[0,1]}(x) - \chi_{[-1,0]}(x)$; here χ_E denotes the characteristic function of a set E. We observe that

$$f(x+t) + f(x-t) - 2f(x) = \int_{S^0} (f(x-t\theta) - f(x)) d\sigma(\theta),$$

where $d\sigma$ is a uniform measure on $S^0 = \{-1, 1\}$ such that $\sigma(\{-1\}) = 1$, $\sigma(\{1\}) = 1$.

²⁰¹⁰ Mathematics Subject Classification. Primary 42B25.

Key Words and Phrases. Littlewood-Paley function, Marcinkiewicz function, Sobolev space. The author is partly supported by Grant-in-Aid for Scientific Research (C) No. 25400130, Japan Society for the Promotion of Science.

In this note we assume that n > 2 and consider the square function

$$(1.2) D^{\alpha}(f)(x) = \left(\int_0^{\infty} \left| t^{-\alpha} \int_{S^{n-1}} (f(x-t\theta) - f(x)) d\sigma(\theta) \right|^2 \frac{dt}{t} \right)^{1/2},$$

for appropriate functions f, where $d\sigma$ is the Lebesgue surface measure on S^{n-1} . Then $D^{\alpha}(f)$ with $\alpha = 1$ can be regarded as a generalization to higher dimensions of $\nu(f)$. We shall see that $D^{\alpha}(f)$ also can be used to characterize Sobolev norms. This will be accomplished through a relation between $D^{\alpha}(f)$ and another square function arising from the Bochner-Riesz operators. Let

$$S_R^{\beta}(f)(x) = \int_{|\xi| < R} \hat{f}(\xi) (1 - R^{-2}|\xi|^2)^{\beta} e^{2\pi i \langle x, \xi \rangle} d\xi = H_{R^{-1}}^{\beta} * f(x)$$

be the Bochner-Riesz mean of order β on \mathbb{R}^n , where

$$H_{R^{-1}}^{\beta}(x) = R^n H^{\beta}(Rx), \quad H^{\beta}(x) = \pi^{-\beta} \Gamma(\beta+1)|x|^{-(n/2+\beta)} J_{n/2+\beta}(2\pi|x|)$$

with J_{ν} denoting the Bessel function of the first kind of order ν and \hat{f} is the Fourier transform defined as

$$\hat{f}(\xi) = \int_{\mathbb{R}^n} f(x)e^{-2\pi i \langle x, \xi \rangle} dx, \quad \langle x, \xi \rangle = \sum_{k=1}^n x_k \xi_k.$$

We recall a Littlewood-Paley operator σ_{β} , Re(β) > 0, defined from the Bochner-Riesz means as

(1.3)
$$\sigma_{\beta}(f)(x) = \left(\int_{0}^{\infty} \left| R \partial_{R} S_{R}^{\beta}(f)(x) \right|^{2} \frac{dR}{R} \right)^{1/2}$$
$$= \left(\int_{0}^{\infty} \left| -2\beta \left(S_{R}^{\beta}(f)(x) - S_{R}^{\beta-1}(f)(x) \right) \right|^{2} \frac{dR}{R} \right)^{1/2},$$

where $\text{Re}(\beta)$ denotes the real part of the complex number β and $\partial_R = \partial/\partial_R$. Also, let I_{α} be the Riesz potential operator defined as

$$\widehat{I_{\alpha}(f)}(\xi) = |\xi|^{-\alpha} \widehat{f}(\xi).$$

Let $\mathcal{S}(\mathbb{R}^n)$ be the Schwartz class of rapidly decreasing smooth functions on \mathbb{R}^n . Let $\mathcal{S}_0(\mathbb{R}^n)$ be the subspace of $\mathcal{S}(\mathbb{R}^n)$ consisting of functions f with \hat{f} vanishing in a neighborhood of the origin. We shall prove the following.

Theorem 1.1. Let $0 < \alpha < 2$. Then if $\beta = \alpha + \frac{n}{2}$, we have

$$\sigma_{\beta}(f)(x) \approx D^{\alpha}(I_{\alpha}f)(x)$$

for $f \in S_0(\mathbb{R}^n)$, where D^{α} , I_{α} and σ_{β} are as in (1.2), (1.4) and (1.3), respectively.

Here $\sigma_{\beta}(f)(x) \approx D^{\alpha}(I_{\alpha}f)(x)$ means that there exist positive constants A, B independent of f and x such that

$$A\sigma_{\beta}(f)(x) \leq D^{\alpha}(I_{\alpha}f)(x) \leq B\sigma_{\beta}(f)(x).$$

A version of Theorem 1.1 was shown in [4] for the range $0 < \alpha < 1$. In this note we shall extend this range of α to $0 < \alpha < 2$. The difference from [4] that enables us to improve the range of α mainly comes from the estimate in part (1) of Lemma 2.5.

In Section 2, we shall give an almost self-contained proof of Theorem 1.1 except that Lemmas 2.2, 2.3 from [9] and the formula (2.9) are taken for granted. In

Section 3, applications of Theorem 1.1 to the theory of Sobolev spaces will be given.

2. Proof of Theorem 1.1

For a fixed function $f \in S_0(\mathbb{R}^n)$ and a fixed point $x \in \mathbb{R}^n$, let

(2.1)
$$\varphi(t) = \varphi(t; x, f) = \int_{C_{n-1}} f(x - ty') \, d\sigma(y'),$$

(2.2)
$$\theta(t) = \theta(t; x, f) = t \frac{\partial}{\partial t} \varphi(t; x, f) = -\int_{S^{n-1}} \langle ty', \nabla f(x - ty') \rangle \, d\sigma(y'),$$

where $\nabla f(x) = (\partial_1 f(x), \dots, \partial_n f(x)), \ \partial_j = \partial/\partial x_j$.

Let $\operatorname{Re} \alpha > -n$. Define

(2.3)
$$\widehat{I^{\alpha}(f)}(\xi) = |\xi|^{\alpha} \widehat{f}(\xi),$$

and for $\operatorname{Re} \beta > -1$ consider

$$(2.4) \quad S_R^{\beta}(I^{\alpha}f)(x) = \int_{|\xi| < R} \widehat{f}(\xi)|\xi|^{\alpha} (1 - R^{-2}|\xi|^2)^{\beta} \ e^{2\pi i \langle x, \xi \rangle} \, d\xi = R^{\alpha} L_{R^{-1}}^{\alpha, \beta} * f(x),$$

where

$$L^{\alpha,\beta}(x) = \int_{|\xi|<1} |\xi|^{\alpha} (1-|\xi|^{2})^{\beta} e^{2\pi i \langle x,\xi \rangle} d\xi$$

$$= \int_{0}^{1} r^{n+\alpha} (1-r^{2})^{\beta} 2\pi (r|x|)^{-(n-2)/2} J_{(n-2)/2}(2\pi r|x|) \frac{dr}{r}$$

$$= (2\pi)^{n/2} \int_{0}^{1} r^{n+\alpha} (1-r^{2})^{\beta} V_{(n-2)/2}(2\pi r|x|) \frac{dr}{r},$$

with

$$V_{\nu}(r) = r^{-\nu} J_{\nu}(r).$$

We write the formula in (2.4) by using φ in (2.1).

Lemma 2.1. Suppose that $\operatorname{Re} \alpha > -n$, $\operatorname{Re} \beta > -1$. Let

$$l_{\alpha,\beta}(s) = (2\pi)^{n/2} \int_0^1 r^{n+\alpha} (1-r^2)^{\beta} V_{(n-2)/2}(2\pi r s) \frac{dr}{r}.$$

Then we have

$$S_R^{\beta}(I^{\alpha}f)(x) = R^{n+\alpha} \int_0^{\infty} l_{\alpha,\beta}(Rs)\varphi(s;x,f)s^n \frac{ds}{s}.$$

Proof. By (2.4) we have

$$S_R^{\beta}(I^{\alpha}f)(x) = R^{\alpha}L_{R^{-1}}^{\alpha,\beta} * f(x) = R^{\alpha}\int_{\mathbb{R}^n} f(x-y)L_{R^{-1}}^{\alpha,\beta}(y) dy.$$

Using polar coordinates and recalling the definition of $L^{\alpha,\beta}$ in the last integral, by (2.1) we reach the conclusion.

We use the following formulas.

Lemma 2.2. If $Re(\mu) > -1$, $Re(\nu) > -1$, t > 0,

$$J_{\mu+\nu+1}(t) = \frac{t^{\nu+1}}{2^{\nu}\Gamma(\nu+1)} \int_0^1 J_{\mu}(ts) s^{\mu+1} (1-s^2)^{\nu} ds.$$

This can be rewritten as

$$V_{\mu+\nu+1}(t) = \frac{1}{2^{\nu}\Gamma(\nu+1)} \int_0^1 V_{\mu}(ts)s^{2\mu+1} (1-s^2)^{\nu} ds.$$

Lemma 2.3. If $0 < \text{Re}(\mu) < \text{Re}(\nu) + 1/2$,

$$\int_0^\infty t^{\mu-1} V_{\nu}(t) dt = \frac{\Gamma(\mu/2)}{2^{\nu-\mu+1} \Gamma(\nu-\mu/2+1)}.$$

See [9, p.373] and [9, p.391] for Lemma 2.2 and Lemma 2.3, respectively.

We need the expression of $\sigma_{\beta}(I^{\alpha}f)$ in (2.7) below. To obtain it we show the following.

Lemma 2.4. Let $\operatorname{Re} \alpha > -n$, $\operatorname{Re} \beta > 0$. Then

$$R\partial_R S_R^{\beta}(I^{\alpha}f)(x)$$

$$= -2\beta(2\pi)^{n/2} R^{\alpha} \int_0^{\infty} \theta(s/R) s^{n-1} ds \int_0^1 r^{n+\alpha+2} (1-r^2)^{\beta-1} V_{n/2}(2\pi rs) \frac{dr}{r}.$$

Proof. We first compute $R\partial_R(R^{n+\alpha}l_\beta(Rs))$ as follows.

$$R\partial_{R}(R^{n+\alpha}l_{\alpha,\beta}(Rs)) = R\partial_{R}\left[(2\pi)^{n/2}R^{n+\alpha}\int_{0}^{1}r^{n+\alpha}(1-r^{2})^{\beta}V_{(n-2)/2}(2\pi Rrs)\frac{dr}{r}\right]$$

$$= R\partial_{R}\left[(2\pi)^{n/2}\int_{0}^{R}r^{n+\alpha}\left(1-\frac{r^{2}}{R^{2}}\right)^{\beta}V_{(n-2)/2}(2\pi rs)\frac{dr}{r}\right]$$

$$= R(2\pi)^{n/2}\int_{0}^{R}r^{n+\alpha}\beta\left(1-\frac{r^{2}}{R^{2}}\right)^{\beta-1}(2r^{2}R^{-3})V_{(n-2)/2}(2\pi rs)\frac{dr}{r}$$

$$= 2\beta(2\pi)^{n/2}R^{n+\alpha}\int_{0}^{1}r^{n+\alpha}\left(1-r^{2}\right)^{\beta-1}r^{2}V_{(n-2)/2}(2\pi Rrs)\frac{dr}{r}.$$

Therefore, from Lemma 2.1 it follows that

$$(2.5) \quad R\partial_R S_R^{\beta}(I^{\alpha}f)(x)$$

$$= 2\beta (2\pi)^{n/2} R^{n+\alpha} \int_0^{\infty} \varphi(s; x, f) s^{n-1} ds \int_0^1 r^{n+\alpha} \left(1 - r^2\right)^{\beta - 1} r^2 V_{(n-2)/2}(2\pi R r s) \frac{dr}{r}.$$

By Lemma 2.2 we have

$$\int_0^u V_{(n-2)/2}(2\pi Rrs)s^{n-1} ds = u^n \int_0^1 V_{(n-2)/2}(2\pi Rrsu)s^{n-1} ds$$
$$= u^n \Gamma(1)V_{n/2}(2\pi rRu) = u^n V_{n/2}(2\pi rRu).$$

Thus applying integration by parts in (2.5), we see that

$$R\partial_R S_R^\beta (I^\alpha f)(x)$$

$$\begin{split} &= -2\beta (2\pi)^{n/2} R^{n+\alpha} \int_0^\infty \varphi'(s) \, ds \int_0^1 r^{n+\alpha} \left(1-r^2\right)^{\beta-1} r^2 s^n V_{n/2}(2\pi R r s) \, \frac{dr}{r} \\ &= -2\beta (2\pi)^{n/2} R^{n+\alpha} \int_0^\infty \theta(s) s^{n-1} \, ds \int_0^1 r^{n+\alpha} \left(1-r^2\right)^{\beta-1} r^2 V_{n/2}(2\pi R r s) \, \frac{dr}{r} \\ &= -2\beta (2\pi)^{n/2} R^\alpha \int_0^\infty \theta(s/R) s^{n-1} \, ds \int_0^1 r^{n+\alpha+2} \left(1-r^2\right)^{\beta-1} V_{n/2}(2\pi r s) \, \frac{dr}{r}, \end{split}$$

where $\varphi(s) = \varphi(s; x, f)$ and $\theta(s) = \theta(s; x, f)$ are as in (2.1) and (2.2), respectively. This completes the proof.

For appropriate complex numbers α , β , let

(2.6)
$$\Phi_{\alpha,\beta}(s) = s^{\alpha+n} \int_0^1 r^{n+\alpha+1} \left(1 - r^2\right)^{\beta-1} V_{n/2}(2\pi r s) dr$$

and

$$\theta_{\alpha}(t) = t^{-\alpha}\theta(t) = t^{-\alpha}\theta(t; x, f).$$

Then Lemma 2.4 implies that

$$R\partial_R S_R^{\beta}(I^{\alpha}f)(x) = -2\beta(2\pi)^{n/2} \int_0^{\infty} \Phi_{\alpha,\beta}(s)\theta_{\alpha}(sR^{-1}) \frac{ds}{s}$$

for $\operatorname{Re} \alpha > -n$, $\operatorname{Re} \beta > 0$. Define

$$K_{\alpha,\beta}(u) = -2\beta(2\pi)^{n/2} \Phi_{\alpha,\beta}(e^u),$$

$$\Theta_{\alpha}(u) = \Theta_{\alpha}(u, x, f) = \theta_{\alpha}(e^{-u}), \quad \Theta(u) = \theta(e^{-u}).$$

Then by change of variables $s = e^v$, $R = e^u$ we have

$$R\partial_R S_R^{\beta}(I^{\alpha}f)(x) = \int_{-\infty}^{\infty} K_{\alpha,\beta}(v)\Theta_{\alpha}(u-v) dv,$$

and hence by (1.3),

(2.7)
$$\sigma_{\beta}(I^{\alpha}f)(x)^{2} = \int_{-\infty}^{\infty} |K_{\alpha,\beta} * \Theta_{\alpha}(u)|^{2} du.$$

In proving Theorem 1.1 we need Proposition 2.10 below. To show it we first state some properties of Θ_{α} and $K_{\alpha,\beta}$ (Lemmas 2.5 and 2.6).

Lemma 2.5. We have the following estimates for Θ_{α} , $\alpha \in \mathbb{C}$.

- (1) $|\Theta_{\alpha}(u)| \leq Ce^{u\operatorname{Re}(\alpha)}e^{-2u}$ for $u \geq 0$;
- (2) if u < 0, $|\Theta_{\alpha}(u)| \le C_m e^{u \operatorname{Re}(\alpha)} e^{mu}$ for any m > 0.

Further, we have similar estimates for the derivatives $(d/du)^k \Theta_{\alpha}$, $k = 1, 2, \ldots$ In particular, $\Theta_{\alpha} \in \mathcal{S}(\mathbb{R})$ if $\operatorname{Re}(\alpha) < 2$.

Proof. Recall that $\theta(t) = -\int_{S^{n-1}} \langle ty', \nabla f(x - ty') \rangle d\sigma(y')$ and $\Theta_{\alpha}(u) = e^{u\alpha} \theta(e^{-u})$. Thus, part (2) follows easily since $|\nabla f(x)| \leq C_m (1 + |x|)^{-m-1}$ and $|x - e^{-u}y'| \geq e^{-u} - |x| \geq e^{-u}/2$ if $e^{-u} \geq 2|x|$.

To prove part (1), we note that

$$\theta(t) = -\int_{S^{n-1}} \langle ty', \nabla f(x - ty') - \nabla f(x) \rangle \, d\sigma(y'),$$

since $\int_{S^{n-1}} \langle ty', w \rangle d\sigma(y') = 0$ for any $w \in \mathbb{R}^n$. So $\theta(t) = O(t^2)$ as $t \to 0$, which proves part (1).

By a direct computation, we can prove the result for the derivatives $(d/du)^k \Theta_{\alpha}$ similarly.

Lemma 2.6. The following results hold for $K_{\alpha,\beta}$, $\alpha,\beta \in \mathbb{C}$.

(1) If $\operatorname{Re}(\alpha) > -n-2$ and $\operatorname{Re}(\beta) > 0$,

$$|K_{\alpha,\beta}(u)| \le C_{\alpha,\beta} e^{(n+\operatorname{Re}(\alpha))u}, \quad u \in \mathbb{R}.$$

(2) If $Re(\alpha) > -n/2 - 2$ and $Re(\beta) > 0$,

$$|K_{\alpha,\beta}(u)| \le C_{\alpha,\beta} e^{(n/2 + \operatorname{Re}(\alpha))u}, \quad u \in \mathbb{R}.$$

(3) If $-n/2 > \text{Re}(\alpha) > -n/2 - 1$ and $\text{Re}(\beta) > 0$, then

$$|K_{\alpha,\beta}(u)| \le C_{\alpha,\beta} e^{-\delta|u|}, \quad u \in \mathbb{R},$$

where
$$\delta = \min(n + \operatorname{Re}(\alpha), -\operatorname{Re}(\alpha) - n/2) > 0$$
.

Proof. Since $V_{n/2}$ is bounded, by (2.6) we have part (1), where we assume that $\operatorname{Re}(\alpha) > -n-2$ and $\operatorname{Re}(\beta) > 0$ for the integrabilities on [0,1] of $r^{n+\alpha+1}$ and $(1-r^2)^{\beta-1}$, respectively. By (2.6), we also have

$$\Phi_{\alpha,\beta}(s) = (2\pi)^{-n/2} s^{\alpha+n/2} \int_0^1 r^{n/2+\alpha+1} \left(1 - r^2\right)^{\beta-1} J_{n/2}(2\pi r s) dr.$$

This implies part (2). Part (3) follows from the estimates of (1) and (2).

Let

(2.8)
$$G(\alpha, \beta) = \int_{-\infty}^{\infty} K_{\alpha, \beta} * \Theta_{\alpha}(u) g(u) du,$$

where $g \in C_0^{\infty}(\mathbb{R})$. By Lemmas 2.5 and 2.6, the convolution $K_{\alpha,\beta} * \Theta_{\alpha}$ can be defined and $G(\alpha,\beta)$ is analytic in α and β if $\text{Re}(\alpha) > -n-2$, $\text{Re}(\beta) > 0$. Also, if $-n/2 > \text{Re}(\alpha) > -n/2 - 1$ and $\text{Re}(\beta) > 0$, then $K_{\alpha,\beta}, \Theta_{\alpha} \in L^1(\mathbb{R})$; in this case we have

$$G(\alpha,\beta) = \int_{-\infty}^{\infty} \widehat{K}_{\alpha,\beta}(\xi) \widehat{\Theta}_{\alpha}(\xi) \widehat{g}(-\xi) d\xi.$$

An explicit form of the Fourier transform of $K_{\alpha,\beta}$ needed is stated in the next result.

Lemma 2.7. If $-n/2-1 < \operatorname{Re}(\alpha) < -n/2$ and $\operatorname{Re}(\beta) > 0$, then $\widehat{K}_{\alpha,\beta}(\xi) = \Psi_{\alpha,\beta}(\xi)$, where

$$\Psi_{\alpha,\beta}(\xi) = -2^{-1}\beta\pi^{-n/2-\alpha+2\pi i\xi} \frac{\Gamma((n+\alpha-2\pi i\xi)/2)\Gamma(\pi i\xi+1)\Gamma(\beta)}{\Gamma(-\alpha/2+\pi i\xi+1)\Gamma(\pi i\xi+1+\beta)}.$$

Proof. Let $-\operatorname{Re}(\alpha) - n < \operatorname{Re}(\zeta) < -\operatorname{Re}(\alpha) - n/2$ and $-n/2 - 1 < \operatorname{Re}(\alpha) < -n/2$, $\operatorname{Re}(\beta) > 0$. Then by Fubini's theorem we have

$$\begin{split} \widehat{K}_{\alpha,\beta} \left(\frac{\zeta}{-2\pi i} \right) &= \int_{-\infty}^{\infty} e^{\zeta u} K_{\alpha,\beta}(u) \, du \\ &= -2\beta (2\pi)^{n/2} \int_{0}^{\infty} t^{n+\alpha+\zeta-1} \left(\int_{0}^{1} r^{n+\alpha+1} \left(1 - r^{2} \right)^{\beta-1} V_{n/2}(2\pi r t) \, dr \right) \, dt \\ &= -2\beta (2\pi)^{n/2} \int_{0}^{1} r^{n+\alpha+1} \left(1 - r^{2} \right)^{\beta-1} \left(\int_{0}^{\infty} t^{n+\alpha+\zeta-1} V_{n/2}(2\pi r t) \, dt \right) \, dr. \end{split}$$

Using Lemma 2.3, we see that

$$\begin{split} & \int_0^\infty t^{n+\alpha+\zeta-1} V_{n/2}(2\pi r t) \, dt = (2\pi r)^{-n-\alpha-\zeta} \int_0^\infty t^{n+\alpha+\zeta-1} V_{n/2}(t) \, dt \\ & = (2\pi)^{-n-\alpha-\zeta} 2^{n/2+\alpha+\zeta-1} \frac{\Gamma((n+\alpha+\zeta)/2)}{\Gamma(-\alpha/2-\zeta/2+1)} r^{-n-\alpha-\zeta}. \end{split}$$

Thus

$$\begin{split} \widehat{K}_{\alpha,\beta} \left(\frac{\zeta}{-2\pi i} \right) \\ &= -2\beta (2\pi)^{-n/2 - \alpha - \zeta} 2^{n/2 + \alpha + \zeta - 1} \frac{\Gamma\left((n + \alpha + \zeta)/2 \right)}{\Gamma(-\alpha/2 - \zeta/2 + 1)} \int_0^1 r^{1-\zeta} (1 - r^2)^{\beta - 1} \, dr \\ &= -\beta \pi^{-n/2 - \alpha - \zeta} \frac{\Gamma\left((n + \alpha + \zeta)/2 \right)}{\Gamma(-\alpha/2 - \zeta/2 + 1)} 2^{-1} \int_0^1 t^{-\zeta/2} (1 - t)^{\beta - 1} \, dt \\ &= -2^{-1} \beta \pi^{-n/2 - \alpha - \zeta} \frac{\Gamma\left((n + \alpha + \zeta)/2 \right)}{\Gamma(-\alpha/2 - \zeta/2 + 1)} \frac{\Gamma(-\zeta/2 + 1)\Gamma(\beta)}{\Gamma(-\zeta/2 + 1 + \beta)}. \end{split}$$

Putting $\zeta = -2\pi i \xi$, $\xi \in \mathbb{R}$, we reach the conclusion.

In proving Proposition 2.10 we also need the following.

Lemma 2.8. Let $\Psi_{\alpha,\beta}$ be as in Lemma 2.7 and

$$H(\alpha,\beta) = \int_{-\infty}^{\infty} \Psi_{\alpha,\beta}(\xi) \widehat{\Theta}_{\alpha}(\xi) \widehat{g}(-\xi) d\xi.$$

Then $H(\alpha, \beta)$ is analytic in α and β if $-n < \text{Re}(\alpha) < 2$, $\text{Re}(\beta) > 0$.

To prove this we apply the following.

Lemma 2.9 (asymptotic formula for the gamma function). Let $a, \xi \in \mathbb{R}, a > 0$. Then we have

$$\lim_{|\xi| \to \infty} \frac{|\Gamma(a+i\xi)|}{\sqrt{2\pi}e^{-\pi|\xi|/2}|\xi|^{a-1/2}} = 1.$$

This is well-known. In Section 4, we shall give a proof for completeness based on the formula

(2.9)
$$\lim_{\text{Re}(z) \ge c > 0, |z| \to \infty} \frac{\Gamma(z)}{\sqrt{2\pi}e^{-z}z^{z-1/2}} = 1.$$

Proof of Lemma 2.8. We can see that $\Psi_{\alpha,\beta}(\xi)$ is analytic in α,β for $-n < \text{Re}(\alpha) < 2$, $\text{Re}(\beta) > 0$, if ξ is fixed. By Lemma 2.9, $|\Psi_{\alpha,\beta}(\xi)|$ behaves like $|\xi|^{\text{Re}(\alpha)-\text{Re}(\beta)+n/2-1}$

if $|\xi|$ is sufficiently large. Also we note that $\Psi_{\alpha,\beta}(\xi)$ is continuous and does not vanish in α , β , ξ with $-n < \text{Re}(\alpha) < 2$, $\text{Re}(\beta) > 0$, $\xi \in \mathbb{R}^n$. Thus we have

$$(2.10) \quad A(1+|\xi|)^{\text{Re}(\alpha)-\text{Re}(\beta)+n/2-1} \le |\Psi_{\alpha,\beta}(\xi)| \le B(1+|\xi|)^{\text{Re}(\alpha)-\text{Re}(\beta)+n/2-1}$$

with some positive numbers A and B independent of ξ .

Using (2.10), since $\hat{g} \in \mathcal{S}(\mathbb{R})$ and $\widehat{\Theta}_{\alpha}$ is bounded and analytic for $\operatorname{Re}(\alpha) < 2$ by part (1) of Lemma 2.5, we can see $H(\alpha, \beta)$ is analytic for $-n < \operatorname{Re}(\alpha) < 2$, $\operatorname{Re}(\beta) > 0$.

Now we are able to prove the following.

Proposition 2.10. Let $-n < \text{Re}(\alpha) < 2$, $\text{Re}(\beta) > 0$. Then

$$\sigma_{\beta}(I^{\alpha}f)(x)^{2} = \int_{-\infty}^{\infty} |K_{\alpha,\beta} * \Theta_{\alpha}(u)|^{2} du = \int_{-\infty}^{\infty} |\Psi_{\alpha,\beta}(\xi)|^{2} |\widehat{\Theta}_{\alpha}(\xi)|^{2} d\xi.$$

Proof. We recall that $G(\alpha, \beta)$ in (2.8) is analytic in α and β for $\operatorname{Re}(\alpha) > -n - 2$, $\operatorname{Re}(\beta) > 0$ and that $H(\alpha, \beta)$ is analytic for $-n < \operatorname{Re}(\alpha) < 2$, $\operatorname{Re}(\beta) > 0$ (Lemma 2.8). Further, by Lemma 2.7 we have $G(\alpha, \beta) = H(\alpha, \beta)$ if $-n/2 - 1 < \operatorname{Re}(\alpha) < -n/2$ and $\operatorname{Re}(\beta) > 0$. Thus by analytic continuation we see that $G(\alpha, \beta) = H(\alpha, \beta)$ if $-n < \operatorname{Re}(\alpha) < 2$, $\operatorname{Re}(\beta) > 0$. So, we have $|G(\alpha, \beta)| = |H(\alpha, \beta)|$ if $-n < \operatorname{Re}(\alpha) < 2$, $\operatorname{Re}(\beta) > 0$. Thus, taking the supremum over g in the unit ball of $L^2(\mathbb{R})$ and recalling (2.7), we get the conclusion.

On the other hand, for $D^{\alpha}(f)$ in (1.2) we have the following result.

Proposition 2.11. Let Θ_{α} be as in Lemma 2.5. Suppose that $0 < \operatorname{Re}(\alpha) < 2$. Then

$$D^{\alpha}(f)(x)^{2} = \int_{-\infty}^{\infty} |\alpha - 2\pi i\xi|^{-2} |\widehat{\Theta}_{\alpha}(\xi)|^{2} d\xi.$$

Proof. We note that

$$\int_{S^{n-1}} (f(x-t\theta) - f(x)) d\sigma(\theta) = \varphi(t;x,f) - \varphi(0;x,f) = \int_0^1 \theta(tr;x,f) \frac{dr}{r}$$

and

$$t^{-\alpha}(\varphi(t;x,f) - \varphi(0;x,f)) = \int_0^1 r^\alpha \theta_\alpha(tr;x,f) \, \frac{dr}{r}.$$

Thus

$$D^{\alpha}(f)(x) = \left(\int_0^{\infty} \left| \int_0^1 r^{\alpha} \theta_{\alpha}(tr; x, f) \frac{dr}{r} \right|^2 \frac{dt}{t} \right)^{1/2}.$$

By the change of variables $r = e^v$, $t = e^{-u}$, we have

$$D^{\alpha}(f)(x)^{2} = \int_{-\infty}^{\infty} \left| \int_{-\infty}^{0} e^{\alpha v} \Theta_{\alpha}(u-v) dv \right|^{2} du = \int_{-\infty}^{\infty} |\hat{\psi}_{\alpha}(\xi)|^{2} |\widehat{\Theta}_{\alpha}(\xi)|^{2} d\xi,$$

where $\psi_{\alpha}(u) = e^{\alpha u} \chi_{\{u \leq 0\}}(u)$ and hence

$$\hat{\psi}_{\alpha}(\xi) = \int_{-\infty}^{0} e^{\alpha u} e^{-2\pi i u \xi} du = \frac{1}{\alpha - 2\pi i \xi}.$$

Here we note that ψ_{α} and Θ_{α} are in $L^{1}(\mathbb{R})$ and in $L^{2}(\mathbb{R})$ if $0 < \operatorname{Re}(\alpha) < 2$ (see Lemma 2.5 for Θ_{α}). This completes the proof.

Proof of Theorem 1.1. Let $0 < \alpha < 2$. Then we note that

$$(\alpha/2)(1+|\xi|) < |\alpha+2\pi i\xi| < 2\pi(1+|\xi|)$$

By this and (2.10) it follows that $|\alpha - 2\pi i\xi|^{-1}$ and $|\Psi_{\alpha,\beta}(\xi)|$ are pointwise equivalent as functions of ξ if $\beta = \alpha + n/2$. Using the pointwise equivalence and the formulas of Propositions 2.10 and 2.11, we have $\sigma_{\beta}(I^{\alpha}f)(x) \approx D^{\alpha}(f)(x)$ for $f \in \mathcal{S}_{0}(\mathbb{R}^{n})$. Substituting $I_{\alpha}f$ for f and recalling (1.4), (2.3), we reach the conclusion.

3. Applications

Let D^{α} , I_{α} and σ_{β} be as in (1.2), (1.4) and (1.3), respectively. Define

(3.1)
$$S_{\alpha}(f)(x) = D^{\alpha}(I_{\alpha}f)(x)$$

for $f \in \mathcal{S}(\mathbb{R}^n)$. Then, some L^p estimates for S_α , $0 < \alpha < 2$, are shown in [7] with weights for $1/2 \le \alpha < 2$, which are useful in characterizing the Sobolev spaces of order α (see [1] for relevant results). When $1 < \alpha < 2$, the result is proved by applying a theorem of [6] for the boundedness of Littlewood-Paley operators. When $0 < \alpha < 1$ it is shown by using Theorem 1.1 for $\alpha \in (0,1)$, which is due to [4], and applying known properties of σ_β . The result for the case $\alpha = 1$ is due to [3]. Here, we focus on the case $1/2 \le \alpha < 2$. Then, more precisely, we can find the following result in [7].

Theorem A. Suppose that $1/2 \le \alpha < 2$, $w \in A_p$, $1 . Let <math>S_{\alpha}$ be as in (3.1). Let $f \in \mathcal{S}(\mathbb{R}^n)$. Then

$$||S_{\alpha}(f)||_{p,w} \simeq ||f||_{p,w}.$$

We recall the weight class A_p of Muckenhoupt. A weight w belongs to A_p , 1 , if

$$\sup_{B} \left(|B|^{-1} \int_{B} w(x) \, dx \right) \left(|B|^{-1} \int_{B} w(x)^{-1/(p-1)} \, dx \right)^{p-1} < \infty,$$

where the supremum is taken over all balls B in \mathbb{R}^n and |B| denotes the Lebesgue measure of B (see [2] for the A_p class). The weighted L^p space is defined as L^p_w with the norm

$$||f||_{L_w^p} = ||f||_{p,w} = \left(\int_{\mathbb{R}^n} |f(x)|^p w(x) dx\right)^{1/p}.$$

Theorem A is due to [3] when $\alpha=1$, as mentioned above. We can now give a different proof of this by applying Theorem 1.1 as follows. Since it is known that $\sigma_{n/2+1}$ is bounded on L_w^p for all $p \in (1, \infty)$ and $w \in A_p$ (see [7]), by Theorem 1.1 with $\alpha=1$ we have

$$||S_1(f)||_{p,w} \le C||f||_{p,w}$$

for $f \in \mathcal{S}(\mathbb{R}^n)$. The reverse inequality follows from this by duality as in [7].

Similarly, we can give another proof of Theorem A for $\alpha \in (1,2)$, which was proved in [7] from a result of [6], by applying Theorem 1.1 and the boundedness of $\sigma_{n/2+\alpha}$ on L^p_w with $w \in A_p$, 1 .

4. Proof of Lemma 2.9

By (2.9) to prove Lemma 2.9 it suffices to show

$$(4.1) \quad \exp\left(-\frac{a^3}{a^2+\xi^2}\right) \left(1+\frac{a^2}{\xi^2}\right)^{(a-1/2)/2} \\ \leq \frac{|e^{-z}z^{z-1/2}|}{e^{-\pi|\xi|/2}|\xi|^{a-1/2}} \leq \left(1+\frac{a^2}{\xi^2}\right)^{(a-1/2)/2},$$

where $z = a + i\xi$, $\xi \neq 0$.

To prove (4.1), we first note that

$$|z^{z-1/2}| = e^{(a-1/2)\log|z|} e^{-\xi \arg z} = (a^2 + \xi^2)^{(a-1/2)/2} e^{-|\xi| \arg(a+i|\xi|)}.$$

where $-\pi/2 < \arg z < \pi/2$. We write $\arg(a+i|\xi|) = \arctan(|\xi|/a)$. Define a function F on $[0,\infty)$ by $F(x) = \arctan(1/x)$, x>0, $F(0)=\pi/2$. Then by the mean value theorem, we have

$$\pi/2 - \arctan(|\xi|/a) = F(0) - F(a/|\xi|) = \frac{a}{|\xi|} \frac{1}{\eta^2 + 1}$$

for some $\eta \in (0, a/|\xi|)$. Thus

$$e^{-a}e^{|\xi|(\pi/2-\arg(a+i|\xi|))}=e^{-a\,\eta^2/(\eta^2+1)}$$

and hence

$$\begin{aligned} (4.2) \qquad |e^{-z}z^{z-1/2}| &= e^{-a}(a^2 + \xi^2)^{(a-1/2)/2}e^{-\pi|\xi|/2}e^{|\xi|(\pi/2 - \arg(a+i|\xi|))} \\ &= e^{-\pi|\xi|/2}|\xi|^{a-1/2}\left(1 + \frac{a^2}{\xi^2}\right)^{(a-1/2)/2}e^{-a\eta^2/(\eta^2 + 1)}. \end{aligned}$$

Since

$$e^{-a^3/(a^2+\xi^2)} < e^{-a\eta^2/(\eta^2+1)} < 1,$$

from (4.2) we obtain (4.1). This completes the proof of Lemma 2.9.

References

- [1] R. Alabern, J. Mateu and J. Verdera, A new characterization of Sobolev spaces on \mathbb{R}^n , Math. Ann. **354** (2012), 589–626.
- [2] J. Garcia-Cuerva and J.L. Rubio de Francia, Weighted Norm Inequalities and Related Topics, North-Holland, Amsterdam, New York, Oxford, 1985.
- [3] P. Hajlasz, Z. Liu, A Marcinkiewicz integral type characterization of the Sobolev space, arXiv:1405.6127 [math.FA].
- [4] M. Kaneko and G. Sunouchi, On the Littlewood-Paley and Marcinkiewicz functions in higher dimensions, Tôhoku Math. J. 37 (1985), 343-365.
- [5] J. Marcinkiewicz, Sur quelues integrales de type de Dini, Annales de la Société Polonaise 17 (1938), 42-50.
- [6] S. Sato, Remarks on square functions in the Littlewood-Paley theory, Bull. Austral. Math. Soc. 58 (1998), 199-211.
- [7] S. Sato, Littlewood-Paley operators and Sobolev spaces, Illinois J. Math. 58 (2014), 1025-1039.
- [8] D. Waterman, On an integral of Marcinkiewicz, Trans. Amer. Math. Soc. 91 (1959), 129-138.
- [9] G.N. Watson, A Treatise on the Theory of Bessel Functions, Cambridge Univ. Press, London, 1966.
- [10] A. Zygmund, On certain integrals, Trans. Amer. Math. Soc. 58 (1944), 170-204.

Department of Mathematics, Faculty of Education, Kanazawa University, Kanazawa 920-1192, Japan

 $E ext{-}mail\ address:$ shuichi@kenroku.kanazawa-u.ac.jp