
Reduced-order washout controllers stabilizing
uncertain equilibrium points

言語: eng

出版者: 

公開日: 2017-10-03

キーワード (Ja): 

キーワード (En): 

作成者: 

メールアドレス: 

所属: 

メタデータ

https://doi.org/10.24517/00009667URL
This work is licensed under a Creative Commons
Attribution-NonCommercial-ShareAlike 3.0
International License.

http://creativecommons.org/licenses/by-nc-nd/3.0/


Reduced-order Washout Controllers Stabilizing Uncertain
Equilibrium Points

Takashi Takimoto and Shigeru Yamamoto

Abstract— We consider a local stabilization problem of an
uncertain equilibrium point existed in a nonlinear continuous-
time system by a finite-dimensional dynamical state feedback
controller. In previous research, it is investigated that steady-
state blocking zeros of the stabilizing controller play an im-
portant role. Such a controller is called a washout controller.
In this paper, we develop a design method for reduced-order
washout controllers whose order is less than the plant’s order.
Additionally, we also consider a local stabilization problem of
an uncertain fixed point of a given discrete-time system.

I. INTRODUCTION

This paper concerns a local stabilization problem of an
uncertain equilibrium point of nonlinear dynamical systems
by a dynamical state feedback controller. In a standard design
procedure for feedback controllers to stabilize an equilibrium
point, it is assumed that the equilibrium point is accurately
known. However, the equilibrium point is generally uncer-
tain in the real system. In stabilization of the uncertain
equilibrium point, the uncertainty of the equilibrium point
results in nonzero steady-state control input so that a different
equilibrium point is stabilized.

It is well-known in chaos control community that delayed
feedback control is a powerful control method for stabilizing
equilibrium points without their exact information [1]. The
delayed feedback controller eliminates the dependence on
the steady-state to use its steady-state blocking zero (steady-
state blocking zeros mean blocking zeros at zero frequency).
In contrast to the simple structure of delayed feedback con-
trollers, the design of feedback parameters is complicated,
because the closed-loop system with delayed feedback is an
infinite-dimensional system in continuous-time (see [2] and
[3] for details).

An easier way is to adopt a finite-dimensional dynamical
state feedback controller with steady-state blocking zeros. In
[4] and [5], to stabilize the continuous-time system with the
unknown equilibrium point, a certainty equivalence adaptive
control scheme was proposed. In [6] and [7], a design
method of a washout filter aided feedback controller for both
continuous-time and discrete-time systems was discussed.
The washout filter is a high-pass filter which can eliminate
the steady-state input. Moreover, in [8] and [9], we proposed
a finite-dimensional dynamic controller with steady-state
blocking zeros, called a washout controller. The proposed
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washout controller is a generalization of washout filter aided
feedback controllers proposed in [6] and [7].

In previous researches, the existence condition and param-
eterization of washout controllers were derived for the case
where the order of the controller is the same as the plant’s
order [8], [9]. In this paper, as a special class of washout
controllers, we propose a reduced-order washout controller
whose order is the same as the control input vector. Then,
we derive existence conditions of the reduced-order washout
controller. Moreover, we show that such a reduced-order
washout controller can be designed by solving a stabilization
problem by constant state feedback.

II. PROBLEM STATEMENT

We consider an nth-order nonlinear continuous-time sys-
tem described by

ẋ(t) = f(x(t), u(t)),
y(t) = x(t),

(1)

where x(t) ∈ Rn is the state vector, u(t) ∈ Rm is the input
vector, and y(t) ∈ Rn is the measured output (i.e., the state
vector x(t) is assumed to be measured). We assume that f is
differentiable. Let xf be an equilibrium point of the system
(1) with u(t) ≡ 0, that is, 0 = f(xf , 0). Then, the linearized
system around the equilibrium point xf is given by

δẋ(t) = Aδx(t) + Bu(t),
y(t) = δx(t) + xf ,

(2)

where
δx(t) = x(t) − xf ,

A =
∂f(x, u)

∂x

∣∣∣∣
x=xf ,u=0

, B =
∂f(x, u)

∂u

∣∣∣∣
x=xf ,u=0

.

In this paper, we assume that (A, B) is stabilizable.
The control purpose is to stabilize the equilibrium point

xf of the system (1), that is, to design a feedback controller
such that lim

t→∞x(t) = xf and lim
t→∞u(t) = 0. To this end, we

consider the local stabilization of the equilibrium point xf

of the system (1) without changing its equilibrium point xf .
In addition, it is assumed that the equilibrium point xf of
the system (1) is uncertain, because it is generally difficult
to get the exact value of the equilibrium point xf in the
real system. Therefore, we consider the stabilization of the
uncertain equilibrium point xf by using only y(t) = x(t) as
feedback. Of course, if the equilibrium point xf is available,
it can be directly used in state feedback as u(t) = G(y(t)−
xf ) = Gδx(t), where G is a feedback gain.
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y(t) = x(t)u(t)

P(s)

K(s)

δx(t)

xf

Fig. 1. Closed-loop system of the linearized system P (s) and the controller
K(s).

III. WASHOUT CONTROL

We consider an ñth-order continuous-time dynamic state
feedback controller described by

K(s) :
ẇ(t) = Âw(t) + B̂y(t),

u(t) = Ĉw(t) + D̂y(t).
(3)

In the vicinity of the equilibrium point xf , the closed-loop
system with the dynamic controller (3) is given by[

δẋ(t)
ẇ(t)

]
= Ac

[
δx(t)
w(t)

]
+ Bcxf , (4)

where

Ac :=
[

A + BD̂ BĈ

B̂ Â

]
, Bc :=

[
BD̂

B̂

]
.

Moreover, by defining P (s) = (sI−A)−1B, the closed-loop
system is depicted in Fig. 1. For the closed-loop system,
the equilibrium point xf can be regarded as a steady-state
disturbance. By this steady-state disturbance, in steady-state,
the control input u(t) may be biased. Because, when the
closed-loop system is stable, from the final value theorem,
we have

lim
t→∞u(t) = {I − K(0)P (0)}−1K(0)xf . (5)

This suggests that another equilibrium point x′
f is stabilized

so that 0 = f(x′
f , uf) where uf �= 0 and x′

f �= xf . Hence,
in the uncertain equilibrium stabilization, it is important that
the dynamic controller (3) stabilizes the linearized system (2)
and eliminates the influence of the steady-state disturbance
xf .

Definition 1: The linearized system (2) is said to be
washout controllable, if there exists a finite-dimensional
continuous-time controller (3) such that the closed-loop
system (4) is asymptotically stable and lim

t→∞ u(t) = 0 for
any xf �= 0. Moreover, such a controller is called a washout
controller.

Now, we consider a class of the controllers (3) having a
steady-state blocking zero

Kñ =
{
(3)

∣∣∣ Â ∈ R
ñ×ñ, det Â �= 0, D̂ − ĈÂ−1B̂ = 0

}
,

(6)
where the subindex ñ indicates the order of the controller. It
is obvious that for any ñ all members of Kñ satisfy K(0) =
0, that is, K(s) = 0 at s = 0. If the closed-loop system by a
controller K(s) ∈ Kñ is asymptotically stable, (2) is washout
controllable. Because, from (5), we have lim

t→∞u(t) = 0.

For any K(s) ∈ Kñ, there exists a vector wf such that

0 = Âwf + B̂xf ,

0 = Ĉwf + D̂xf ,
(7)

for any xf . Then, from (7) and (4), the closed-loop system
is given by [

δẋ(t)
δẇ(t)

]
= Ac

[
δx(t)
δw(t)

]
. (8)

where δw(t) = w(t)−wf . Therefore, the elimination of the
dependence on steady-state disturbance xf is reduced to the
stabilization of the closed-loop system (8).

Theorem 1: If the linerized system (2) is washout control-
lable by a controller K(s) ∈ Kñ, then A is nonsingular.

Proof: When the closed-loop system (8) is asymptoti-
cally stable, Ac does not have any zero eigenvalues. Hence,
detAc �= 0. Under conditions det Â �= 0 and D̂−ĈÂ−1B̂ =
0, since

detAc = det Âdet(A + BD̂ − BĈÂ−1B̂)
= det Âdet A,

we have detA �= 0.
Theorem 2: ([8]) If A is nonsingular, by using F and L

such that A + BF and A + L are asymptotically stable, a
class of nth-order continuous-time washout controllers Kn

is given by[
Â B̂

Ĉ D̂

]
= Fl(J, Q), Q = −FA−1L, (9)

J =

⎡
⎣

[
A + BF + L −L

F 0

] [
B
I

]
[ −I I

]
0

⎤
⎦ ,

where Fl is the lower linear fractional transformation, that
is,

Â = (A + BF )A−1(A + L),
B̂ = −(A + BF )A−1L,

Ĉ = FA−1(A + L),
D̂ = −FA−1L.

When the order of the controller is the same as the plant’s
order, the system (2) is washout controllable if and only if
A is nonsingular.

Remark 1: In [6], [7], washout filter aided feedback con-
troller have been proposed. Their controllers belong to

Kc
n :=

{
(3)

∣∣∣ Â ∈ R
n×n, det Â �= 0, B̂ = −Â, D̂ = −Ĉ

}
.

In fact, Kc
n ⊂ Kn.

IV. REDUCED-ORDER WASHOUT CONTROLLER

In Theorem 2, [6], and [7], the order of the dynamic
controller (3) is the same as the plant’s order. In this section,
we derive a reduced-order dynamic controller and show that
it can be designed by considering a subset of (6).
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In the following, we assume that the order of the controller
is the same as that of the input vector. Then, we consider a
class of the dynamic controllers (3) which is given by

Kr
m =

{
(3)

∣∣∣ Â ∈ R
m×m, det Â �= 0, Ĉ = Â, D̂ = B̂

}
.

(10)
Then, it is obvious that Kr

m ⊂ Km. Therefore, all controllers
of Kr

m have the steady-state blocking zero.
Moreover, for any K(s) ∈ Kr

m, there exists a wf satisfying
(7) for any xf . Then, the closed-loop system by the controller
K(s) ∈ Kr

m is also given by (8). In addition, by using
conditions Ĉ = Â and D̂ = B̂, the closed-loop system (8)
can be rewritten as

Ẋ(t) = ĀX(t) + B̄ū(t),
ū(t) = K̄X(t),

(11)

where

X(t) =
[

δx(t)
δw(t)

]
, Ā =

[
A 0
0 0

]
, B̄ =

[
B
Im

]
,

K̄ =
[
B̂ Â

]
.

Therefore, for K(s) ∈ Kr
m, the design of feedback parame-

ters Â and B̂ stabilizing the closed-loop system (8) can be
cast into that of the state feedback gain K̄ stabilizing the
closed-loop system (11). Moreover, when m < n, Kr

m gives
the reduced-order controllers.

Theorem 3: If A is nonsingular, then there exists a mth-
order continuous-time washout controller stabilizing the lin-
earized system (2).

Proof: When A is nonsingular, we will show that there
exists a controller K(s) ∈ Kr

m stabilizing the linearized
system (2), that is, there exists a feedback gain K̄ =

[
B̂ Â

]
such that the closed-loop system (11) is asymptotically stable
and det Â �= 0. If (Ā, B̄) is stabilizable, then there exists
the feedback gain K̄ such that the closed-loop system (11)
is asymptotically stable. In the following, it is shown that
(Ā, B̄) is stabilizable. Since (A, B) is stabilizable, for
∀λ ∈ C̄+ := {λ ∈ C | Reλ ≥ 0}, rank[A − λIn B] = n.
Then, for ∀λ ∈ C̄+\{0}, we have

rank[Ā − λIn+m B̄]

= rank
[

A − λIn 0 B
0 −λIm Im

]

= rank[A − λIn B] + rank(−λIm)
= n + m.

Moreover, for λ = 0,

rank[Ā − λIn+m B̄] = rank
[

A 0 B
0 0 Im

]

= rank(A) + m.

Therefore, A is nonsingular if and only if (Ā, B̄) is
stabilizable. Next, we will show that det Â �= 0. When the
closed-loop system (11) is asymptotically stable, Ac does

not have any zero eigenvalues, that is, detAc �= 0. Under
detA �= 0, since

detAc = det
[

I B
0 I

] [
A AB

B̂ Â + B̂B

] [
I −B
0 I

]

= detAdet(Â + B̂B − B̂A−1AB)
= detAdet Â,

we have det Â �= 0.
From Theorem 1 and 3, it is concluded that the linearized

system (2) is washout controllable by mth-order dynamic
controller if and only if A is nonsingular.

V. DISCRETE-TIME SYSTEM

We consider an nth-order nonlinear discrete-time system
described by

x(k + 1) = f(x(k), u(k)),
y(k) = x(k),

(12)

where x(k) ∈ Rn, u(k) ∈ Rm, and f is differentiable. It is
assumed that there exists a fixed point xf such that xf =
f(xf , 0). Then, the linearized system around the fixed point
xf is given by

δx(k + 1) = Aδx(k) + Bu(k),
y(k) = δx(k) + xf ,

(13)

where δx(k) = x(k)−xf . Moreover, we assume that (A, B)
is stabilizable.

We consider a stabilization problem of an uncertain fixed
point xf by using an ñth-order discrete-time dynamic state
feedback controller described by

K(z) :
w(k + 1) = Âw(k) + B̂y(k),

u(k) = Ĉw(k) + D̂y(k).
(14)

In the vicinity of the fixed point xf , the closed-loop system
by the dynamic controller (14) is given by[

δx(k + 1)
w(k + 1)

]
= Ac

[
δx(k)
w(k)

]
+ Bcxf . (15)

Moreover, when the closed-loop system is stable, from the
final value theorem, we have

lim
k→∞

u(k) = {I − K(1)P (1)}−1K(1)xf , (16)

where P (z) := (zI − A)−1B.
Definition 2: The linearized system (13) is said to be

washout controllable, if there exists a finite-dimensional
discrete-time controller (14) such that the closed-loop system
(15) is asymptotically stable and lim

k→∞
u(k) = 0 for any

xf �= 0. Moreover, such a controller is called a washout
controller.

Now, a transfer function matrix K(z) is said to have a
steady-state blocking zero if K(z) = 0 at z = 1. Then, we
consider a class of the dynamic controllers (14) having a
steady-state blocking zero

K′
ñ =

{
(14)

∣∣∣ Â ∈ R
ñ×ñ,

det(I − Â) �= 0, D̂ + Ĉ(I − Â)−1B̂ = 0
}

. (17)
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Then, we have the following theorem.
Theorem 4: If the linerized system (13) is washout con-

trollable by a controller K(z) ∈ K′
ñ, then I − A is nonsin-

gular.
Proof: We can prove Theorem 4 by using a procedure

similar to the proof of Theorem 1.
Theorem 5: ([8]) If I −A is nonsingular, by using F and

L such that A + BF and A + L are asymptotically stable,
a class of nth-order discrete-time washout controllers K′

n is
given by[

Â B̂

Ĉ D̂

]
= Fl(J, Q′), Q′ = −F (I − A)−1L, (18)

that is,

Â = I − (I − A − BF )(I − A)−1(I − A − L),
B̂ = −(I − A − BF )(I − A)−1L,

Ĉ = F (I − A)−1(I − A − L),
D̂ = F (I − A)−1L.

In the following, it is assumed that the order of the
controller is same as that of the control vector. Then, we
consider a class of the discrete-time dynamic controllers (14)
which is given by

Kr′
m =

{
(14)

∣∣∣ Â ∈ R
m×m,

det Â �= 0, Ĉ = Â − I, D̂ = B̂
}

. (19)

Then, it is obvious that Kr′
m ⊂ K′

m. Therefore, the controller
K(z) ∈ Kr′

m has the steady-state blocking zero.
We consider the closed-loop system by K(z) ∈ Kr′

m in the
vicinity of the fixed point xf . Then, for any K(z) ∈ Kr′

m,
there exists a vector wf such that

wf = Âwf + B̂xf ,

0 = Ĉwf + D̂xf ,
(20)

for any xf . By using such a vector wf , the closed-loop
system is given by[

δx(k + 1)
δw(k + 1)

]
= Ac

[
δx(k)
δw(k)

]
, (21)

where δw(k) = w(k)−wf . Moreover, under conditions Ĉ =
Â − I and D̂ = B̂, the closed-loop system (21) can be
rewritten as

X(k + 1) = ĀX(k) + B̄ū(k),
ū(k) = K̄X(k),

(22)

where

X(k) =
[

δx(k)
δw(k)

]
, Ā =

[
A −B
0 0

]
, B̄ =

[
B
Im

]
,

K̄ =
[
B̂ Â

]
.

Therefore, for K(z) ∈ Kr′
m, the design of feedback param-

eters Â and B̂ stabilizing the closed-loop system (21) can
be cast into that of the state feedback gain K̄ stabilizing the

closed-loop system (22). Moreover, when m < n, Kr′
m gives

the reduced-order controllers.
Theorem 6: If I − A is nonsingular, then there exists a

mth-order discrete-time washout controller stabilizing the
linearized system (13).

Proof: The proof of this theorem is very similar to that
of Theorem 3, and hence it is omitted.

From Theorem 4 and 6, it is concluded that the linearized
system (13) is washout controllable by mth-order discrete-
time dynamic controller if and only if I −A is nonsingular.

VI. CONCLUSION

In this paper, we have considered the stabilization problem
of the uncertain equilibrium point of the continuous-time
system and the uncertain fixed point of the discrete-time
system. We have proposed the reduced-order washout con-
troller which is a finite-dimensional dynamical state feedback
controller with steady-state blocking zeros. We have also
shown that the reduced-order washout controller can be
designed by solving a stabilization problem by constant state
feedback.
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