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Abstract. The purpose of this paper is to present a new predictive control utilizing online data and 
stored data of input/output of the controlled system. The conventional predictive control methods 
utilize the mathematical model of the control system to predict an optimal future input to control the 
system. The model is usually obtained by a standard system identification method from the measured 
input/output data. The proposed method does not require the mathematical model to predict the 
optimal future control input to achieve the desired output. This control strategy, called just-in-time, 
was originally proposed by Inoue and Yamamoto in 2004. In this paper, we proposed a simplified 
version of the original just-in-time predictive control method. 

Introduction 
Predictive control, usually referred to as model predictive control, is wildly used in industrial 
(especially chemical) systems nowadays [1]. This model predictive control postulates to use a 
mathematical model of the controlled system to predict future behavior of the system. The 
mathematical model is required to appropriately represent the dynamics of the controlled system. To 
obtain the mathematical model, many system identification methods are available. Normally, the 
mathematical model is not updated until a great change occurs in the controlled system.   

On the other hand, adaptive control constantly update the mathematical model and/or control 
parameters based on the online measured input and output data [2]. To combine adaptive control and 
predictive control, the so-called just-in-time model predictive control was proposed by Stenman in 
1999 [3]. This method includes a mathematical model which is obtained based on a Just-In-Time 
modeling [4,5] (also referred to as model-on-demand [6], lazzy learning [7], instance based learning 
[8]) utilizing both the online measured input and output data and stored past measured input and 
output data. In the method, the mathematical model is constantly maintained to use online data and 
to refine the model the stored past measured input and output data are also used. The just-in-time 
method has been originally developed for nonlinear system modelling which adaptively identifies a 
local model (not global) around the current operating point to use a large amount of past stored data. 

Instead of the just-in-time “model” predictive control, Ota and Yamamoto [9,10] proposed a 
“model-free” predictive control method in the just-in-time modelling framework. In the method, an 
optimal control input is directly predicted not to use the local model but online current measured data 
and stored past. As in the just-in-time modelling method, the neighbors of the current data are 
searched in the stored data and the predicted control input is derived as weighted average of the 
neighbors. For this weighted average, several methods are considered in the just-in-time modelling 
framework. In this paper, we propose a new simplified weighted average.  

  Notations. Let 𝑹𝑹, 𝑹𝑹𝑛𝑛,  𝑹𝑹𝑛𝑛×𝑚𝑚 be the set of real numbers, real valued vector with n elements, real 
valued matrices with n rows and m columns, respectively. Let 𝑥𝑥𝑇𝑇and 𝐴𝐴𝑇𝑇 be the transpose of  𝑥𝑥 ∈ 𝑹𝑹𝑛𝑛 
and 𝐴𝐴 ∈ 𝑹𝑹𝑛𝑛×𝑚𝑚, respectively. When a square matrix 𝐴𝐴 ∈ 𝑹𝑹𝑛𝑛×𝑛𝑛 is nonsingular, we denote its transpose 
as 𝐴𝐴−1. 

Model-Free Predictive Control 
Consider a nonlinear auto regressive model with exogeneous (NARX) model 



 

y(t+1)=f(x(t))+ε(t) , t=0, 1,2,….                                                                                                   (1) 

   x(t)=[y(t),…,y(t-n+1), u(t),…, u(t-m+1)]                                                                                   (2) 
where t is the discrete-time, u∈R is the input, y∈R is the output, x∈Rp is the regression vector of the 
size p=n+m, f is an unknown nonlinear map, and ε is i.i.d. random noise, respectively. We assume 
that n and m are unknown but we can determine them with uncertainty.  

When we are given (1), the goal of control is to make the h steps ahead future output y(t+1), y(t+2), 
…y(t+h) follow the desired future (given) reference r(t+1), r(t+2), …, r(t+h). To reach the goal, an 
appropriate future input sequence u(t), u(t+1), …, u(t+h-1) should be applied. To determine the future 
input sequence, we assume that we can use all past input and output stored in a memory as a form of 
vectors 

𝑎𝑎𝑖𝑖 = �
𝒚𝒚p(𝑡𝑡𝑖𝑖)
𝒚𝒚f(𝑡𝑡𝑖𝑖)
𝒖𝒖p(𝑡𝑡𝑖𝑖)

� , 𝑖𝑖 = 1, 2, … . ,𝑁𝑁,                                                                                                  (3) 

𝑐𝑐𝑖𝑖 = 𝒖𝒖f(𝑡𝑡𝑖𝑖),          𝑖𝑖 = 1, 2, … . ,𝑁𝑁,                                                                                                  (4) 
where   

𝒚𝒚p(𝑡𝑡) = �
𝑦𝑦(𝑡𝑡 − 𝑛𝑛 + 1)

⋮
𝑦𝑦(𝑡𝑡)

� ,𝒚𝒚f(𝑡𝑡) = �
𝑦𝑦(𝑡𝑡 + 1)

⋮
𝑦𝑦(𝑡𝑡 + ℎ)

�,                                                                          (5) 

𝒖𝒖p(𝑡𝑡) = �
𝑢𝑢(𝑡𝑡 − 𝑚𝑚)

⋮
𝑢𝑢(𝑡𝑡 − 1)

� ,𝒖𝒖f(𝑡𝑡) = �
𝑢𝑢(𝑡𝑡)
⋮

𝑢𝑢(𝑡𝑡 + ℎ − 1)
�.                                                              (6) 

In model-free predictive control [9,10], to use the just-in-time algorithm [4,5], a set of k data 𝑎𝑎𝑖𝑖 is 
searched which are similar to the current (called a query) vector 

𝒃𝒃 = �
𝒚𝒚p(𝑡𝑡)
𝒓𝒓(𝑡𝑡)
𝒖𝒖p(𝑡𝑡)

�                                                                                                                             (7) 

where   

𝒓𝒓(𝑡𝑡) = �
𝑟𝑟(𝑡𝑡 + 1)

⋮
𝑟𝑟(𝑡𝑡 + ℎ)

�.                                                                                            (8) 

The searched k data 𝑎𝑎𝑖𝑖 form k-nearest neighbors of 𝒃𝒃 together with 𝑐𝑐𝑖𝑖 which have the same index 
i with 𝑎𝑎𝑖𝑖 as 

𝛀𝛀(𝒃𝒃) = ��𝑎𝑎𝑖𝑖𝑘𝑘 , 𝑐𝑐𝑖𝑖𝑘𝑘��𝑗𝑗 = 1, … ,𝑘𝑘�,                                                                           (9) 
where we assume that all vectors are sorted by the distance to 𝒃𝒃 as 
 �𝑎𝑎𝑖𝑖1 − 𝒃𝒃� ≤ �𝑎𝑎𝑖𝑖2 − 𝒃𝒃� ≤ ⋯ ≤ �𝑎𝑎𝑖𝑖𝑘𝑘 − 𝒃𝒃�.                                                            (10)                                                    

In model-free predictive control [9,10], from the k-nearest neighbors 𝛀𝛀(𝒃𝒃) , weights 𝑤𝑤𝑖𝑖𝑗𝑗 are 
determined such that 

𝑤𝑤𝑖𝑖1 ≥ 𝑤𝑤𝑖𝑖2 ≥ ⋯ ≥ 𝑤𝑤𝑖𝑖𝑘𝑘 > 0  and  𝑤𝑤𝑖𝑖1 + 𝑤𝑤𝑖𝑖2 + ⋯+ 𝑤𝑤𝑖𝑖𝑘𝑘 = 1.                                                     (11) 
 

Finally, the expected future input sequence are calculated as 
 



 

𝒖𝒖�f(𝑡𝑡) = �
𝑢𝑢�(𝑡𝑡)
⋮

𝑢𝑢�(𝑡𝑡 + ℎ − 1)
� = [𝑐𝑐𝑖𝑖1 ⋯ 𝑐𝑐𝑖𝑖𝑘𝑘] �

𝑤𝑤𝑖𝑖1
⋮
𝑤𝑤𝑖𝑖𝑘𝑘

� .                                                        (12) 

 
The control input 𝑢𝑢�(𝑡𝑡) is actually applied to the controlled system at time k. As time k increases 

the above steps are repeated.  
There are several methods to select k-nearest neighbors and appropriate weights [11,12]. They 

depend on what system generates the data. Without exact information on the controlled system, it is 
difficult to determine the suitable k-nearest neighbors and weights. 

In this paper, instead of (11) and (12), we propose a method to use a solution w of  
Aw=b                      (13) 

where 
𝑨𝑨 = [𝑎𝑎𝑖𝑖1 ⋯ 𝑎𝑎𝑖𝑖𝑘𝑘]  ∈ 𝑹𝑹(𝑛𝑛+ℎ+𝑚𝑚)×𝑘𝑘                                                 (14) 

and  

𝒘𝒘 = �
𝑤𝑤𝑖𝑖1
⋮
𝑤𝑤𝑖𝑖𝑘𝑘

�  ∈ 𝑹𝑹𝑘𝑘.                                                     (15) 

As is known, when (𝑛𝑛 + ℎ + 𝑚𝑚) > 𝑘𝑘 the solution is given by a least mean square solution as  𝒘𝒘 =
(𝑨𝑨T𝑨𝑨)−1𝑨𝑨T𝒃𝒃  , when (𝑛𝑛 + ℎ + 𝑚𝑚) < 𝑘𝑘  the solution is given by a minimum norm solution as 
𝒘𝒘 = 𝑨𝑨T(𝑨𝑨𝑨𝑨T)−1𝒃𝒃. 

Simulations 
In this section, we show several simulation results to illustrate the performance of the proposed 
model-frees predictive control method. In all simulations, we used 

 ‖a − 𝑏𝑏‖∞ =  𝐦𝐦𝐦𝐦𝐦𝐦
𝑖𝑖

|𝑎𝑎𝑖𝑖 − 𝑏𝑏𝑖𝑖|           (16) 
as the distance between a and b. In addition, we assume that ε is zero mean Gaussian noise with 
variance 0.05. As the desired reference signal, we used 𝑟𝑟(𝑡𝑡) = 2 sin(2𝜋𝜋 𝑡𝑡/40). 

 
Linear Case. We used the linear system  
y(t+1)= y(t)-0.16y(t-1)-1.5u(t)+ε(t).                                                                                              (17) 

To generate the input and output data as in Fig. 1, we applied i.i.d. random noise generated from a 
uniform distribution [-5, 5] to the input u(t). We stored 300 pairs of u(t) and y(t).  

Figure 2 shows the output y, the control input u, and the tracking error e=r-y in a simulation result 
when n=2, m=1, h=2 and k=10.  

 

 
 

 
 

Figure 1 Stored past measurement data 



 

 

 

 
 

 
 

 
When we used k=4, as shown in Fig. 3, the tracking error e=r-y became worse. Furthermore, Fig 

4. shows the result when we changed parameters in (5) and (6) as n=4 and m=2. 
These results show that the control performance is sensitive to k and robust for the model 

parameters n and m. 

Figure 2 Simulation result of the linear system (17) when n=2, m=1, h=2 and k=10. 

Figure 1 Simulation result of the linear system (17) when n=2, m=1, h=2 and k=4 

         Figure 4 Simulation result of the linear system (17) when n=4, m=2, h=2 and k=10 



 

 

 

 
 

 
Nonlinear Case. We used the nonlinear system  
𝑦𝑦(𝑡𝑡 + 1) = 𝑦𝑦(𝑡𝑡)

1+𝑦𝑦(𝑡𝑡)2
+ 𝑢𝑢(𝑡𝑡)3 + 𝜀𝜀(𝑡𝑡).                                                                                              (17) 

To generate the input and output data, we applied i.i.d. random noise generated from a uniform 
distribution [-3, 3] to the input u(t). We stored 3000 pairs of u(t) and y(t).  

Figure 5 shows the output y, the control input u, and the tracking error e=r-y in a simulation result 
when n=1, m=1, h=1 and k=10. When we used k=4, as shown in Fig. 6, the tracking error e=r-y 
became worse as in linear system (15). Furthermore, Fig 7. shows the result when we changed 

Figure 5 Simulation result of the nonlinear system (18) when n=1, m=1, h=1 and k=10 
 

Figure 6 Simulation result of the nonlinear system (18) when n=1, m=1, h=1 and k=4 
 

Figure 7 Simulation result of the nonlinear system (18) when n=2, m=2, h=1 and k=10 
 

 



 

parameters in (5) and (6) as n=2 and m=2. These results also show that the control performance is 
sensitive to k and robust for the model parameters n and m.  

Summary 
In this paper, a new method for model-free predictive control in the just-in-time modelling framework 
in which  online data and stored data of input/output of the controlled system are utilized. In the 
original model-free predictive control proposed by Inoue and Yamamoto [9,10], as in just-in-time 
modelling, we need to determine several tuning parameters for obtaining k nearest neighbors. Our 
proposed method can avoid such oppressiveness for the users.  
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