Reduced-order washout controllers stabilizing
uncertain equilibrium points

S5 eng

HhRE

~FH: 2017-10-03

*F—7—NK (Ja):

*—7— K (En):

YRR

X—=ILT7 KL AR:

FiT/:
https://doi.org/10.24517/00009667

This work is licensed under a Creative Commons
Attribution-NonCommercial-ShareAlike 3.0
International License.



http://creativecommons.org/licenses/by-nc-nd/3.0/

Proceedings of the 2007 American Control Conference
Marriott Marquis Hotel at Times Square
New York City, USA, July 11-13, 2007

FrB14.5

Reduced-order Washout Controllers Stabilizing Uncertain
Equilibrium Points

Takashi Takimoto and Shigeru Yamamoto

Abstract— We consider a local stabilization problem of an
uncertain equilibrium point existed in a nonlinear continuous-
time system by a finite-dimensional dynamical state feedback
controller. In previous research, it is investigated that steady-
state blocking zeros of the stabilizing controller play an im-
portant role. Such a controller is called a washout controller.
In this paper, we develop a design method for reduced-order
washout controllers whose order is less than the plant’s order.
Additionally, we also consider a local stabilization problem of
an uncertain fixed point of a given discrete-time system.

I. INTRODUCTION

This paper concerns a local stabilization problem of an
uncertain equilibrium point of nonlinear dynamical systems
by a dynamical state feedback controller. In a standard design
procedure for feedback controllers to stabilize an equilibrium
point, it is assumed that the equilibrium point is accurately
known. However, the equilibrium point is generally uncer-
tain in the real system. In stabilization of the uncertain
equilibrium point, the uncertainty of the equilibrium point
results in nonzero steady-state control input so that a different
equilibrium point is stabilized.

It is well-known in chaos control community that delayed
feedback control is a powerful control method for stabilizing
equilibrium points without their exact information [1]. The
delayed feedback controller eliminates the dependence on
the steady-state to use its steady-state blocking zero (steady-
state blocking zeros mean blocking zeros at zero frequency).
In contrast to the simple structure of delayed feedback con-
trollers, the design of feedback parameters is complicated,
because the closed-loop system with delayed feedback is an
infinite-dimensional system in continuous-time (see [2] and
[3] for details).

An easier way is to adopt a finite-dimensional dynamical
state feedback controller with steady-state blocking zeros. In
[4] and [5], to stabilize the continuous-time system with the
unknown equilibrium point, a certainty equivalence adaptive
control scheme was proposed. In [6] and [7], a design
method of a washout filter aided feedback controller for both
continuous-time and discrete-time systems was discussed.
The washout filter is a high-pass filter which can eliminate
the steady-state input. Moreover, in [8] and [9], we proposed
a finite-dimensional dynamic controller with steady-state
blocking zeros, called a washout controller. The proposed
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washout controller is a generalization of washout filter aided
feedback controllers proposed in [6] and [7].

In previous researches, the existence condition and param-
eterization of washout controllers were derived for the case
where the order of the controller is the same as the plant’s
order [8], [9]. In this paper, as a special class of washout
controllers, we propose a reduced-order washout controller
whose order is the same as the control input vector. Then,
we derive existence conditions of the reduced-order washout
controller. Moreover, we show that such a reduced-order
washout controller can be designed by solving a stabilization
problem by constant state feedback.

II. PROBLEM STATEMENT

We consider an nth-order nonlinear continuous-time sys-
tem described by

fa(t), u(t)),
y(t) = =),

where z(t) € R™ is the state vector, u(t) € R™ is the input
vector, and y(t) € R™ is the measured output (i.e., the state
vector z(t) is assumed to be measured). We assume that f is
differentiable. Let xy be an equilibrium point of the system
(1) with u(t) = 0, that is, 0 = f(zf,0). Then, the linearized
system around the equilibrium point zf is given by

1)

dx(t) = Adz(t) + Bu(t), 2
yH) = Salt) +ay,
where
5o (t) = (1) — a7,
_ Of(x,u) _ Of(x,u)
A= - BET

r=xf,u=0 rz=xf,u=0

In this paper, we assume that (A, B) is stabilizable.

The control purpose is to stabilize the equilibrium point
x ¢ of the system (1), that is, to design a feedback controller
such that tllrgo x(t) = xy and tllrgo u(t) = 0. To this end, we
consider the local stabilization of the equilibrium point x ¢
of the system (1) without changing its equilibrium point z .
In addition, it is assumed that the equilibrium point x; of
the system (1) is uncertain, because it is generally difficult
to get the exact value of the equilibrium point =y in the
real system. Therefore, we consider the stabilization of the
uncertain equilibrium point z¢ by using only y(¢) = x(t) as
feedback. Of course, if the equilibrium point s is available,
it can be directly used in state feedback as u(t) = G(y(t) —
xy) = Gox(t), where G is a feedback gain.
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Fig. 1. Closed-loop system of the linearized system P(s) and the controller
K(s).

III. WASHOUT CONTROL
We consider an nth-order continuous-time dynamic state
feedback controller described by

w(t) = Aw(t)+ By(t),
K(s) - ) dw(t) + By(t) 3)
u(t) = Cuw(t) + Dy(t).
In the vicinity of the equilibrium point x ¢, the closed-loop
system with the dynamic controller (3) is given by

[ i(t) } _a { oa(t) ] + Bay, (@)

w(t) w(t)
where
[ A+BD BC [ BD
AC.[ PO } Bc.[ ! }

Moreover, by defining P(s) = (sI — A)~! B, the closed-loop
system is depicted in Fig. 1. For the closed-loop system,
the equilibrium point x; can be regarded as a steady-state
disturbance. By this steady-state disturbance, in steady-state,
the control input u(t) may be biased. Because, when the
closed-loop system is stable, from the final value theorem,
we have

Jim u(t) = {I - K(0)P(0)} 'K (0)xy. 5)
This suggests that another equilibrium point x’f is stabilized
so that 0 = f(z’,uy) where uy # 0 and 2’y # xy. Hence,
in the uncertain equilibrium stabilization, it is important that
the dynamic controller (3) stabilizes the linearized system (2)
and eliminates the influence of the steady-state disturbance
Xf.

Definition 1: The linearized system (2) is said to be
washout controllable, if there exists a finite-dimensional
continuous-time controller (3) such that the closed-loop
system (4) is asymptotically stable and thm u(t) = 0 for
any xy # 0. Moreover, such a controller is called a washout
controller.

Now, we consider a class of the controllers (3) having a
steady-state blocking zero

Ki = {(3) ‘ AeR™" det A£0, D—CA ‘B = o},
(6)
where the subindex 7 indicates the order of the controller. It
is obvious that for any 7 all members of Kj; satisfy K(0) =
0, that is, K(s) = 0 at s = 0. If the closed-loop system by a
controller K (s) € K5 is asymptotically stable, (2) is washout
controllable. Because, from (5), we have tlg& u(t) = 0.
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For any K (s) € K, there exists a vector wy such that

0 = Awf +B:Cf,

7
0 = wa —I—Dxf, )
for any x¢. Then, from (7) and (4), the closed-loop system
is given by
0x(t) _ dz(t)
[ S (t) } = A [ sw(t) | ®)
where dw(t) = w(t) — wy. Therefore, the elimination of the

dependence on steady-state disturbance x is reduced to the
stabilization of the closed-loop system (8).

Theorem 1: 1If the linerized system (2) is washout control-
lable by a controller K (s) € Kj, then A is nonsingular.

Proof: When the closed-loop system (8) is asymptoti-

cally stable, A. does not have any zero eigenvalues. Hence,
det A, # 0. Under conditions det A # 0 and D—CA~'B =
0, since

det A, = det Adet(A+ BD — BCA™'B)
= det Adet A,

we have det A # 0. [ |
Theorem 2: ([8]) If A is nonsingular, by using F' and L
such that A + BF and A + L are asymptotically stable, a
class of nth-order continuous-time washout controllers /C,,
is given by
A B
~ ~ = J = —FA_lL 9
[CD] F(1,Q). Q : ©)
A+BF+L —-L B
J = F 0 I ,
[ -1 1] 0

where F; is the lower linear fractional transformation, that
is,

A (A+ BF)A"Y(A+ L),
B = —(A+BF)A'L,

C = FAYA+1L),

D —FA'L.

When the order of the controller is the same as the plant’s
order, the system (2) is washout controllable if and only if
A is nonsingular.

Remark 1: In [6], [7], washout filter aided feedback con-
troller have been proposed. Their controllers belong to

K = {(3> \A ER™" det A#0, B=—A D= _c}.
In fact, K¢ C K.

IV. REDUCED-ORDER WASHOUT CONTROLLER

In Theorem 2, [6], and [7], the order of the dynamic
controller (3) is the same as the plant’s order. In this section,
we derive a reduced-order dynamic controller and show that
it can be designed by considering a subset of (6).
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In the following, we assume that the order of the controller
is the same as that of the input vector. Then, we consider a
class of the dynamic controllers (3) which is given by

KT = {<3>\ AeR™™m detA#0, C=A, D :B}.

(10)
Then, it is obvious that K7, C IC,,,. Therefore, all controllers
of K7, have the steady-state blocking zero.

Moreover, for any K (s) € K7,, there exists a wy satisfying
(7) for any x¢. Then, the closed-loop system by the controller
K(s) € KT, is also given by (8). In addition, by using
conditions C' = A and D = B, the closed-loop system (8)
can be rewritten as

X(1) = AX(t)+Bu(t), (11)
u(t) KX(t),
where
X(t) = [ﬁi(@)]h[é 8}’32{5}’
K = [B A}.

Therefore, for K (s) € K7, the design of feedback parame-
ters A and B stabilizing the closed-loop system (8) can be
cast into that of the state feedback gain K stabilizing the
closed-loop system (11). Moreover, when m < n, K} gives
the reduced-order controllers.

Theorem 3: If A is nonsingular, then there exists a mth-
order continuous-time washout controller stabilizing the lin-
earized system (2).

Proof: When A is nonsingular, we will show that there
exists a controller K(s) € KI stabilizing the linearized
system (2), that is, there exists a feedback gain K = [B /Al}
such that the closed-loop system (11) is asymptotically stable
and det A # 0. If (A, B) is stabilizable, then there exists
the feedback gain K such that the closed-loop system (11)
is asymptotically stable. In the following, it is shown that
(A, B) is stabilizable. Since (A, B) is stabilizable, for
VA € Ct :={\ € C | ReX > 0}, rank[A — \I,, B] = n.
Then, for YA € CT\{0}, we have

rank[A — A\, 1, B]

B A-X, 0 B

= rank [ 0 M, I, }
= rank[A — AI,, B] +rank(—AI,,)
= n+m.

Moreover, for A = 0,

rank[A — A, 1., B] =

rank [ 61

0 B
0 I,
m

Therefore, A is nonsingular if and only if (A, B) is
stabilizable. Next, we will show that det A # 0. When the
closed-loop system (11) is asymptotically stable, A. does

= rank(A) +
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not have any zero eigenvalues, that is, det A, # 0. Under

det A # 0, since
I -B
detAcdet[ HB A+BBHO I}
= det Adet(A — BAT'AB)
= detAdetA,
we have det A # 0. ]

From Theorem 1 and 3, it is concluded that the linearized
system (2) is washout controllable by mth-order dynamic
controller if and only if A is nonsingular.

V. DISCRETE-TIME SYSTEM
We consider an nth-order nonlinear discrete-time system
described by
w(k+1) = f(z(k),u(k)),
y(k) z(k),
where x(k) € R™, u(k) € R™, and f is differentiable. It is
assumed that there exists a fixed point xy such that zy =

f(zy,0). Then, the linearized system around the fixed point
xy is given by

12)

dx(k+1) = Aox(k)+ Bu(k), (13)
y(k) = ox(k) +xy,
where 0z (k) = z(k)—xs. Moreover, we assume that (A, B)

is stabilizable.

We consider a stabilization problem of an uncertain fixed
point 2y by using an fith-order discrete-time dynamic state
feedback controller described by

w(k+1) = Aw(k)+ By(k),
K(oys WD = A+ By "
u(k) = Cw(k)+ Dy(k).
In the vicinity of the fixed point x, the closed-loop system
by the dynamic controller (14) is given by

(1] 50 s

Moreover, when the closed-loop system is stable, from the
final value theorem, we have

Tim u(k) = {1 = K()P()} K (1zy,

15)

(16)

where P(z2) := (21 — A)~!

Definition 2: The linearized system (13) is said to be
washout controllable, if there exists a finite-dimensional
discrete-time controller (14) such that the closed-loop system
(15) is asymptotically stable and lim wu(k) = 0 for any

xy # 0. Moreover, such a controllgroois called a washout
controller.

Now, a transfer function matrix K(z) is said to have a
steady-state blocking zero if K(z) = 0 at z = 1. Then, we
consider a class of the dynamic controllers (14) having a
steady-state blocking zero

KL = {(14) \ A e R
det(I — A) £0, D+ (I - A)'B = o} . (17)
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Then, we have the following theorem.

Theorem 4: If the linerized system (13) is washout con-
trollable by a controller K (z) € KL, then I — A is nonsin-
gular.

Proof: We can prove Theorem 4 by using a procedure
similar to the proof of Theorem 1. [ ]

Theorem 5: ([8]) If I — A is nonsingular, by using F' and
L such that A + BF and A + L are asymptotically stable,
a class of nth-order discrete-time washout controllers ), is
given by

[g g}—fl(m’), Q=-FI-A)7'L, (18
that is,

A I—(I-A-BF)I-A)"'I-A-1L),

B = —(I-A—-BF)I-A)"'L,

C = FI-A'(I-A-1L),

D = FI-A)"'L

In the following, it is assumed that the order of the
controller is same as that of the control vector. Then, we
consider a class of the discrete-time dynamic controllers (14)
which is given by

K = {(14)‘ AeRrmm,
detA£0, C=A—1, [):B}. (19)

Then, it is obvious that K/ C K. Therefore, the controller
K(z) € K7/ has the steady-state blocking zero.

We consider the closed-loop system by K (z) € K7 in the
vicinity of the fixed point z;. Then, for any K(z) € K7’,
there exists a vector wy such that

wy = /lwf =+ Bxf,

20
0 = wa—l—Dl‘f, (20)

for any xy. By using such a vector wy, the closed-loop
system is given by

{ Sx(k+1) s (k) ]

6w(k+1)} = Ac[éw(k) @0

where dw(k) =
A—1T and D
rewritten as

w(k) —wy. Moreover, under conditions C' =
B, the closed-loop system (21) can be

X(k+1) AX (k) + Bu(k),
:(k) - I_(X(k),Jr @2)
where
o - [E]a-[4 ) -2
K = [B A]

Therefore, for K(z) € K7, the design of feedback param-
eters A and B stabilizing the closed-loop system (21) can
be cast into that of the state feedback gain K stabilizing the
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closed-loop system (22). Moreover, when m < n, K/ gives
the reduced-order controllers.

Theorem 6: If I — A is nonsingular, then there exists a
mth-order discrete-time washout controller stabilizing the
linearized system (13).

Proof: The proof of this theorem is very similar to that
of Theorem 3, and hence it is omitted. |

From Theorem 4 and 6, it is concluded that the linearized
system (13) is washout controllable by mth-order discrete-
time dynamic controller if and only if I — A is nonsingular.

VI. CONCLUSION

In this paper, we have considered the stabilization problem
of the uncertain equilibrium point of the continuous-time
system and the uncertain fixed point of the discrete-time
system. We have proposed the reduced-order washout con-
troller which is a finite-dimensional dynamical state feedback
controller with steady-state blocking zeros. We have also
shown that the reduced-order washout controller can be
designed by solving a stabilization problem by constant state
feedback.
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