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Abstract: In this paper, we consider a decentralized control problem for suppressing the traffic jam phenomenon in
traffic flow. To analyze the phenomenon, we use the so-called optimal velocity model. In the model, the optimal velocity
function which is a nonlinear function of the headway of the preceding vehicle describes driver’s characteristics. Without
affecting the characteristics, all vehicles in traffic flow should be stabilized in a decentralized fashion. In this paper, we
apply washout control which is a high pass filter based control method. We derive a stability condition and illustrate the
effectiveness with several simulations.
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1. INTRODUCTION

It is shown that a decentralized delayed feedback con-
trol method can suppress the traffic jam phenomenon
in the optimal velocity traffic model [1]. In the opti-
mal velocity traffic model, driver’s intention is expressed
by an optimal velocity function. In this paper, we ap-
ply highpass-filter-based control, called washout control,
which can stabilize the traffic flow behavior without dis-
turbing the driver’s intention.

This paper is organized as follows. Section 2 explains
the optimal velocity traffic model and its dynamics. In
addition, derive the linearized model for cheaking we an-
alyze the stability of the optimal velocity traffic model.
In Section 3, washout control is applied to the suppres-
sion of trafic jam and stability conditions are derived for
parameters of washout controller. Section 4 shows nu-
merical simulations for optimal velocity traffic model to
illustrate the effectiveness of washout control. Finally,
conclusions are presented in Section 5.

2. OPTIMAL VELOCITY TRAFFIC
MODEL

We consider traffic flow which is described by the op-
timal velocity model [2] (Fig. 1). We denote the position
and velocity of the ith vehicle by xi(t) and vi(t), respec-
tively. We assume that the lead vehicle runs at a positive
velocity v0(t) > 0, which described as

ẋ0(t) = v0(t). (1)

Fig. 1 Traffic flow model.

We also assume that the lead vehicle is not influenced by
others. The following vehicles are modelled as

�
ẍi(t) = a{F (yi(t)) − ẋi(t)} + ui(t),
yi(t) = xi−1(t) − xi(t),

(2)

where yi(t) is the head distance between (i − 1)th and
ith vehicles, a is the sensitivity of a driver, ui(t) is the
control input. The optimal velocity function F (yi(t)) is
assumed to be described as

F (yi(t)) = tanh(yi(t) − yc) + tanh(yc) (3)

where yc is the desired forward distance which the ith
driver wishes to keep. Here, denoting the velocity of the
ith vehicle ẋi, vi(t), we can rewrite (2) as�

v̇i(t) = a{F (yi(t)) − vi(t)} + ui(t),
ẏi(t) = vi−1(t) − vi(t).

(4)

It is also assumed that when the leading vehicle runs with
constant velocity v0 and u ≡ 0, (4) has a steady state

�
v∗i y∗

i

�
=

�
v0 F−1(v0)

�
. (5)

Defining

v̄i(t) := vi(t) − v∗
i ,

ȳi(t) := yi(t) − y∗
i ,

the linearized dynamics of vehicle system (4) around the
steady state (5) as

�
˙̄vi(t) = a{Λȳi(t) − v̄i(t)} + ui(t),
˙̄yi(t) = v̄i−1(t) − v̄i(t),

(6)

where

Λ :=
∂F (y)

∂y

����
y=F−1(v0)

(7)

is the first derivative of the optimal velocity function at
y = F−1(v0). Then, by choosing the state vector as

z̄i(t) =
�
v̄i(t)
ȳi(t)

�
, (8)
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Fig. 2 Block diagram of the ith controlled vehicle.

a state space realization is given by⎧⎪⎪⎨
⎪⎪⎩

˙̄zi =
�−a aΛ
−1 0

�
z̄i +

�
0
1

�
v̄i−1 +

�
1
0

�
ūi,

v̄i =
�
1 0

�
z̄i,

ȳi =
�
0 1

�
z̄i.

(9)

From this state space realization, we can derive the trans-

fer function G(s) from
�
v̄i−1(s)
ūi(s)

�
to

�
v̄i(s)
ȳi(s)

�
as

G(s) =
�
G11(s) G12(s)
G21(s) G22(s)

�

=
�
s + a −aΛ

1 s

�−1 �
0 1
1 0

�

=
�

aΛ/d(s) s/d(s)
(s + a)/d(s) −1/d(s)

�
(10)

where

d(s) := s2 + as + aΛ. (11)

3. WASHOUT CONTROL
In the optimal velocity traffic model, driver’s intention

is expressed by F . In general, it is difficult to exactly
describe it. Hence, there exists uncertainty in F and yc.
Furthermore, v∗i and y∗

i may be different from driver’s
intention. If we use v∗

i and y∗
i as a reference input to

stabilize the system, it would be inconsistent with driver’s
intention. It is known that washout control can stabilize
the equilibrium point without using it as a reference input
[3].
A washout controller for the ith vehicle is given by�

ξ̇i(t) = αξi(t) + βyi(t),
ui(t) = αξi(t) + βyi(t),

(12)

Fig. 3 Series connection of controlled vehicles.

where parameters α and β are chosen to suppress the traf-
fic jam. Then, we can derive the transfer function H(s)
from yi(t) to ui(t) as

H(s) = α(s − α)−1β + β

=
βs

s − α
. (13)

When we use (12) for (10), we have the transfer function
Ḡ(s) from v̄i−1 to v̄i as

Ḡ(s) = G11(s) + G12(s)H(s)

× (1 − G22(s)H(s))−1G12(s)

=
n2s + n3

s3 + d1s2 + d2s + d3
, (14)

where

d1 = a − α,

d2 = aΛ + β − aα,

d3 = −aΛα,

n2 = aΛ + β,

n3 = d3.

Here, Fig. 3 shows that the series connection of controlled
vehicles. The velocity v̄i is described as

v̄i = {Ḡ(s)}iv̄0. (15)

Hence, if �Ḡ(s)�∞ ≤ 1, the velocity v̄i cannot diverge
from the velocity of equilibrium state even if the number
of connected vehicles increases.
Then, the region Ω1 for parameters α and β such that

Ḡ(s) is stable can be derived as

Ω1 := {(α, β)| α < 0, d2 > 0, d1d2 − d3 > 0}
by using the Routh stability criterion. Additionally, the
regionΩ2 for parameters α and β such that �Ḡ(s)�∞ ≤ 1
is derived as

Ω2 := A ∩ (B ∪ C ∪ D),

α

β

Fig. 4 The region Ω1 ∩Ω2 of the controller parameters α
and β satisfying �Ḡ(s)�∞ ≤ 1.
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(a) Space-time plot.
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(b) Clipped out snapshot of velocity behavior of three
vehicles.

Fig. 5 Numerical simulation of the uncontrolled traffic
flow.

where

A = {(α, β)| ζ > 0},
B = {(α, β)| η > 0},
C = {(α, β)| η2 − 4ζ < 0},
D = {(α, β)| η2 − 3ζ < 0},
ζ = d2

2 − 2d1d3 − n2
2,

η = d1
2 − 2d2.

Hence, the intersection Ω1 ∩ Ω2 where gives parameters
suppressing traffic jam is illustrated as in Fig. 4. We used
parameters a = 1.0 and Λ = 1.0 to draw Fig. 4.

4. SIMULATIONS
We have simulated 100 vehicles dynamics. In the sim-

ulations, we use the parameters a = 1.0, yc = 2.0 and
v0 = 0.964. For all simulation results, we used Runge-
Kutta algorithm for numerical integration with time step

x0(t) − xi(t)
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t

(a) Space-time plot.

time t

v
i
(t

)

(b) Clipped out snapshot of velocity behavior of three
vehicles.

Fig. 6 Numerical simulation of the controlled traffic flow
by washout control.

Δt = 0.01. The uniform random noise with maxmum
amplitude 10−3 is added to the first equation of (4) for all
vehicles.
We simulated the uncontrolled optimal velocity traffic

model (i.e., α = 0, β = 0). Figure 5(a) shows the space-
time plot of the distance x0(t) − xi(t) from t = 100
to 300 for all vehicles. The horizontal axis represents a
distance between the leading vehicle and each following
vehicles. The vertical axis is the time evolution. It can
be seen from Fig. 5(a) that the upper vehicle group (the
left part of Fig. 5(a)) run constantly with the lead vehi-
cle velocity v0, however, we observe the oscillating head-
way distances in the lower vehicle group (the left part of
Fig. 5(a)). In Fig. 5(a), we also find a congestion mov-
ing backward. Figure 5(b) shows the velocity behavior
of the 1st, 50th, and 100th vehicles. They are denoted
by v1, v50 and v100, respectively. The 1st vehicle runs
constantly with velocity v0. The 50th vehicle velocity
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(b) Clipped out snapshot of velocity behavior of three
vehicles.

Fig. 7 Numerical simulation of the controlled traffic flow
by delayed feedback control.

oscillates with accelerate-decelerate actions. The 100th
vehicle velocity also oscillates, and the amplitude of this
oscillation is larger than that of 50th. These numerical
simulations mean that the traffic jam occurs in the opti-
mal velocity traffic model.

4.1 Washout control
We simulated the controlled traffic model. Figure 6(a)

shows the space-time plot of the distance x0(t) − xi(t)
from t = 100 to 300 when all vehicles are controlled
by washout control. The parameters of the washout con-
troller (12) we used are α = −5.0 and β = 4.0. We
find no traffic jam in the simulation. Figure 6(b) indi-
cates the velocities of the 1st, 50th, and 100th vehicles.
Although the velocity of the 100th vehicle is fluctuated,
it can be seen that all vehicles run constantly. This nu-
merical simulation substantiates that washout control is
useful to suppress the traffic jam in the optimal velocity
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(b) Clipped out snapshot of velocity behavior of three
vehicles.

Fig. 8 Numerical simulation of the uncontrolled traffic
flow with driver’s characteristics.

model.

4.2 Delayed feedback
To compare the proposed method with another one,

we used a delayed feedback controller [1]. Figure 7(a)
shows the space-time plot of the distance x0(t) − xi(t)
from t = 100 to 300 when all vehicles are controlled by
delayed feedback control. There is also no congestion in
the traffic flow. Figure 7(b) indicates the velocities of the
1st, 50th, and 100th vehicles. It can be seen that all the
vehicles run constantly.
A washout control and delayed feedback control can

suppress the congestion in the traffic flow, even if they
have different controller structure.

4.3 Heterogeneous traffic flow
We consider the case where each vehicle has differ-

ent characteristic to reflect the fact that each driver’s
feeling is different from others in practice. Instead of
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Fig. 9 Numerical simulation of the controlled traffic flow
with driver’s characteristics.

a =
�
a1, a2, · · · , a100

�
=

�
1, 1, · · · , 1

�
where ai is the

ith driver’s sensitivity, we set a =
�
a1, a2, · · · , a100

�
by

using a sequence of uniform random numbers which is
generated by a MATLAB command “rand” as

a = rand(100, 1)

=
�
0.67 0.45 · · · 0.73 0.56

�
. (16)

The space-time plot of the distance x0(t)−xi(t) from
t = 100 to 300 is shown in Fig. 8(a) for uncontrolled
heterogeneous traffic flow and in Fig. 9(a) for heteroge-
neous traffic flow in which all vehicles are controlled by
washout control. The velocity behavior of the 1st, 50th,
and 100th vehicles are shown in Fig. 8(b) and Fig. 9(b).
We see that the traffic jam is suppressed by washout con-
trol although there is a transient response of stabilization.

5. CONCLUSION
In this paper, we applied a highpass-filter-based con-

troller, called a washout controller, to suppress the traffic
jam phenomenon in the optimal velocity traffic model.
A salient feature of washout control is to preserve the
driver’s optimal velocity function. Additionally, washout
control which is implemented in each vehicle is indepen-
dent of the number of vehicles in the traffic flow and does
not require other vehicle information (e.g., other vehicle
velocity, position, parameters, and so on). We derived
a condition for parameters of a washout controller such
that the controlled traffic flow is stable. By the condi-
tion, parameters of a washout controller can be easily se-
lected. In addition, we showed that the numerical simu-
lations which illustrate the effectiveness of the proposed
method. The simulation results contain not only homoge-
neous traffic flow with all the same vehicle’s dynamics,
but also heterogeneous traffic flow with different driver’s
dynamics and characteristics.
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