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Abstract

A numerical model is developed for the extended Boussinesq equations expressed in
the generalized curvilinear coordinate system. The model is applied to the study of
solitary wave propagation through circular channels. The general features of solitary
wave propagation are described and the effects of channel width and incident wave
height on the transmission and reflection properties are examined. It is shown that the
wave transformation becomes significant in wide channels. The maximum crest height
at the outer wall of channel is then investigated in detail. The maximum crest height can
reach almost twice as large as the incident wave amplitude in wide channels. The
numerical results indicate that the maximum crest height can be correlated fairy well
with a single dimensionless parameter.

1. Introduction

Physical understanding of the wave propagation in shallow water channels is essential
for the accurate estimation of wave overtopping and the designing of effective counter-
measures against it. From this point of view, extensive investigations have been carried
out on the wave propagation in straight channels. On the contrary, relatively few studies
can be found which treat the propagation of waves in curved channels. From
engineering aspects, however, rivers, harbors and canals often have winding tumns in
direction. And therefore it is quite important to investigate how water waves propagate
through curved channels.

Recently Shi et al. (1998) and Shi & Teng (1998) studied the characteristics of
solitary wave propagation in sharp-cornered 90 degrees bends and in smoothly curved
circular bends. In their study the transmitted and reflected wave height in relatively
narrow channels were investigated. In this study we revisit the latter problem from a
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different point of view toward the estimation of wave overtopping: Our focus is placed
on the characteristics of the solitary wave propagation in wide circular channels. In
particular the maximum crest height at the channel wall is examined in detail.

The objective of our study is twofold: At first, we aim to develop a reliable
numerical model for long wave propagation in channels of arbitrary shape. And next,
we intend to obtain the deep physical understanding and the practical engineering
information on solitary wave propagation in wide circular channels. In particular we
concentrate on the effects of channel geometry and the incident wave non-linearity on
the maximum crest height at the outer channel wall. For these purposes, a numerical
model based on the finite difference method is developed for the extended Boussinesq
equations expressed in the generalized curvilinear coordinate system. The properties of
transmission and reflection of a solitary wave are examined for circular channels of
constant width and depth. The effects of channel width and incident wave height on
maximum crest height at the outer wall of channel are investigated in detail. An attempt
to correlate the maximum crest height with a dimensionless parameter is also made.

This paper is organized as follows. First the govemning equations and the
coordinate transformation are summarized in Section 2. In Section 3, we explain the
method of numerical calculation. The numerical results for curved channels are shown
and discussed in Section 4. Conclusions are summarized in Section 5.

2. Mathematical Formulation

2.1 Govemning Equations
The extended Boussinesq equations (Nwogu 1993) are given in dimensionless form by

%w fr+ ]+ pzv-[(é—%z—]hV(V-u):' +u?v. [(z + %)hV(V . (hu))] =0 (1)
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where {'= surface elevation, 4 = local water depth, u =( u, v) = horizontal velocity at
an arbitrary depth, z, . Two dimensionless parameters, 4 and & which represent the
effects of dispersion and non-linearity, respectively, are defined as u=h,/4,
and £=qa,/2,, where h;' is the representative water depth, ;' is the incident wavelength
and a,’ is the incident wave amplitude, respectively. The primes denote dimensional
quantities. For solitary waves, the effective wave length 4.’ is defined as the wavelength
within which the surface elevation everywhere is larger than 1% of its amplitude. The
definitions of the non-dimensional variables are the same as in Nwogu (1993).
These governing equations can be rearranged as
2% u >
5{ = E(C’u’v) 5t F(Cau3v) ﬁt G(ciu’v) (3)

where
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are treated as simple variables in time-stepping procedure. The remaining terms, £ , F,
and G, are functions of ¢, # and v . These are defined as
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The constants gy, a,, b,, and b, are given by
2 2
1

a=bta=prl n=L b5 ®
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where = z,/h . The value of Swas taken as -0.531 in this study.

2.2 Coordinate Transformation

Since the precise expression of the channel geometry is essentially important for the
accurate calculation of wave propagation in curved channels, the following coordinate
transformation is introduced to fit the numerical domain to the channel boundary:

x=x(§n), y=y(&m ®

where (x, y) are variables in physical plane and (&, 1) are those in computational plane.
According to the chain rule we can rewrite first order partial derivatives in the
following way:

7} a d 7] 0
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where g; (i =1,2; j =1,2) are defined as

10y dy 10x 19x
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and J denotes the Jacobian of the transformation
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Applying these operators again to obtain second derivatives yields
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where b; (i =1,3; j =1,2) are given by

by =-apen —ac2, by =-anpca;-ajen
b21=C2]/J, b22=622/J
b3y =—appc31 — a3z, b3y =—axcy —azies
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In principle it is possible to apply the operators once again to obtain the analytical
expression for the third spatial derivatives. However, the resulting expression becomes
quite complicated and the metric tensor involved in the formulae requires very large
computer memory. We therefore chose to calculate the third derivatives through a two-
step procedure. Namely when we calculate the third derivative of a function £, we first
evaluate the second derivative of f numerically and then differentiate it once again
numerically to obtain the value of the third derivative. The accuracy of this procedure

has been confirmed through several tests.
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3. Numerical Model

Wei and Kirby(1995) developed a high-order numerical scheme for the extended
Boussinesq equations in Cartesian coordinates. In this study, we slightly modified their
numerical method and extend it for the generalized curvilinear coordinate system.

A fourth-order predictor-corrector scheme is adopted for time-stepping procedure.
The predictor step is the third-order Adams-Bashforth scheme (Press et al. 1989) :

*
Ar - -
ml o, +E(2315,-'}j-16£,-'jj‘ +5E] jz) (16a)
»
umy =uy, +%(231§j} -16F7 +5F2) (16b)
*
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where all information on the right hand side is known from previous calculations. The

predictor values of horizontal velocities, ui',‘}l' and v,{’}l', can then be obtained by
solving Eq.(4) numerically in the generalized coordinate system. From the predicted
values of surface elevation and horizontal velocities, the corresponding values of E, F,
and G are calculated. The corrector scheme is the fourth-order implicit Adams-Moulton

method, which is given by
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The corrector step is iterated until the error between two successive iterations reduces
below a required criterion. The error is defined as

s|pm - f_nfl‘
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in which f represents each of the three dependent variables, £ u, v, and O* denotes the
previous estimate. The corrector step is iterated if any of the value of Af exceeds 0.0001.
Then the same procedure is applied to the next time step.

For first-order spatial derivatives, we adopt the fourth-order central difference. On
the other hand, second-order spatial derivatives are approximated by second-order
central differences. All the equations are discretized on an unstaggered grid.
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In order to examine the accuracy of the numerical scheme, we calculated the
propagation of a solitary wave in a straight channel of constant depth (5, and width.
The total length of the channel is set to be 100 4," and the channel width is set to be 5 A,
A solitary wave is generated at the left boundary according to the analytical solution of
Wei & Kirby (1995). The wave is transmitted at the right boundary. The corresponding
values of sand g are 0.3 and 0.071, respectively.

The spatial profiles of the solitary wave on the center-plane of the channel are
described in Fig.1 for various time instants. The initial waveform undergoes small
evolution, which resuits in a slightly (about 3%) larger wave height. This is partially
because the analytical solution used at the incident boundary is only asymptotically
equivalent to the numerical model. In figure 2, solitary wave profiles are compared at
two widely separated instances in time. The two waveforms are translated by an
amount predicted by the analytical phase speed. The results show that the wave
propagates for a long distance (at least 50 water depths) without any distortion except
for the initial small evolution. The error in phase celerity was found to be less than
0.6%. The total mass is almost completely (more than 99.9%) conserved. These results
thus validate the reasonably high accuracy of the numerical scheme.
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Figure 1. Spatial profiles of solitary wave in an straight channel at various time instants
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Figure 2. Comparison of solitary wave shapes at t=2.0 and t = 5.0
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4. Solitary Wave Propagation in Circular Channels

The geometry of the curved channel is shown in Fig.3 schematically. The channel is
composed of a circular bend plus upstream and downstream legs. The water depth A,
and the channel width #" are constant throughout the channel. The inner radius of the
circular corner is 10 times as large as the water depth. The upstream and downstream
legs are 50 times as long as the water depth. The inner and outer walls are vertical.

At the incident boundary, we specify the entire signal of ¢ and u from the
analytical solution of the extended Boussinesq equations (Wei & Kirby 1995). The
radiation condition combined with wave damping layer is used at the transmitting
boundary. At the inner and outer walls, the approximate conditions for general
reflective boundaries with outward normal vector n (Wei & Kirby 1995) are imposed

u-n=0, V{-n=0, Sur _ (19)
in which u; is the velocity component tangent to the wall.

In the following, the effects of relative channel width, #'/A,, and the incident
wave nolinearity, £=a,/h,, on the solitary wave propagation are investigated in detail.
Calculations are carried out for W/h, =5, 10, 20 and £ from 0.05 to 0.30.

4.1 General Features of Transmission and Reflection

The numerical results for a solitary wave of small non-linearity (£=0.05) through a
narrow channel (W'/h,= 5) are shown in Fig.4 (a)-(e). These figures show the evolution
of the free surface at various time instants through the circular bend. When the incident
wave arrives at the curved section, the wave is nearly one-dimensional and the

}: L' =50ny
Outer Wall
Transmitting
R =R+W'  Inner Wall Boundary
R{ =10k

L' =50k}

Wave

Incident Boundary
Figure 3. Geometry of the curved channel
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initial wave profile is almost completely preserved. During its passage through the bend,
however, the wave tilts higher outward against the outer wall. The difference of wave
height in radial direction keeps balance with the centrifugal force. In such a case, the
wave propagates faster in outer region, because the phase speed of the solitary wave
increases with wave height. The increase of phase speed balances with the increase of
the propagation length along the wall in outer region, which result in radially straight
crest line. After passing through the bend, the wave recovers its initial shape quickly to
make the wave crest uniform across the channel. It is seen from these results that the
solitary wave is almost completely transmitted with little reflection in narrow circular
channels. These results are consistent with the works by Shi et al.(1995) .

The numerical results for the solitary wave of non-linearity £ = 0.15 through a
channel with moderate width (W/h,’ = 10) are shown in Fig.5(a)-(¢). Just after the
solitary wave enters into the circular part, the wave tilts higher outward against the
outer wall. This shape is similar to the one recognized in the narrow channel results.
However, during its passage through the bend, the characteristics of wave
transformation are quite different. The solitary wave becomes no longer radially
straight and the transmitted wave loses its initial shape. The amplification of the crest
height is significant around the middle of the circular part.

Numerical results for the solitary wave of a large wave height (£ = 0.25) through a
wide channel (W'/h,'= 20) are shown in Fig.6(a)-(¢). The main features seen in the case
of moderate width are enhanced and the properties of transmission and reflection are
quite different from those in the narrow channel. As the wave propagates through the
circular bend, the wave tends to diffract near inner wall. The wave height of diffracted
wave decreases gradually as it travels. On the other hand, the wave tends to travel
straight near the outer wall. The crest height increases as the wave travels through the
channel. The maximum crest height is attained around the middle of the outer wall and
then the wave is reflected into inner region. The maximum crest height at the outer wall
reaches almost 200% of the incident wave amplitude in this case. After the wave passed
through the bend, the reflected wave propagates toward the inner wall. As a result, the
wave height at the inner wall becomes higher, in tum. The maximum wave height at the
inner wall is, however, much smaller than that attained at the outer wall. Since the
reflected wave propagates much faster along the wall than the diffracted wave, the
former catches up with the latter to merge into one wave in the final stage. From the
comparison between the narrow and wide channel results, it is found that the amplitude
of the transmitted wave decreases as the channel width increases.

When waves incident to-a straight wall with small incident angle, the regular type
of reflection gives way to another type of reflection, which is called ‘Mach reflection’
(e.g- Tanaka 1993). In Mach reflection, three kinds of waves are present near the wall:
the incident wave, the reflected wave and a wave propagating along the wall called the
stem wave. The wave height of stem wave can grow significantly along the wall. In the
winding part of curved channels, waves incident to the outer wall with small angle, and
therefore we may expect that the same situation arises as mentioned above. The
situation in curved channels is, however, more complicated because the wall is not
straight and the incident angle increases gradually as the wave propagates. According to
the previous works on the Mach reflection along a straight wall, the development of
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Figure 4. 3D and contour plots of the free surface elevation (£= 0.05, #'/k,= 5)
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Figure 6. 3D and contour plots of the free surface elevation (¢=0.25, #/h,’= 20)
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stem wave is limited to the case of small incident angle. Hence, the gradual increase of
the incident angle may prevent the development of the stem wave. In addition, Mach
reflection is quite a slow phenomenon and therefore it takes very long time and distance
for the stem wave to be fully developed. For these reasons, it is probable that the Mach
reflection can be seen only in the channel with very mildly curved walls. The wave
patterns shown in Fig.6(c) and (d) are similar to the ones in Mach reflection at the
straight wall, but it cannot be decided, at present, whether this may be called 2 Mach
reflection or not. Further investigations are necessary for precise discussion.

4.2 Maximum Crest Height at the Outer Wall

It is very important to predict the maximum crest height at channel walls in order to
estimate the wave overtopping from channels. In Fig.7, the maximum crest height
normalized by the incident wave amplitude (£,,,=¢"a,") is plotted as a function of & for
various values of relative channel width. As & increases, the crest height gradually
increases and asymptotes to a constant value for each case. It is also seen that the
maximum height is an increasing function of the relative channel width. We also
investigated the angular location, 6,,,, at which the maximum crest height is attained.
The angle &is taken clockwise as shown in Fig.3. The results are shown in Fig.8. In the
case of the narrow channel, the position gradually moves downstream as ¢ increases.
For wider channels, however, the location is insensitive to £ and takes almost the
constant value of 48 and 53 degrees, respectively. In general, the location moves to the
downstream direction as the channel width increases.

Finally an attempt to correlate the maximum crest height with a dimensionless
parameter is made. In figure 9 the maximum crest height is plotted against the
dimensionless parameter & which is defined as: -
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Figure 7. Maximum crest height at the outer wall of channel
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Figure 8. The angular location where the maximum crest height is attained
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Figure 9. Maximum crest height against the dimensionless parameter o
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in which R, and R,’ represent the inner and outer radius of the circular part,
respectively. The result is correlated fairly well by this parameter. On the basis of the
numerical results presented in Fig.9, an empirical formula for predicting the maximum
crest height at the outer wall is obtained as follows:

Lmex =0.97 +0.52 — 0.066a> @n
In our computations, the typical values of the dimensionless grid sizes used for Ax,
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Ay, and At in the physical plane are 0.025, 0.025 and 0.015, respectively. Several
calculations have been carried out on a different grid spacing as Ax = Ay =0.017 and At
= (.01. Almost the same results are obtained. The relative difference of the maximum
crest height is about 1%. The conservation of total mass has also been checked. The
error in total mass was about 2%.

5. Conclusions

A high order numerical scheme was developed for the extended Boussinesq equations
expressed in the generalized curvilinear coordinate system. By applying it to the
problem of solitary wave propagation through circular channels, the following results
were obtained.

When a solitary wave propagates through a narrow circular channel, the wave is
transmitted almost completely with little reflection. The shape of the transmitted wave
is almost the same as that of the incident wave. This is consistent with the results for
long wave propagation in a narrow curved channel by Shi et al. (1998). For a solitary
wave traveling through a wide channel, the wave transformation is significant. In this
case, the transmitted wave no longer preserves its original shape and disintegrates into
several smaller waves. This is due to the combined effects of the diffraction at the
comner and the lateral reflection from the channel wall.

The maximum surface elevation at the outer channel wall can reach almost 200%
of the incident wave amplitude for wide channels. These values can be predicted fairly
well with one dimensionless parameter.

Finally, we mention that the numerical model developed in this study is applicable
to the channels with more generalized geometry and bottom topography. Furthermore
the extension to branching channels is not a difficult task. The treatments of regular and
irregular waves can also be made straightforwardly. Further numerical investigations
are being planned.
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