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The analytical method using transfer function or impulse response is very effective for nonlinear 

systems with localized nonlinearities. This is because the nonlinear problem can be reduced to the problem 

on points connected with nonlinear element. In the present paper, analytical method for the steady state 

vibration which includes subharmonic vibration is proposed using convolution integral with the impulse 

response. The Galerkin method is introduced to solve the nonlinear equations formulated by the convolution 

integral, and then the steady state vibration is obtained. The present method has an advantage that stability or 

instability of the obtained steady state vibration can be discriminated, where a characteristic of the 

convolution integral is utilized. Numerical example of three degree-of-freedom mass-spring system is shown 

and the validity of the method is clarified through comparison with the result by Runge-Kutta-Gill method. 

 

1. INTRODUCTION 

Nonlinearities such as the nonlinear spring often exist in supported and connected points of mechanical 

structures, however, those number is remarkably smaller than that of the linear elements. The analytical 

method using transfer function or impulse response is effective for such nonlinear system with localized 

nonlinearities. This is because the nonlinear problem can be reduced to the problem on the supported and the 
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connected points with nonlinear element, hence the size of nonlinear problem becomes small regardless of 

the number of degree-of-freedom of the system. In addition, when the transfer function or the impulsive 

response are measured for the existing system, the system damping can be easily modelized. 

Vibration analyses using transfer function or impulse response for such systems with localized 

nonlinearities have ever been reported. Hagedorn et al. [1] showed that the transient vibration of such a 

system could be calculated by convolution integral with linear impulsive response and nonlinear restoring 

force. Chiang et al. [2] proposed the nonlinear substructure synthetic method by use of convolution integral 

and transition matrix [3] and analyzed the transient vibration of rotor-housing system with bearing nonlinear 

characteristics. Ren [4, 5] derived nonlinear equation from the transfer function synthesis method with the 

nonlinear connecting force and obtained the steady state vibration and aperiodic vibration by harmonic 

balance method. Gordis et al. [6] reported nonlinear substructure synthetic method using the nonlinear 

Volterra integral equation. The nonlinear equation for the steady state vibration using transfer function 

synthetic method can be commonly solved by the harmonic balance method, however, it is not always 

effective on predicting vibration response of the system in a practical sense, because it is impossible to 

discriminate stability and instability of the vibration which is the important vibration property. 

In the present paper, the analytical method using convolution integral is proposed for steady state 

vibration of the system with localized nonlinearity including subharmonic vibration. The method also 

permits the stability-instability discrimination for the steady state vibration. The numerical results for 

fundamental and subharmonic vibration of three-degree-of-freedom system with localized nonlinear spring 

are illustrated and validity of the proposed method is discussed in comparison with Runge-Kutta-Gill method. 

2. ANALYTICAL METHOD 

2.1. SYSTEM WITH LOCALIZED NONLINEARITIES 

The analytical method proposed in the present study is very effective for the system with localized 
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nonlinearity. In the case of mass-spring system, for example, the nonlinear system includes a system where 

some masses are supported at respective points by a nonlinear spring as shown in Figure 1, or a system in 

which masses are connected each other with nonlinear spring. In this paper, the analytical method for the 

former system is demonstrated for its simplicity. mp represents a mass subjected to external force f(t) as 

shown in Figure 1, mq a mass supported with nonlinear spring and mr a mass of which vibration is 

determined. Displacements of mq and mr are represented as x and y respectively. g(x) denotes restoring force 

property of the nonlinear spring. f(t) is defined as FsinKωt so that the steady state vibration including 

subharmonic vibration of order 1/K is considered. 

 

Figure 1 Multi-degree-of-freedom System with Localized Nonlinearity. 

2.2 TRANSIENT VIBRATION 

An outline of the method for transient vibration analysis using convolution integral is described in this 

section, which was reported by Hagedorn et al. and provides basis for the following steady state vibration 

analysis. When restoring force of the nonlinear spring supporting mq is regarded as external force on mq, 

displacement x of mq and displacement y of mr can be determined by convolution integral as the following 

equations (1) and (2), respectively,  

( ) ( ) ( ) ( ) ( ){ } ττττττ dxgτhdfτhτx
τ

qq
τ

qp ∫∫ −−−=
00

 (1) 

( ) ( ) ( ) ( ) ( ){ }∫∫ −−−=
t

rq
t

rp dxgthdfthty
00

tttttt  (2) 

where hab(t) (a=q or r, b=p or q) is impulse response of the system without the nonlinear spring g(x) and 

superscripts a and b represent the location of response and excitation, respectively. The initial displacement 

and initial velocity of the system are set to zero. Eq. (1) related to mq represents a nonlinear equation with 
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respect to x, on the other hand, for the case where the mass is not supported by nonlinear spring as in Eq. (2) 

it can be calculated linearly because x(t) is already known in Eq. (1). When Eq. (1) and Eq. (2) are expressed 

in discrete form, they become as follows. 
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∆t is a time interval of discretization process, where t=n∆t and τ=k∆t. The subscript in Eq. (3) and Eq. (4) 

corresponds to the discretized time steps and then xn shows displacement at t=n∆t for example. Eq. (3) is 

expressed as the following matrix form along with the initial displacement x0=0. 
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xn can be calculated from x0, x1, ....and xn−1 in Eq. (5), accounting that hqp
0=hqq

0=0. Therefore it is possible 

to obtain displacement xn of a mass supported by nonlinear spring via forward substitution procedure 

increasing n successively. The displacement yn of a mass which is not supported by the nonlinear spring can 

be easily calculated by substitution of x0, x1, ....and xn−1 to Eq. (4). 

2.3 STEADY STATE VIBRATION 

    The steady state vibration including subharmonic vibration of order 1/K has K times period of external 

force. When time history response due to the periodic external force is divided into every K period, Eq. (5) is 

rewritten as follows. 
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where the subscript shows the order of every K period. When a time interval corresponding to each K period 

of the external force is divided into M equal sections, xi and f are expressed as column vectors which consist 

of M elements and g(xi) a column vector which consists of M elements of restoring force g(xi). 
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hab
i is M×M matrix which consists of the impulse response hab

j , written as 
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xi (i=0,1,....,n) in Eq. (6) are individually different vectors because { x0
T, x1

T, ...., xn
T } corresponds to the 

transient vibration derived from Eq. (5), where (T) denotes transposed matrix. When the time has sufficiently 

passed, it is considered that the transient vibration converges to steady state vibration. Then Eq. (6) can be 

rewritten under such a convergence as follows, 
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where x is a vector corresponding to time history response of the steady state vibration. If the system has 

damping, the impulse response hab(t) converges to zero in adequate course of time. Hence hab
i which consists 

of the impulse response data is regarded as zero when the subscript is larger than N, that is, 

0hh === + ab
N

ab
N 1 . Therefore the next equation (10) can be obtained by calculating bottom row of Eq. (9). 

( )xgHfHx qqqp −=  (10) 

where Hab is represented as, 
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N is the smallest value of i which satisfies the following relationship. 
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Eq. (12) signifies that the ratio between the magnitude (square root of the squared sum) at a single (i+1)th 

period of the impulse response and the magnitude up to the ith period becomes smaller than ε. Note that N 

for hi
qp are different from N for hi

qq. ε=10-5 is adopted in the following example. The equation on y, which 

determines the steady state vibration of mr, is obtained through the same procedure expressed as follows, 

( )xgHfHy rqrp −=  (13) 

    If Eq. (10) is solved for x, the time history of steady-state vibration x is obtained, so that y can be 

calculated by substituting x into Eq. (13). However, it is difficult to solve such simultaneous nonlinear 

equations containing M unknowns as Eq. (10) generally. Therefore, the Galerkin method is adopted in order 

to acquire approximate solution, which is explained as below. 

    When the subharmonic vibration of order 1/K is assumed, the solution of Eq. (10) is expressed as 

follows. 
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where S1, C1, SK and CK represent the following vectors, which consist of sine or cosine function divided 

into M terms equally. 
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A1 and B1 denote magnitude of the subharmonic component of order 1/K, and AK and BK magnitude of the 

fundamental harmonic component. Hereby the second equation of Eqs. (7) yields the expression of f=FSK. 

Substituting Eq. (14) into Eq. (10) and multiplying S1
T, C1

 T, SK
 T and CK

 T respectively on each term from its 
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left hand side, the following equations are obtained. 
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A1, B1, AK and BK can be calculated from Eqs. (16) by the Newton-Raphson Method, and the time history of 

x can be obtained from Eq. (14). If AK and BK are calculated by Eqs. (16) under the condition of A1=B1=0, 

solution on fundamental harmonic vibration is obtained. 

    The solution y of Eq. (13) is also expressed as follows. 

KKKK DCDC CSCSy +++= 1111  (17) 

Substituting Eq. (17) into Eq. (13) and multiplying S1
T, C1

 T, SK
 T and CK

 T respectively on each term of 

equation, the following equations are obtained. 
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A1, B1, AK and BK obtained from Eqs. (16) are substituted into Eq. (18), hence C1, D1, CK and DK, that is, 

the steady state vibration of y, can be determined. 

3. DISCRIMINATION OF STABILITY AND INSTABILITY 

   Not only that the steady state vibration including subharmonic vibration is determined from Eq. (10) as 

shown in the previous section, but also unstable steady state vibration is obtained since the periodic solution 

is assumed as shown in Eq. (14). Discrimination method for stability and instability of the steady state 

vibration is described in this section, where the convolution integral is used to calculate the transient 
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vibration. 

    The discrimination can be performed by investigating the transient response of the initial state set to the 

steady state solution. If it diverges from the initial steady state vibration and then converges to other steady 

state, the initial steady state vibration is regarded as unstable, otherwise it is discriminated as stable steady 

state. The transient vibration for a given initial steady state solution can be calculated by the procedure for 

transient vibration as already described in the section 2.2. Such calculation is expressed as follows, 
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where the equations of the transient vibration are based on the bottom row of Eq.(9), and the convergence of 

impulse response to become zero is considered, that is, hn
qp=0 (n≥N') and hn

qq=0 (n≥N). 

 Since x in Eq. (19) is already obtained as steady state solution, the calculation of the transient vibration 

starts from x1 of the second row in Eq. (19) and successively the time history response xi can be calculated 

by the forward substitution procedure since the diagonal elements of h0
qq are zero. When A1', B1', AK' and 

BK' represent magnitude coefficients of sinωt, cosωt, sinKωt and cosKωt components of xi respectively, they 

are obtained from the following equations. 
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In the case of subharmonic vibration of order 1/K, A1’ and B1’ are compared with A1 and B1 of the steady 

state vibration, hereby it is regarded as stable if the following relationship is satisfied. 
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Eq. (21) denotes that both the difference between A1 and A1' and also the difference between B1 and B1' are 

small. The stability condition in right side of Eq. (21) seems comparatively moderate, since the difference 
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between the approximate solution of A1 and B1 obtained by the Galerkin method and the exact solution xi by 

the transient calculation frequently becomes large. In the case of the fundamental harmonic vibration, the 

following condition with AK, AK', BK and BK' is adopted. 

10
1)()(
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22

≤
+

′−+′−
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KKKK
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4. EXAMPLE FOR THREE DEGREE-OF-FREEDOM MASS-SPRING SYSTEM 

    A numerical example on fundamental harmonic vibration and subharmonic vibration of order 1/3 in 

three degree-of -freedom mass-spring system of Figure 2 is shown. m1 is subjected to sinusoidal wave force 

and m2 is supported by a nonlinear spring. The property of nonlinear spring is defined as g(x)=βx3. The 

system parameters used in the example are shown in Table 1. The case K=3 is illustrated so that the 

subharmonic vibration of order 1/3 is considered. The number of division in three periods is set to M=60. 

The impulse response of each mass is determined by modal analysis on free vibration for corresponding 

given initial velocity. 

 

Figure 2 Three-degree-of-freedom mass-spring system. 

TABLE 1 

System Parameters 

Mass 
(kg) 

Damping Coefficient 
(Ns/m) 

Spring Constant 
(N/m) 

Nonlinear Spring Constant 
(N/m3) 

Amplitude of Excitation 
(N) 

m1=1.0 
m2=2.0 
m3=3.0 

c1=1.0 
c2=1.0 
c3=1.0 
c4=1.0 

k1=1000 
k2=1000 
k3=1000 
k4=1000 

β=1.0×108 F=1.0 
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    Response curves of the fundamental harmonic vibration and the subharmonic vibration of order 1/3 on 

m1, m2 and m3 are shown in Figure 3(a), 3(b) and 3(c) respectively. The dotted line denotes amplitude 

2
3

2
3 BA +  and phase )/(tan 33

1 AB−  of the fundamental harmonic vibration, and also the solid line 

denotes amplitude 2
1

2
1 BA +  and phase )/(tan 11

1 AB−  of the subharmonic vibration. The amplitude and 

the phase of the fundamental component in the subharmonic vibration almost coincide with those of the 

fundamental harmonic vibration, hence they are omitted in the figures. There are three solutions for the 

subharmonic vibration which have the same amplitude, whereas the phase has difference of 2π/3 radian 

respectively. In Figure 4, the calculation result of m2 using the convolution integral is compared with the 

result of the Runge-Kutta-Gill method for equations of motion of the system shown in Figure 2, where the 

amplitude is represented as RMS value. Furthermore stability and instability of the steady state vibration are 

discriminated in Figure 4. It is found that both results sufficiently coincide on the stable vibration. 
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Figure3 Response curve. (a) m1 , (b) m2 , (c) m3 .        ; fundamental harmonic vibration.         ; 

1/3 subharmonic vibration component. 
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Figure 4 Comparison with RKG method.          ; stable vibration by convolution integral,         ; 

unstable vibration by convolution integral, −; stable vibration by RKG method. 

 

    Calculation result of stability analysis for the subharmonic vibration is represented schematically in 

Figure 5. Coordinates of A1' and B1' are the coefficients of sinωt and cosωt terms calculated in Eq. (20), and 

those values of transient vibration are plotted as dotted line in Figure 5 along with the increase of time. If the 

steady state vibration is stable, location (A1', B1') does not move, while it leaves the steady state point if 

unstable. However, even if stable, the convergent point of the transient vibration differs from the stable 

steady state vibration point obtained by the convolution integral for the reason as already described in section 

3. The calculation result for the case 8.29Hz is shown in Figure 5(a), where the unstable subharmonic 

vibration of order 1/3 converges to another stable one. In the case of 9.00Hz which is shown in Fig 5(b), the 

unstable vibration converges to the fundamental vibration. 
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Figure 5 Stability and instability in subharmonic vibration of order 1/3. (a) 8.29Hz, (b) 9.00Hz.        ; 

orbit of transient vibration, −; stable vibration, ,; unstable vibration, /; convergent point. 
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Figure 6 Comparison of direct method and Galerkin approximation.  (a) 8.70Hz;  (b) 9.24Hz. 

         ; direct method,          ; Galerkin method. 

 

    To discuss the accuracy of the approximate solution using the Galerkin method, Eq. (10) is solved 

directly by the Newton-Rapson method (which is called the direct method henceforth) and the result is 

compared with that of the Galerkin method. The time history response obtained by the Galerkin method is 

given as initial value for x in the direct method. Comparison between 1/3 order subharmonic vibrations of 

both waves is shown in Figure 6. For the case 8.70Hz which is shown in Figure 6(a), the Galerkin 

method(dotted line) is slightly different from the direct method(solid line). However, the both lines almost 

coincide in Figure 6(b) of 9.24Hz case. Both waves coincide on most region of the response curve, while the 
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case where both waves do not coincide is limited in the vicinity of an edge of the subharmonic region. It is 

considered that the overall system with localized nonlinearity exhibits a weak nonlinearity, although the 

localized nonlinearity is strong. Therefore valid solution of Eq. (10) can be determined by the Galerkin 

method with assumption of the simple solution such as Eq. (14). 

 

5. CONCLUSIONS 

   The analysis of steady state vibration using convolution integral is proposed for the system with localized 

nonlinearities and it is shown that the nonlinear equation formulated by suggested analytical process can be 

solved by the Galerkin method. Subharmonic vibration is also included in the steady state vibration. 

Furthermore, the stability of each solution can be discriminated by the transient analysis using the 

convolution integral. Numerical example of three degree-of-freedom mass-spring system is demonstrated 

and the following results are obtained. (1)Response curves of the fundamental harmonic vibration and the 

subharmonic vibration of order 1/3 can be easily calculated by the present method. (2)Stability or instability 

of the steady state vibration can be discriminated by the transient analysis using convolution integral. (3)The 

result obtained from the convolution integral coincides well with the result by the RKG method. Therefore 

the present method is efficient for the steady state vibration analysis of nonlinear system with localized 

nonlinearities. 
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