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1. Introduction. Let £ be an exterior do-
main in R® with compact smooth boundary 082,
We consider the following system
o, + rdive =0 in [0, o) X 2,
(v, —adv— BV divy) + Vo
+wV6O=0 inl0, ) X Q,
) 0,— kd46+ wdive =0 in [0, ) X 0,
vl =0, Ol,0=0 on [0, ) X 62
(o, v, (0, 2 = (p,, v,, 6y ()

in 2,
where o is the density, v = '(v,, v, v5) the
velocity and @ the absolute temperature, a, 7,
kK, and w are positive numbers and B8 is a non-
negative number. This system is the linearized
equation of motion of compressible viscous and
heat-conductive gases in an exterior domain in
R’ which was given by Matsumura and Nishida
[6] and Ponce [9]. Concerning the nonlinear prob-

(1.1)

lem, the unique existence of smooth solutions glo-
bally in time near constant state (d,, 0, 6,) was
studied by Matsumura and Nishida [8). Deckel-
nick [2,3] proved the decay estimates for the
solutions of nonlinear problem although the de-
cay rate is weaker than that of Cauchy problem
given by Matsumura and Nishida [6,7] and Ponce
[9]. Our purpose is to get the decay estimates cor-
responding to Cauchy problem in the case of an
exterior domain, which will be discussed in the
forthcoming paper [5]. In our strategy, 1st step is
to get local energy decay for the solutions of
linearized equations (1.1). Kobayashi [4] proved
the local energy decay of lower order derivatives
of solutions. But since this system (1.1) is
hyperbolic-parabolic type and since the regular-
ity of solutions seems to be governed by the
hyperbolic part o, we shall need to prove the reg-
ularity of solutions. Therefore in this paper we
discuss a local energy decay estimates for higher
order derivatives of solutions for the linearized

equations.

Now we shall state the main results. Let 1
< g < oo, m be an integer and set

X)) ={U:Uc W/ ""(Q) x W'D

X WD}, X,(2) = X, ()

where "U means the transposed U, W, (2) =
{u € L, Q) Mulyye = (0 om o l05ul'dz)"?
< o0 } denotes the usual Sobolev spaces and W,
(Q) = (W, (2)}°. Define the 5 X 5 matrix oper-
ator A by the relation :

0 rdiv 0
A=<rV —ad —BVdv oV >
0 wdiv — kA

with the domain :
2A) ={"U= (o, v, 0) € W(Q) X W(Q)
X WD) :vl,,=0, 6,0=0 on 65}.

Let P be the- projection from %(A) into
{"(v,0) € W(Q) X W2(2);v],0=0, 8],,=
0 on 9%} . Then by Kobayashi (4], — A is a
closed linear operator in X, (£2) and the resolvent
set contain > = {1 € C: CRed + (ImA)* > 0}
where C is a constant depending only on a, 8,
7, £, and w. Moreover, the following properties
are valid; There exist positive constants A, and

T
0 < 5 such that

1.2) 121G+ D7 Flgo + PG+ AT'F
loee < CQy, 8, m) | Flly,q

for any A — A, € 2, ={A&€ C;largl| <7 —
0} and any F € X, (2). This estimates means
that — A generates an analytic semigroup e
on X,(2).

Let b be a positive number such that 02 <
B, = {x € R’:|x| < b}. Set

Y (@) ={U="(,v, 0 € X" : U

=0 for z€ R\B,, [ o@dr=0),
2y

and Y,, (2 =Y,, (2 where 2,=B,N 2.
Then
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Theorem 1.1. Let 1 < g < o0 and let by be a
fixed number such that B, = R*\ Q. Suppose that

b > b, Then the following estimates are valid; for
M = 0 integers, UE Y, () and t = 1

“atMe—lAU"x;(ﬂ,,) + HazMPegmUns,q,Qb
< Clg, b, Mt Ulyya,-

2. Proof of Theorem 1.1. First we consid-
er the stationary linearized equation with com-
plex parameter A
(21) A+AU=FinQ, PU=0onodL.

Lemma 2.1. Let 1 < g < <. Then for F €
X(.Q) and A — 2, € 2,

uﬁﬂpu+Ar7mw+
A — PYQA + A) Flyee < ClFl0-

Proof. First note that it follows from (1.2)
and interpolation theorem that
@22) A+ A7 Pl < ClFly @
forFEX(.Q)and/l—/? € 2, Let U= "(p,
v,0), F="(f, f,, ). Applying the elliptic
estimates to the system — k4 and — ad — BV
div in (2.1) it follows from (2.2) and (1.2) that

Huns,q,g <C {Mlllzl'Fllxq(m + “F”xlq(m

+ 1A ol 00
“0”3,4,9 =C {[/ul/z”F“x,(m + ”F“x‘,,(m},

oo < C U Wikyo + Bl
Taking A, sufficient large implies this Lemma by
these estimates. ||

The following Lemma is concerned with low
frequency of resolvent (1 + A )™ near A2 = 0.
Let X and Y be Banach spaces, B(X , Y) the set
of all bounded linear operators from X into Y
and & (I ; X) the set of all X-valued holomor-
phic functions in I. Then

Lemma 2.2. Let 1l < g < o0, bo be a number
such that B, < R\Q and let b > b, Put Y = B
(Y,,(Q); D (A)). Then, there exist positive number
¢ and RQA) € 4 (D,; Y) where D, = {21 € C;
Ré?/?lZ 0, 0 < Al < &} such that RGOF = (A +
A)_

“( ) RUI)F'“)("‘(Q) + “(dﬂ) PR(/UF“quQ,,

< C(q, b, k, ¢, mymax{l, |A|"* k}]lFﬂxmmb,,
forany A € D, F € Y, (Q) and k, m = 0 inte-
gers.
Proof. The results for the case m = 0 were
proved by Kobayashi [4]. When m = 1, we can
prove by employing the same argument as in

Kobayashi [4]. In fact, we shall investigate the
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parametrix which was constructed in [4]. First
we consider the following stationary equations in
R’ with a complex parameter A

(2.3) QA+AU=FinR’

By taking Fourier transform on (2.3) we obtain
A+ AE)10=F, where F (f) = f stand for
the Fourier transforms of f. Here Aisthe5 X 5
symmetric matrix as follows:

0 178, 0
A(E) = 17’51 5jka‘$‘2 + stsk lng
0 wé, Ifi8|2

where i =4¢—1 and §;, =0 when kK # j and
=1 when k = J. SetforFEX(R)

(2.4) Ry(A)F(x) "(R 0D F (@, Ry (D F(x),

Ry (D) F(x))

=F A+ AGOIF©®}@.

Then we have the following estimates: Let

1< g<o,b be a positive number. Then for

Fe X7 (R’) with F(x) =0 for z € R’\ B,

and "X € D,

25) 1D R Flginy + 1 PR Pl

< Cmax{1, ‘/ZIVZ_k}“F“in(Ra,,
where k, m = 0 are integers and C = C (e, ¢
b, k,m)is a constant. Moreover, for 0 < 0J
<1/2and 2 € D,
(2.6) “TRO(/DF_ TRO(O)ﬂlw;”“wb)xwz"”(sb)xw;""zus,,)

< Cle, 8, q, m, b)uP"ﬂ'x;"(R%-
In fact, since 000% {R,, ,(1), Ry, (D} F = 0, (R,
,(A), Ry, (1)) 05F where lal < 2,18l <

since 8Y8°R,,, (O F = 9;R,, (DA2F where |al
<1, |Bl £ m, it follows from the estimates (2.5)
and (2.6) with m = 0 which were proved by
Kobayashi [4] that the estimates (2.5) and (2.6)
with m = 1 hold.

Next, let G € Y (Q), and let We W,
(R2,) x Wr(R,) x W™ (2,) be the solution
to the problem

AW = G in Q,, PW=0on 0%,

The existence of such W is guaranteed by Cat-
tabriga [1]. In terms of W, let us define the oper-
ator L(0) by the relations:

W=L0)G=1{L,06G, LG, LG
Here, note that by Cattagriga [1] we have the fol-
lowing estimates for any G € ¥,,(2)
2.7 L) Glxpa, + IPLO) Gl s 0,

< Clg, DIGlpe,

m and
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and L,(0) G is unique up to an additive constant.
Now, let b be a fixed constant & > R, + 3.
Choosing ¢ in c” (Rs) so that ¢ () = 1 for
lz}] = b —1and = 0if ozl < b— 2 and choosing
¢ € C, (£2,) so that I o, ¢ (x)dx = 1. define the
operator R,(A) and S(A) by the relations: For F
€Y, (2) and 1 € D, U {0} ]
(28) RMDF =¢R(AF,+(1—¢L0OF-— 1

S()Fdze™(1, 0,0, 0, 0),
SWF ="{S,(WF,S,DF, S,()F},
where Fy(x) = F(x) for x € £ and = 0 for
r € R\Q,
SWF =20~ @)L,(0OF + 7V o[R,,(DF,
— L,(0)F,
S,OF = S(Z)F—j;S(/i)Fdxgb,

S,MF = 21— @)L O)F — ald¢ + 2(3,0) 0]
[R,,()F, — L (0)F]
- BV {0,0(R, (A)F, — L,(0)F1}
— BV pldiv(R,, (D) F, — L,(0)F}}
T 1V olR, (D F, — L(OF] + wdo

[RosDF, = LO)F), =+ | s Fazy,

SoOF =21~ @)L OF — k[ Ad¢ + 28,00 ]1(R,,
(DF, — L,(0)F]
+ wd;p[R,,(A) F, — L,(0)F1,. ‘
Since L,(0)F is unique up to additive constant,
we may choose L,(0) F'in such a way that

(2.9) fg (1 — @)L, (0)Fdx = fBRM (0)F,dx

~ j; oR,,(0)F,dx.

Note that the Stokes formula and (2.9) implies
that

[ SWFdz

2y

= /Zj;b(l — @)L, (0)dzF + ‘];brdivRO’,, (1) Fdz
- f ordiviR,, (D F, — L,(0) Fldr
=, {fgb(l 0 L, (0)Fdz — fBbRO,p (1) F,dz

+ fg OR, (O Fydz}.

It follows from (2.4), (2.5), (2.6), (2.7), {2.8), and
(2.9) that
" R EAWD,; Y, "R, B/
(Q), Wl () X Wini(2) X W),

A+ ARMDF =1+ SQA)F in
2, PR(DF = 0on R,

(2.10)
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S(0) € BY/ (), X" (D), SQ

€ B(Y,,(Q), (W, (D)} for any A € D,.
Also we have [, S, (1)Fdxr =0 for 2 € D,
U {0} and
(2.11) IS = SO layp,0vp,00 < Cla, b, DA
for A € D, where 0 < § < 1/2. Noting that supp
S(0)F is contained in £,, it follows from (2.11)
and Rellich’s compactness theorem that S(0) is a
compact operator from ¥,,(£) into itself. Since 1
+ S(0) is injective in B(Y,,(2), Y,,(£2)) by
Lemma 4.6 in Kobayashi [4], by Fredholm’'s
alternative theorem, 1 + S(0) € & (Y, (2),
Y., (£2)) has the bounded inverse (1 + $(0))~".
Thus putting [|[(1 + S (0))~" ]lgg(%(g),y%(g” =M,
by (2.11), there exists an € > 0 such that 1
+ S (1) also has the bounded inverse (1 +
SN from Y, (£2) onto itself whenever A €
D,_, and moreover
(2.12) Q1+ SO lama.ymen < 2M for 2 € D,
It follows from (2.5), (2.7), (2.8), and (2.10) that
for FE€ Y, (2,2 € D, and k = 0 integer

(2.13) H(%)kRI(X)F“x;n(gb) + ([(;%)kPR,(x)F

bysza.0, < Cmax{l, 21" | Flgmg, -

Thus putting R(1) = R, (1)1 + S()) ™", com-
bining (2.12) and (2.13) implies Lemma 2.2. |

Now we shall prove our main theorem. To
do this we prepare the following lemma, which
was proved by Shibata (see Theorems 3.2 and
3.7 of [10]).

Lemma 2.3. Let X be a Bawnach space with
norm |- |y. Let f(z) be a function of C” (R\ {0} :
X) such that f(t) =0, |t| = a with some a > 0.
Assume that there exists a constant C (f)
depending on f such that for any 0 < |7| < a,

d k —1/2—k
(G @y < C(NI7] L k=0,1.

ng(t)‘=ff(z')e—mdz'. Then

gl < ca + d™ " c().
Let UE Y,,(2),b>b, and let ¢ € Cs (RY)
such that ¢ () =1 for x| < b and = 0 for
x| = b+ 1. Taking 5 (s) € C” (R) so that
n(s) =1 for |s| < 1/4 and = O for |s| = 1/2 we
can represent the semigroup "as follows (see
Kobayashi [4]):
(2.14) ¢ U=TJ,0U + J.(DU
where 1

J,OU = EE(@I:(&”SW (s)%(is + A)'Uds),
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1 ?oits d -
LU =50 [ 0= () gls

+ A)7'Uds).
y (1.2),(2.2), and by Lemma 2.1 we have

IDEQ — 5(9) (o) tis + )7 Ul,
<1 —nls) {” (is + A)ﬂN—JU”x;(m

+|PGs + AU, o)

mma+mﬁ“%wm>
where D2 = (37" ,. L0, layl €2, le,| <

(2.15)

3(j

5) and hence by the relation ~ - % ¢’
, an ence by the re atlont dle

e“, we have
(2.16) D3I (OUN, o < CIN, M, o)t " |Ulgyoy
for any integers N =2, M = 0. On the other

hand, noting that
1 X M> M-N,-1pa
DI I DU = 5.2 0<N MYy pe

{¢)_£ n(s) (is)”

it follows from Lemma 2.2 and Lemma 2.3 that
(2.17) DL IO U, o < CM , b, @)

(1 + t)—(M+3/2)“l]“X L
for any U € qu,b (), integer M = 0 and tZ 1.
Combining (2.15), (2.16), and (2.17)
Theorem 1.1. This completes the proof.

R(zs) Uds}

implies
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