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SQUARE FUNCTIONS RELATED TO INTEGRAL OF
MARCINKIEWICZ AND SOBOLEV SPACES

SHUICHI SATO

ABSTRACT. We prove a characterization of Sobolev spaces of order 2 by square
functions related to the integral of Marcinkiewicz.

1. INTRODUCTION
Let ¢ be a function in L'(R™) satisfying
(L.1) Y(z) dz = 0.
Rn

We consider the Littlewood-Paley function on R™ defined by

0@ = (17 enmr )"

where () = t " (t"'z), and a discrete parameter version of gy:

o 1/2
Ay(f)(@) = ( > |f*¢2k(ﬂf)|2> :
k=—o00
We recall the non-degeneracy conditions
(1.2) sup |ip(t€)| > 0 for all £ # 0;
t>0
(1.3) sup |(25¢)] > 0 for all £ # 0,
kEZ

where Z denotes the set of integers and the Fourier transform 1/3 is defined by
$(€) = i P(@)e > dr, (w,8) = wis
" k=1

Obviously, (1.3) implies (1.2). The weighted Lebesgue space L (R™) with a weight
w is defined to be the class of all the measurable functions f on R™ such that

o= ([ 1r0pueran) " <oo

Then the following two theorems are known (see [11]).

Theorem A. Suppose that
(1) B(¢) < oo for some € > 0, where B.(y)) = f\fv\>1 [(z)| || de;
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1/u
(2) Dy(¢)) < oo for some u > 1 with D,(¢) = (f|w|<1 [ () |* da:) ;
(3) Hy € L'(R"),  where Hy(z) = supj, >, [¢(y)];
(4) the non-degeneracy condition (1.2) holds.
Then || fllpw = g (F)llp.ws f € LE,, for all p € (1,00) and w € A, (the Mucken-
houpt class), where ||f|lpw = ||g¢(f)||p,w means that

il fllpw < Mg (Hllpw < 2l fllpw

with positive constants ¢y, ce independent of f.

Theorem B. We assume that
(1) B.(¢) < oo for some € > 0;
(2) [h(©)] < ClEI=®  for all € € R™ \ {0} with some § > 0;
(3) Hy € L'(R");
(4) the non-degeneracy condition (1.3) holds.
Then || fllp,w = 12w (f)llp,w, f € L, for all p € (1,00) and w € A,.

The inequality ||gy (f)llp,w < ¢||fllp,w in Theorem A was shown in [8] without
the assumption (4).

The Sobolev space W*P(R"), a > 0, 1 < p < 00, consists of all the functions f
which can be written as f = J,(g9) = K, * g for some g € LP(R™) with the Bessel
potential J,, where

Ko(6) = (1 +4x°|¢?) =/
(see [12, Chap. V]). The norm of f in W*P(R™) is defined as || fl|p,« = ||gllp- Let
0 < a < 2. The operator
1/2
dt
ra

W@ = | | i) - I W

was studied in [1] and used to characterize the space W®P(R™). Here we write

1
dy = ——— d
]{3 0= e /B LT

where |B(z,t)| is the Lebesgue measure of a ball B(z,t) in R* with center x and
radius ¢.
We recall the weight class A, of Muckenhoupt. A weight w belongs to A,,

1<p<oo,if
p—1
sup <][ w(x) dm) <][ w(z)~H/ =D dm) < 00,
B \Um B
where the supremum is taken over all balls B in R™ (see [4]).
Let 1 < p < o0, @« >0and we Ay,. Then J,(9) € L? if g € L*, since it

is known that |J4(g)| < CM(g), where where M denotes the Hardy-Littlewood
maximal operator defined by

M(f)(x) = sup ]{3 i

>0
The weighted Sobolev space W2°F(R™) is defined as the collection of all the functions

f € L? (R™) which can be expressed as f = J,(g) for some g € L? (R™); such g is
uniquely determined and the norm is defined to be || f||p,a,w = ||9]lp,w-
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Theorems A, B can be applied to characterize the weighted Sobolev spaces
Wo2P(R™) by square functions related to the Marcinkiewicz function including
Uy (f) and
5 1/2

272’60{

oo

by

k=—oc0

, a>0.

f(z) —]{B(LW) fly)dy

The Marcinkiewicz function was introduced by [7] (see [9] for some background
materials).

We say ® € M*(R"™), a > 0, if ® is a compactly supported, bounded function
on R satisfying [, ®(x)dx = 1; if a > 1, we further assume that

(1.4) / S(x)z"dr =0, 2V =z"...2), forallywith1<|y|<]a],

where v = (71,.--,%), ¥ € Z,y; > 0, is a multi-index and |y = 1 + -+ + Yn;
also [a] denotes the largest integer not exceeding «. Let

1w =([Tre -t g) " aso

1/2
2 22’m> , a>0,

(1.6) Eo(f)(z) = ( Yo If(@) = @or x f(2)

k=—o00

with & € M (R").
Then the following results are known (see [11]).

Theorem C. Let 1 <p<oo,w € Ay and 0 < o < n. Let U, be as in (1.5). Then
f e WaP(R™) if and only if f € LY and Uy (f) € LE; furthermore,

£ llp,ce = 1 Fllp,w + [1UalF)lp-

Theorem D. Suppose that 1 < p < oo, w € A, and 0 < o < n. Let E, be as in
(1.6). Then f € WP(R"™) if and only if f € LY, and E,(f) € L% ; also,

1 fllpceo 2= 1 Fllp,w + [ Ea(F)llp,w-

See [6, 10] for relevant results.

In this note we consider another characterization of W27 (R™) by certain square
functions relative to the integral of Marcinkiewicz when n > 3, which extends to
the cases n =1, 2.

Let ® € M!(R"). We assume

(1.7) /n @(m)xf dzx = %/n ®(z)|z|?> dr = by for all j,1 < j < n.
When n > 2, we also assume

(1.8) / ®(z)x;xrde =0 forall jk,1<jk<n with j #k.
Let I, be the Riesz potential operator defined by

(1.9) L.(N(©) = @rleh &), 0<a<n.
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Then Lo (€) = (27[¢])™®, 0 < a < n.
Let n > 3. Define

(1.10) W(@) = & * Ly(z) — La(z) + cod(2)

with ¢ = bp/2 and ® € M!(R") satisfying (1.7) and (1.8); when n = 1 and
n = 2, we have analogues of (1.10) in (5.5) and (4.4) below, respectively. Applying
Theorems A and B, we have the following results.

Theorem 1.1. Suppose that n > 3. Let w € A,, p € (1,00). Let ¢ be as in (1.10)
with ® € MY(R") satisfying (1.7) and (1.8). Suppose that the non-degeneracy
condition (1.2) holds. Then

1 Fllpwo = Mgy (Dlpw, [ € L,

Theorem 1.2. Letn > 3. Let ® be a function in M*(R™) with (1.7), (1.8) and let
¥ be as in (1.10). We assume that

(1.11) |B(6)| < ClE|™° for all € € R™ \ {0} with some § > 0

and that the non-degeneracy condition (1.3) holds. Then we have

||f||p,w = ||A¢(f)||p,w, feLy
for allp € (1,00) and w € A,.

Theorems 1.1 and 1.2 will be used to prove Theorems 1.4 and 1.5 below for
n > 3, respectively.

Proof of Theorem 1.1. Suppose that supp(®) C {|z| < M}. Then we have |¢p(z)| <

Clz|>~™ if |x| < 2M. Let |z| > 2M. Then, applying Taylor’s formula, by (1.7),
(1.8) and (1.4) with |y| = 1 we see that

Ly*®(x) — La(x) = 7(2) /R (e — g2~ — [2~")B(y) dy

/Z@ﬁa% (y) dy + O(J| =)

= —bOZ(?QLQ )+ O(|z|7"7h)

ZO(|93| ",
as |z| — oo, where the last equality follows from ALy(z) = Y7, 87Ls(2) = 0,
a]' = 8/85[7]
We see that

D(€) = (2mlE]) 2R (&) — (27[€)) 7 + o ®(€) = (2IE]) T (B(E) — 1) + co®(9).
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Also, by (1.7), (1.8) and (1.4) with |y| =1, we have

d(¢) = / ) B(z)e 2 48 g

:1+/n<§(m)

—1_9n? / (@)Y 7)) dr + O(le)

(=2mi(z,£))* dz + O(I€I°)

N | =

=1-2rhol¢|* + O(I¢P),
as |€] = 0. Thus, since ¢y = by/2, we have [1)(€)| < C|¢| and hence (1.1). Alto-
gether, thus we can apply Theorem A to get the conclusion of Theorem 1.1. a

Similarly, Theorem 1.2 follows from Theorem B.
Define L = —A = —3"" | 97, 9; = 3/0x;, on R*, n > 1. Then, if f € 8(R"),

L(H)(©) = @rleN*f(©),

where we have denoted by S(R™) the Schwartz class of rapidly decreasing smooth
functions on R™. We note the following.

Lemma 1.3. Let n > 1. Define Hy on S(R™) by Ho(f) = L(J2(f)). Then Hy
extends to a bounded operator on LY and also we have Ho(f) = L(J2(f)) for
feLl, where L=—-A=-5"_ 07 is defined by the weak derivative:

w? j=1"

m() @@ de = [ L@@ == [ 1@ 3 ) de

RTL
for all n € S(R™).

We shall give a proof of Lemma 1.3 in Section 2.
Let ® € M'(R™). Let

- 1/2
(1.12) S(f)(m):(/o |f>k<I>t(a:)—f(:n)+cot2£,(f)*<1>t(x)|2%> :

when f,L(f) € L?,, where ¢y is as in (1.10). For g € LE let Hy(g) be as in Lemma
1.3 and define

oo 1/2
(1.13) Sa2(g)(x) = </0 |12(9) * ®4(z) — J2(9)(z) + cot® Ho(g) * ®u(z)|? %) -

Then S(J2(g)) = Sa2(g) for g € L2, by Lemma 1.3. Let

oo 1/2

for f,g € LP. Then, if f,L(f) € LE, we have S(f,L(f)) = S(f).
The square function S(f,g) is able to characterize the space W27 as follows.

Theorem 1.4. Let n > 1. Suppose that f € LY, 1 < p < oo, w € Ap. Let S(f),
S(f,g) be as in (1.12), (1.14), respectively, with ® € M*(R") satisfying (1.7), (1.8)
and (1.2), where ® and ¢ are related as in (1.10), (4.4) or (5.5) according asn > 3,
n=2orn=1. Then

(1) if f € W2P, then L(f) € LP, and S(f) € L%;
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(2) if S(f,g) € LE, for some g € LE,, then f € W2? and g = L(f).
Also, if f € W2P,

IS lpew = N pws 1S lpw + 1 llpw = 1 llp 2,00

We can also consider discrete parameter version of Theorem 1.4. Let ® € M!(R")
and

00 1/2
(1.15)  V(f)(=z) = ( D 1fxDa(2) —f($)+0022k5(f)*%k(l‘)|224k> ;

k=—oc0
if £,L(f) € LP,. Let
(1.16)

oo 1/2
Va(g)(z) = ( D 17a(g) * @ (2) — Ta(g) () + co2°* Ho (g) * ¢zk(w)l22_4k>

k=—oco

forge L?. If g € L, we have V(J2(g)) = Va(g) by Lemma 1.3. For f,g € L, let

o 1/2
(L17)  V(f,9)(z) = ( Y 1 x @aela) = flz) + o2 g x Bon (w)l22_4k> :
k=—co
We have V(f,L(f)) = V(f) if f,L(f) € L,
We have a discrete parameter analogue of Theorem 1.4.

Theorem 1.5. Suppose thatn > 1 and f € LY, 1 < p < o0, w € Ay. Let ®
be a function in MY (R™) satisfying (1.7), (1.8), (1.11) and (1.3), where ® and ¢
are related as in Theorem 1.4. Let V(f) and V(f,g) be as in (1.15) and (1.17),
respectively. Then

(1) L(f) € L, and V() € LE, if f € Wi,

(2) if V(f,g) € LP, for some g € LF,, it follows that f € W2P and g = L(f).
Further, if f € W2P |

IV pw = L pws IV + 1 Fllpw = 1 llp.2,0-

See [2] for characterization of the Sobolev spaces by square functions related to
the Lusin area integral and the Littlewood-Paley g} function.

Let ® be a function in M*(R") satisfying (1.7) and (1.8), then we have already
seen in the proof of Theorem 1.1 that the function ¢ defined by (1.10), n > 3,
satisfies the conditions (1.1) and (1), (2), (3) of Theorem A. This is also the case
for functions ¢ in (4.4) and in (5.5) below, on R? and on R , respectively, as can
be shown similarly.

Let us further assume that ® is a radial function. Then, we have the decay
estimate (1.11) by the formula in [13, p.155, Theorem 3.3] for n > 2. Also, if ® is
a radial function, it follows that ¢ defined by (1.10) satisfies the non-degeneracy
condition (1.3) and hence (1.2). This is also the case for functions ¢ in (4.4) and
(5.5).

We can see (1.3) when @ is a radial function as follows. First, we note that there
exists an entire function G(z) = Y i, axz® such that P(€) = G(I€]). We can see
that ¢ is not identically 0. This holds since 1 is unbounded when n > 2; the result
for n = 1 is also seen by an inspection (see Section 5). Therefore we have (1.3)
since z = 0 cannot be an accumulation point of zeros of G(z).
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If & = |B(0,1)]"'xB(0,1), then ® € M'(R™) and & satisfies (1.7) with by = 2¢o =
1/(n+2), (1.8), (1.11) and (1.3) with ¢ as in (1.10), (4.4) and (5.5), for all n > 1.
This follows from remarks above and easy observations. In this case we can rewrite

S(f), S(f,g) and V(f), V(f,g) as follows.

2
e 1 dt
ser=["f (1010 - @nseali-aF) b G
2
o d
straer=["f (10105 gomoly—of) @) G
P = - flz) - —(A oly — > ) dy| 27
Ve = 3 (00 - gty ) do| 27
2
oo 1 ~
Ve = 3\ (1016 ¢ groneanly—oF) @] 2

where fp = f4 f. The square functions S(f), S(f,g) are considered in [1] and
unweighted results concerning them contained in Theorem 1.4 are due to [1].

In Section 2, we shall prove Lemma 1.3 and Theorem 1.4 for n > 3 by applying
Theorem 1.1. Theorem 1.5 can be proved in the same way as Theorem 1.4, by
using Theorem 1.2 if n > 3. We shall give an outline of the proof of Theorem 1.5
for n > 3 in Section 3.

To prove Theorems 1.4 and 1.5 for n = 1,2, we need analogues of Theorems
1.1 and 1.2. The cases n = 1,2 should be treated separately, since the Riesz
potential is not available as in the case of R” above for n > 3. In Section 4, in
the two dimensional case, Theorems 1.4 and 1.5 will be proved, where analogues of
Theorems 1.1 and 1.2 will be shown for n = 2. Finally, in Section 5, we shall prove
Theorems 1.4 and 1.5 for n = 1. Also, analogues of Theorems 1.1 and 1.2 forn =1
will be given.

2. PROOF OF THEOREM 1.4 FOR n > 3
We need the following.

Lemma 2.1. Let S and Sy be as in (1.12) and (1.13), respectively, on R*, n > 1,
with ® as in Theorem 1.4. Let g € LY , w € A,, 1 <p < oo. Then

(2.1) 1S(J2(O)lp.w + 12(9)lpw = 1S2(9)lp,0 + [1T2(9)p0 = [19lp,u0-

We give a proof of Lemma 2.1 for n > 3 in this section. The results for n = 2 and
n = 1 can be shown similarly with the arguments in Sections 4 and 5, respectively.
The following relations concerning Riesz and Bessel potentials are useful.

Lemma 2.2. Let a > 0. Suppose that 1 < p < oo and w is a weight in A, on R",
n>1.

(1) We can find a Fourier multiplier ¢ for LY such that
(2mlg])* = U1 +4n?[¢*)*/2.
(2) We have
(1+4m2[€]*)°7% = m(€) + m(&) (2r€))°

with some Fourier multiplier m for L? .
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Here we give a proof of Lemma 1.3.

Proof of Lemma 1.3 . By part (1) of Lemma 2.2, we see that Hy initially defined
on $(R™) extends to a bounded operator on L% and integration by parts implies

Rn

()@@ de = = [ R Y On(o) do

for all n € S(R™) if f € S(R™). Since both sides of the equality above are continuous
in f € LE for each fixed n and S(R") is dense in LE, we get the conclusion.
g

Proof of Lemma 2.1 for n > 3. We first prove (2.1) for g € $(R™). We can write

S2(g) = g4 (Ho(g))-
Thus Theorem 1.1 implies

(2.2) 152(9)llp.w = gy (Ho(9)llp,0 = [[Ho(9)lp.w < Cllgllp,uw-
Also, by part (2) of Lemma 2.2 and Theorem 1.1
(2.3) 19llp.w = [[T—2T2(9)llpw < CllT2(9)lp,w + ClILT2(9)lp,w

< Cll (9w + ClIS2(9)llp,e-

From (2.2) and (2.3), (2.1) follows for g € S(R™).
Let

" )"’
/N_l |72(g) * ®1(2) = Ja(g)(2) + cot”Ho(g) * Bi(a) r) .

S5 (9)(x) = (

Then [|SYN(g)|lp.w < Cnllgllpw for g € LP. Using this and (2.1) for g € $(R"),
we have [|SY(g)|lp.w < Clg|lp.w for g € LP with a constant C' independent of N,
since 8(R™) is dense in L% . Thus, letting N — oo, we have ||S2(g)|lp,w < C|lgllp,w
for g € LE. We can take a sequence {g} in 8(R™) such that g5 — ¢ in L2 and
J2(gr) — J2(g) in LP as k — co. Then we note that |[S2(gx)llp, = |1S2(9)|lp,w-
Thus, letting k& — oo in the relation

152(g6)llp,w + 11 J2(98)lp,w0 == (| gk llp,w;

which has been already shown, we get the conclusion. a
The next result will be useful in what follows (see [11] for a proof).

Lemma 2.3. Suppose that f is in LY on R", n > 1, with w € A,, 1 < p < oo.
Let g € S(R") and a > 0. Then we have

(1) Ko * (f ¥ 9)(@) = (Ko % f) % 9(x) = (Ka  g) % f(z) for every z € R
(2) Jou(Eax )W)9(w) dy = [5.(Ka *9)(y) f(y) dy.

Proof of Theorem 1.4 forn > 3. If f € W2P, f = Jo(g) for some g € L?,. Thus by
Lemma 1.3 and Lemma 2.1 we have part (1).

Suppose f,9,S(f,g) € LE,. Let p € C5°(R™) with [ ¢ =1 and put f¢ = f x ¢,
g¢ = gx@e, h® = fxJ_2(p.). We note that f¢ = Jo(h¢) by Lemma 2.3, f¢, g, h¢ €
Lt and L(f¢) = Ho(h®) by Lemma 1.3. Also, g = g, f¢ — fin LP.

By Minkowski’s inequality we have

(2.4) S(f59°)(x) < CM(S(f,9))(x).
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Thus, since

oo 1/2
([ o)« 0e0) = cog s 2e0)P ) < Sa(0)(@) + S(7,9°) ),

we see that the quantity on the left hand side belongs to L, by (2.4) and Lemma
2.1. Thus

0= lim [Ho (%) * @¢(2) — g°  ®4(2)| = [Ho(h)(z) — g°(2)

which implies
(2.5) Ho(h*)(x) = g°(),

Sy(h)(x) = S(f*, 9°)(2),
for almost every x € R™, and hence
1S2(A) |, < C
with a constant C' independent of € > 0 by (2.4). Thus we have ||h¢||p,w 2 || f]|pw+
152 (h¢)||pw < C by Lemma 2.1.

So, we have a sequence {h®} and h € L%, such that h®* — h weakly in L? . For
7 € 8(R™), by (2.5), Lemma 1.3 and Lemma 2.3 we have

Hohde = [ @)L de= [ haa(ein)ds
R™ R™ n

= lim he* J3(L(n)) de = lim J2(h)L(n) dx

= lim Hy(h*)ndz = lim g*ndx = / gndz.
k Rn k Rn n
Thus Hy(h) = g. Also,

Hy(h)ndz = lim Jo(h*)L(n) dz = lim f*L(n)de = fL(n) dz.
R™ ko Jrn ko Jrn Rn

So we have Ho(h) = g = L(f). Similarly, we see that f = J>(h). This proves part
(2).
By (2.2)

(2.6) 152(9)lp.wo > 1 Ho(9) |,

for g € S(R™). Since Sy and Hy are continuous on L? and §(R™) is dense in L?, we
have (2.6) forall g € LE. If f € W2P and f = Jo(h) with h € L, Ho(h) = L(f) by
Lemma 1.3 and ||S2(h)||p,w = IS(H)llp,w = 1L()|lp,w from (2.6). Also, by Lemma
2.1, ISUHlp,w + 1 fllp,w = Pl p,w = | fllp,2,w- This completes the proof of Theorem
1.4. a

3. PROOF OF THEOREM 1.5 FOR n > 3

We can prove Theorem 1.5 similarly to the proof of Theorem 1.4. So, only the
outline of the proof is given.

Lemma 3.1. Let V and Va2 be as in (1.15) and (1.16) on R™, n > 1, respectively,
with ® as in Theorem 1.5. Suppose that g € L, w € A,, 1 <p < oo. Then

V(T2 ()lpwo + 12(9) lp.w = V2 (9)lp,wo + 12(9) lp. 20 > Nl lp,uo-
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To prove Lemma 3.1 for n > 3 we note that

Va(g) = Ay (Ho(g))

for g € 8(R™) and apply Theorem 1.2 and Lemma, 2.2.

Lemma 1.3 and Lemma 3.1 imply part (1) of Theorem 1.5. To prove part (2) of
Theorem 1.5, let f,g,V(f,g) € LP, and f¢, g¢, h® be as in the proof of Theorem
1.4. Then

V(f,9)(x) <CM(V(f,9))(z)
by Minkowski’s inequality. Using this and

oo 1/2
( > leoHo(he) * ax (z) — cog® * ¢2k(w)|2> < Va(hf)(2) + V(£ 9°)(2),

k=—o00

we can proceed as in the proof of Theorem 1.4 to get the assertion of part (2).

4. TWO DIMENSIONAL CASE

We consider Ly (z) = 7(a)|z|*? on R?. Then we have the following (see [3, p.
151]).

Lemma 4.1. For ¢ € 8(R?) we have

1 R 1 R . A
(— 5= log Ja], &) = / (— o= log |2])¢(x) da = lim (Lo — (a), §)
0 Rz 2T a—2

a<2

= /|E|<1(27T|€|)2(<P(§)_90(0)) d§+/ (27r|§|)*280(€) d§+%§0(0)(—rl(l)+10gﬂ')_

l€1>1

It is known that I''(1) = —~, where v denotes Euler’s constant.

Proof of Lemma 4.1. Let a € (0,2). Then

o (2m> T(1-3a) 1-aG(2) — G(o)
2 d¢ — = — =(2
. Crled e (e = G — T < ot T,
where . ,
'2-sa)r*"
G(a) = ( -
I (3q)
We note that
1P (2 - 1) T (2a) — LT (2= La) T (L re-1
G'(a) = 2 ( 204) (20‘) 22 ( 204) (204),”0(72_ ( . 2a)7ra7210g7r-
r (30) r o
Thus

—I'(1) + logm

as a — 2 with a0 < 2.
2T

(4.1) / (2re) = dé — 7(a) -
1<t
On the other hand,

(4.2) Luo(z) —7(a) =

1
— —%logm for z € R?* \ {0}
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as a — 2 with a < 2. Also, if a € (3/2,2),

(4.3) |La(z) = 7()| < Cla|™ XB(o,2) (%) + C|log |z||xz2\B(0,2) (2)

with a constant C independent of a. By (4.1), (4.2), (4.3) and the Lebesgue con-
vergence theorem we have

<—% log|a|, ¢) = lim (Lo — 7(a),$) = lim (/Rz@ﬂgn—w(g) dg — T(a)¢(0)>

= lim ng(?ﬂlfl)_“(@(ﬁ) —30(0))d§+/ 2mle) ™ (§) dE

—2
oL |€]>1

T 0(0) ( /£<1<27r|£|>“ dé - r<a>>]

B /|5|<1(2”'5')2(*"(5) o) ds+ [ (emlel) (o) de

|€1>1
1
+ %90(0) (=I'(1) + logm).
g
Lemma 4.2. Let Ly(z) = —5=log|z| on R?. Let ® € M'(R?). Suppose that ®

satisfies (1.7), (1.8) and supp® C {|z| < M}. Let n(z) = Ly x ®(x) — La(x).
Then |n(x)] < C(1+ |log|zll) if [z] < 2M and |n(x)| < Clz|~® if |a| > 2M. Also,
(€) = 2rl¢) 7> (2(€) — 1).

Proof. The estimates |n(z)] < C(1+ |log|z||) for |z| < 2M and |n(z)| < C|z|~2 for
|z] > 2M can be shown as in the proof of Theorem 1.1, since AL, =0 on R? \ {0}.

Let ¥ € C3°(R?) with ¥(0) = 1. Let ¢ € 8(R?) and @) (£) = (&) —(0)¥(&/€).
Then, since ¢(.) belongs to $(IR?) and vanishes at the origin, by Lemma 4.1 we have

) | ) 1 .
(1, @(e)) = / (——2 / log [z — y|o (o) (z) do + = / log |z[(c) () de) (y) dy
R2 ™ JR2 27T R2

R2

- / (2rE)~2(€)(@(€) — 1) dé — (0) / (2r]€) 2T (/) (B(€) — 1) de.
R2 R2

Since ® € M!(R?), we can see that the last integral tends to 0 as e — 0. Also,

(n,0(¢)) = (n,9) — ©(0)(n, (¥).-1) and (5, (¥).-1) = 0 as € — 0. Collecting results
we get

(9= [ Crlg) (@@ - e,
RZ
which implies 7(¢) = (2r|€])2($(€) — 1). 0
Let
(4.4) (x) = @ x La(x) — La(x) + co®(z),
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where ® € M!(R?) satisfying (1.7) and (1.8) and ¢y = bp/2. Then, by the proof of
Theorem 1.1 for n > 3 and Lemma 4.2, we can see that ¢ satisfies (1.1) and (1),
(2), (3) of Theorem A. Thus we have the following.

Theorem 4.3. Let ¢ be as in (4.4). Suppose the condition (1.2) holds. Then

1£lpw = lgu (Dllpow, € L, (R?).

If ¢ is as in (4.4), then by Lemma 4.2 we see that S2(g9) = g4 (Ho(g)) for g €
8(R?). Using this and Theorem 4.3, we can argue similarly to the proof of Theorem
1.4 for n > 3, so that we see that Theorem 1.4 holds in the case of R2.

Also, Theorem B implies the following.

Theorem 4.4. Let ¢ be as in (4.4). Suppose the conditions (1.11) and (1.3) hold.
Then

£ llpew = 1A (Dllpws  f € L5 (R?).

Lemma 4.2 implies that V5(g) = Ay (Ho(g)), g € S(R?). From this and Theorem
4.4 we can see that Theorem 1.5 is valid in the case of R? by arguing similarly to
the proof of Theorem 1.5 for n > 3.

5. ONE DIMENSIONAL CASE

We recall the following result (see [5]).
Lemma 5.1. Let 1 < a <2, p € §(R). Then

o i Cl—a s D(3) [ 08 + (=€) — 20(0)
/_oo|a:| ga(a:)da:—Tn +1/ F(:FTQ)/O & d¢.

We give a proof for completeness.

Proof of Lemma 5.1. We prove the lemma when 1 < a < 2. The case a = 2 follows
from this by taking the limit as a — 2 with a < 2.
We write

oo M
(5.1) / oGy de = lim [ |2~ ¢(x) da.
oo M—oo J_
Now, integration by parts implies

M ' M
/ || Le 2 (@8 gy = 2/ ! cos(2nz€) dx
-M 0

M
:/ 0z, M)(a —1)z* *dx,
0

where
sin(2rM¢§)  sin(2maf)

w€ w€

oz, M) =

/_|m|°“ dw—/ / O(E, 2, M)(0(€) + p(—€)) (@ — 1)2°~2 da d

= lim / Y 0,2 M)(0() + p(—O) @ — a2 dode.
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Let U(&) = p(&) + ¢(—=£) — 2¢(0). Then we have

/L /Me(f’m’M)(SO(ﬁ) +p(=€))2" 7 de dé
0 2 u ) }
:/0 /0 (& z, M)V (£)z? dmd§+2<p(0)/0 /0 O, z, M)z =2 dx dE.

We easily see that the last integral tends to 0 as L — oo, since

L .
/ % d¢ — g boundedly in 4 > 0.
0

Therefore

(5.2) /A;Wl d:n—hm// O(E, 2, M)(€) (o — 1)a*2 da d.

By integration,

EorMosin(2n ME) Ca—2 e L sin(2r M €)
/0/0 E— V() (a—1)z* dadl =M /0771_5 (&) deE.

Applying integration by parts, we have

oot [Fsin(2rME)
yemt [T ) ae

=27'r 2 M* % cos(2r M L)¥(L)/L42 ' 2 M2 / ’ cos(2m M &) (¥ (€)/€) d
0

We observe that (¥(£)/€)" € L'(R). Thus
lim / / sin 2”M5 U () (o — 1) da de

L—oo

e G /0 ~ cos(2r ME) (W (8) /€)' d

We note that the last integral tends to 0 as M — oo. On the other hand, since
U (£)¢ @ is integrable on the interval (0, 00), by a change of variables we have

ngnoo/ / sin 27ra:§ W(E) (o — 1)2°2 dar de
co M¢
= / () / ( — 1)z~ 2 sin(27z) da dE.
0 0

méx
Here we note that the limit
M

lim (o — 1)x* %sin(2nz) dr
M—oo /g

exists when 1 < a < 2. By (5.2), (5.3) and (5.4), we see that

M

o] oo @
lim |z|* tp(x) doe = —(a — 1)2*“+17r*°‘/ 2 sinmda}/ 2 d¢.
M—oo J_pp 0 o &

By (5.1) and a formula for the value of the integral [;* z* ?sinzdz (see [14, p.
182]), we get the conclusion. O
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Remark 5.2. We note that
11—« r (3) am
—a+1/2 2)  _ —a
—5 T EE) =2) 2(27) “T'() cos( 5 )
in Lemma 5.1.

We can prove the following.

Lemma 5.3. Let Ly(z) = —1|z| on R'. Suppose ® € M (R') and supp ® C {|z| <
M}, Let n(x) = Lo x ®(x) — La(x). Then |n(z)| < C if |z| < 2M and n(xz) =0 if

|z > 2M . Also, (&) = (2m|¢])~2(D(€) — 1).

The equation 7(&) = (27|€])~2(®(€) — 1) follows from Lemma 5.1 with a = 2 as
in Lemma 4.2. The other assertions of Lemma 5.3 can be shown easily.
Let

(5.5) Y(x) = ® * La(x) — La(z) + co®(2),

where ® € M!(R!) and ¢y = bo/2 with by as in (1.7). Then, the conditions (1.1)
and (1), (2), (3) of Theorem A follow from the proof of Theorem 1.1 for n > 3 and
Lemma 5.3.

We have the following.

Theorem 5.4. Let @) be as in (5.5). Then

1 f1lp0 = gy (Dlpw,  f € L7, (R).

To see this from Theorem A, it suffices to show that (1.3) holds for ¢ of (5.5).
The proof is similar to the one given in Section 1 when ® is a radial function. So, it
suffices to show that 1 is not identically 0. We prove it by contradiction. Suppose
that ¢ is identically 0. Then,

®(E)(1 + co(271€])?) = 1.

Since @ is bounded and is not a constant function, we deduce that ¢y > 0. It follows
that 1
= —1 _—1/2 _
O((2m) ¢, ) = 1+&
which is the Fourier transform of the function we271#l. This contradicts the fact
that ® is compactly supported.
Let ¢ be as in (5.5). Then it follows by Lemma 5.3 that S2(g) = gy (Ho(g)) for
g € 8(R). Thus we can see that Theorem 1.4 holds in the case of R' by applying
the relation S>(g) = gy(Ho(g)) and Theorem 5.4 if we argue similarly to the proof
of Theorem 1.4 for n > 3.
Also, by Theorem B we have the following.

Theorem 5.5. Let ¢ be as in (5.5). Suppose the condition (1.11) holds. Then

1f1lp,w 2 1Ay (H)lpw, € LE(R).

By Lemma 5.3 we have V»2(g9) = Ay(Ho(g)), g € S(R). Applying this and
Theorem 5.5 and arguing similarly to the proof of Theorem 1.5 for n > 3, we can
see that Theorem 1.5 holds on R!.

Remark 5.6. When n = 1, we do not need to assume the conditions (1.2) and (1.3)
in Theorems 1.4 and 1.5, respectively, since they follow from the other hypotheses
of the theorems, as we have seen above.
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