浅間火山鬼押出溶岩流の噴火に伴う全岩化学組成変化

<table>
<thead>
<tr>
<th>著者</th>
<th>井上 素子</th>
</tr>
</thead>
<tbody>
<tr>
<td>雑誌名</td>
<td>金沢大学文学部地理学報告</td>
</tr>
<tr>
<td>巻</td>
<td>第号</td>
</tr>
<tr>
<td>ページ</td>
<td></td>
</tr>
<tr>
<td>発行年</td>
<td>2002-03-15</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2297/1545</td>
</tr>
</tbody>
</table>
浅間火山鬼押出溶岩流の噴火に伴う全岩化学組成変化

Sequence of Bulk-rock Chemistry of the Oniosidasi lava Flow,
the 1783 Eruption of Asama Volcano.

井上素子

1 はじめに

一方、1783 年噴火に伴う噴出物の全岩化学組成は全体で単一のトレンドを示し（Fig. 1）、2 端成分のマグマが混合して噴出したことが明らかにされている（荒牧・他、1990；荒牧、1993）。また、Yasu（1996）は 1783 年噴火に伴う噴出物は、噴火様式の母体に卓越する SiO_2 含量が異なり、わずか 1wt%程度の差が、噴火様式と相間する可能性を指摘した。鬼押出溶岩流の SiO_2 含量は 61.0〜61.5wt%、62.5〜63.0wt% にピークをもつバイモーダルな分布を示す（Fig. 2）。また、珪長質よりの組成を示す領域と、苦鉄質側よりの組成を示す領域が存在する（Fig. 3；荒牧・高橋、未公開）。

筆者は鬼押出溶岩流の表面形態・構造を観察し、表層部 10 数 m は、観察しきれない地点を空孔部であることを見た。また、これらの火砕堆はすべて火口近くで大量に堆積し、体積構造をある程度保持するままで、いくつかのフィレットに別れて二次流動したと考えた（井上、1997；井上、1998）。荒牧（1990）による分析の際は、溶岩流層部を火砕堆として認識していなかったために、垂直方向にどの火砕堆層から資料を採集したのか明かではない。溶岩流上の火砕堆の層序に基づいて、系統的に分析を行えば、鬼押出溶岩流を形成した噴火に伴うマグマの組成変化を明らかにすることが可能である。今後、他の堆積物について、層序に基づいたより詳細な化学分析がなされ、関係関係が明らかになれば、現在不明な点の多い 8 月上旬の噴火のプロセスおよびメカニズム、組成変化と噴火様式の関係が解明される可能性がある。

そこで本論では、鬼押出溶岩流層基部を形成する火砕堆について、層序に基づいた系統的な全岩化学分析を行い、噴火に伴うマグマの化学組成変化を考察する。また 1783 年噴火噴出物との対応関係について若干の考察と今後の展望を述べる。

2 鬼押出溶岩流の構造

詳細は別の機会に譲り、ここでは概要のみ述べる。鬼押出溶岩流は地形に基づいて 3 つのフロージェットに分けられ（L1, L2, L3）、L2 はさらに 3 つに分けられる。溶岩流層基部の母体を構成するのはすべて溶結火砕堆である。これらは最も表面の部分で独立した粒子が互いに溶結しているようすが認められ（溶結層）、下方向へ火災に溶結度を増し非常に見事な溶結レンズとなり（溶結層）、最終的に溶岩と区別できないほど細密になる（強溶結）。

溶結火砕堆の上部にはブロックと赤色酸化したマトリックスからなる非溶結火砕堆物が局所的に分布する。このような非溶結火砕堆物は大きく 2 種類に分けられる。Type A：酸化した急冷周辺部に薄い層の剥離が発達するブロックが表層部に澗せし、その下部を色調変化したマトリックスが充填している。ブロックの径は約 30〜50cm、内部に発泡体の黒い軽石で、白色部と黑色部が不均質、もしくは繊状に混合している。マトリックスは数 mm〜最大 10cm の軽石で、スコリア、岩片が少量含まれる。Type B：径約 10〜15cm のブロックが積み重な

—17—
Fig.1 SiO₂ variation diagram for Onioshidashi lava flow (Bulk)

Fig.2 Frequency diagram of SiO₂ for Onioshidashi lava flow (Bulk)

り、その間を赤色酸化したマトリックスが充填している。ブロックは溶結火碎岩からなる。マトリックスは数mm～最大1cm程度の軽石やスコリアや岩片が含まれるが、TypeAより量は少ない。Fig.4にTypeAおよびTypeBの分布、Fig.5に各フローユニットの代表的な地点における火碎物層序を示した。

3 試料の選定基準
既存の分析値（浅香, 1988）によると、鬼押出溶岩流には、SiO₂含有量が62.0wt%以上の組成（以下珪長質側の組成）を示す領域と、62.0<wt%以下の組成（以下苦鉄質側の組成）を示す領域が存在する（Fig.2、提供：荒牧）。試料の示す組成の差異は、フローユニットに対応していると考えられた（Fig.3）。また、試料の岩相を確認すると、ほとんどが溶結火碎岩（主に中～強溶結）であった。

鬼押出溶岩流の表層部が火碎岩である場合、時間経過に伴い、1地点に置いても垂直方向に化学組成が変化する可能性がある。また、鬼押出溶岩流は火碎物堆積後に二次的に流動したことにより、表層部分が塔状に細分化され（以下塔状部）、その間にはより深部から表層部に現れた部分が露出する（以下露出部）など、非常に複雑な構造をしている。そのため組成領域の差異は、採集された部分の違いを反映しているとも考え得る。

そこで本論では各フローユニットのなかで、堆積時の状況がなるべく良好に保持されている地点を選出し（Fig.4）、塔状部の各岩相から3～5サンプルを集めた。ただし、TypeA、TypeBについては、組織毎に分け分析する必要があるなど、分析に十分な量を確保することが困難であり、3サンプルを確保できなかった試料もある。また、塔状部と露出部との関係を考察するため、loc.L2a、loc.L2bについては露出部についても分析した。loc.L2cについては、2地点について分析した。これにより、既存の分析値（浅香, 1988）において、同一フローユニット内で異なる組成領域を示す地点を検証すること、および山田・他（1993）、井上（1995）が鬼押出溶岩流のうち馬蹄形凹地（Fig.4）に存在する部分は、凹地内から側噴火によって形成された異なるフローユニットであるとしていることを考慮したためである。

3 分析方法
採集した試料の表面の風化変質した部分を取り除き、それぞれ20～30gずつ採取した。TypeAのブロックについては、カッターで薄くスライスして、白色部と黒色部および周辺の赤色酸化部に分けた。なるべく線状の部分を避け、均質な部分を採取したが、一部分離しきれない部分も含まれた。マトリックスについては軽く溶結している部分を分析した。また、マトリックス内に少量ふくまれる軽石やスコリアや岩片のうち比較的大きいものを分析した。このように不均質な組織を採取する場合20gに満たなかった試料もある。TypeBについては段片のみ分析し、マトリックスは非溶結であるため分析しなかった。また、マトリックス内に少量ふくまれる軽石やスコリアや岩片もサイズが小さく、充分な量を確保できないため分析しなかった。

これらの試料を超音波洗浄し、充分乾燥させた後、鉄乳鉢および乳棒で岩石片を少量粉末して共洗いし、約20gの試料を粉末した。その後自動メノウ乳鉢（日本
大学文理学部)を用いて試料6gを約10分間粉砕した。試料（0.3850-0.4000g未満）を充分乾燥させた後、試料の10倍の融剤（四ほう酸リチウム-Li2B4O7）と混合し、卓上型ビードサンプラ装置（日本大学文理学部、理学電気製）を使用してガラスピードを作成した。剝離剂には臭化リチウムを用いた。分析には東京大学建設の蛍光X線分析装置（東京大学建設所、理学電気製3080E3型）を用いた。

5 分析結果
Table1に各試料の分析結果を示す。本論の分析値は、浅香(1988)による分析値のトレンドとほぼ一致した（Fig.1）。トレンドと一致しない2試料はTypeAのマトリックス中に含まれるスコリア（No.64）と、岩片の赤色部（No.40）である。いずれも20gに満たなかった試料である。また、SiO2含有量51.0～61.5wt%、62.5～63.0wt%にピークをもち、浅香(1988)の結果と整合的であった（Fig.2）。

Fig.4に各フローユニット、岩相内のSiO2含有量ヒストグラムを示す。溶結火山岩について、loc.L1、loc.L2aは珪長質側、loc.L2bは苦鉄質質側の組成を示し、loc.L2c-1、loc.L2c-2については、珪長質側から苦鉄質側に変化することが明らかになった。露出部はそれぞれの地点で、塔状部の最下部の組成領域と一致した。

TypeAの本質岩片はフローユニット毎の違いは見られず、loc.L1、loc.L2a、loc.L2bにおいて同様の特徴をもつことが明らかとなった。本質岩片は組織ごとに組成が異なり、黒色部はSiO2含有量が60.0～62.0wt%、白色部が62.0wt%付近、マトリックス中のスコリアは60.3～62.0wt%を示した。1地点のみの分析であるが、赤色部は62.0～64.5wt%、マトリックスは62.0wt%付近を示した。

TypeBの本質岩片には、loc.L2c-1、loc.L2c-2両地点ともSiO2含有量61.0～61.5%付近に集中した。

6 考察
6-1 噴火に伴う組成変化
本論の分析の結果、鬼押出し溶岩流表層部を構成する溶結火砕岩を形成した噴火において、SiO2含有量が62.0%を境にして、より珪長質側、もしくはより苦鉄質側の組成に卓越したマグマが噴出していたことが明らかになった。またloc.L2c-1、loc.L2c-2の分析値から
<table>
<thead>
<tr>
<th>No.</th>
<th>1 2 3 4 5</th>
<th>6 7 8 9 10</th>
<th>11 12 13 14 15</th>
<th>16 17 18 19 20</th>
</tr>
</thead>
<tbody>
<tr>
<td>loc</td>
<td>L1 L2 L3 L4 L5</td>
<td>L6 L7 L8 L9 L10</td>
<td>L11 L12 L13 L14 L15</td>
<td>L16 L17 L18 L19 L20</td>
</tr>
<tr>
<td>white</td>
<td>N-A</td>
<td>N-A</td>
<td>N-A</td>
<td>W-w</td>
</tr>
<tr>
<td>black</td>
<td>N-A</td>
<td>N-A</td>
<td>N-A</td>
<td>W-w</td>
</tr>
<tr>
<td>block</td>
<td>W-w</td>
<td>W-w</td>
<td>W-w</td>
<td>W-w</td>
</tr>
<tr>
<td>red</td>
<td>N-A</td>
<td>N-A</td>
<td>N-A</td>
<td>N-A</td>
</tr>
<tr>
<td>black</td>
<td>N-A</td>
<td>N-A</td>
<td>N-A</td>
<td>N-A</td>
</tr>
<tr>
<td>white</td>
<td>N-A</td>
<td>N-A</td>
<td>N-A</td>
<td>N-A</td>
</tr>
<tr>
<td>block</td>
<td>N-A</td>
<td>N-A</td>
<td>N-A</td>
<td>N-A</td>
</tr>
<tr>
<td>red</td>
<td>N-A</td>
<td>N-A</td>
<td>N-A</td>
<td>N-A</td>
</tr>
<tr>
<td>black</td>
<td>N-A</td>
<td>N-A</td>
<td>N-A</td>
<td>N-A</td>
</tr>
<tr>
<td>white</td>
<td>N-A</td>
<td>N-A</td>
<td>N-A</td>
<td>N-A</td>
</tr>
<tr>
<td>block</td>
<td>N-A</td>
<td>N-A</td>
<td>N-A</td>
<td>N-A</td>
</tr>
<tr>
<td>red</td>
<td>N-A</td>
<td>N-A</td>
<td>N-A</td>
<td>N-A</td>
</tr>
<tr>
<td>black</td>
<td>N-A</td>
<td>N-A</td>
<td>N-A</td>
<td>N-A</td>
</tr>
<tr>
<td>white</td>
<td>N-A</td>
<td>N-A</td>
<td>N-A</td>
<td>N-A</td>
</tr>
<tr>
<td>block</td>
<td>N-A</td>
<td>N-A</td>
<td>N-A</td>
<td>N-A</td>
</tr>
<tr>
<td>red</td>
<td>N-A</td>
<td>N-A</td>
<td>N-A</td>
<td>N-A</td>
</tr>
<tr>
<td>black</td>
<td>N-A</td>
<td>N-A</td>
<td>N-A</td>
<td>N-A</td>
</tr>
<tr>
<td>white</td>
<td>N-A</td>
<td>N-A</td>
<td>N-A</td>
<td>N-A</td>
</tr>
<tr>
<td>block</td>
<td>N-A</td>
<td>N-A</td>
<td>N-A</td>
<td>N-A</td>
</tr>
<tr>
<td>red</td>
<td>N-A</td>
<td>N-A</td>
<td>N-A</td>
<td>N-A</td>
</tr>
<tr>
<td>black</td>
<td>N-A</td>
<td>N-A</td>
<td>N-A</td>
<td>N-A</td>
</tr>
<tr>
<td>white</td>
<td>N-A</td>
<td>N-A</td>
<td>N-A</td>
<td>N-A</td>
</tr>
<tr>
<td>block</td>
<td>N-A</td>
<td>N-A</td>
<td>N-A</td>
<td>N-A</td>
</tr>
<tr>
<td>red</td>
<td>N-A</td>
<td>N-A</td>
<td>N-A</td>
<td>N-A</td>
</tr>
<tr>
<td>black</td>
<td>N-A</td>
<td>N-A</td>
<td>N-A</td>
<td>N-A</td>
</tr>
<tr>
<td>white</td>
<td>N-A</td>
<td>N-A</td>
<td>N-A</td>
<td>N-A</td>
</tr>
<tr>
<td>block</td>
<td>N-A</td>
<td>N-A</td>
<td>N-A</td>
<td>N-A</td>
</tr>
<tr>
<td>red</td>
<td>N-A</td>
<td>N-A</td>
<td>N-A</td>
<td>N-A</td>
</tr>
<tr>
<td>black</td>
<td>N-A</td>
<td>N-A</td>
<td>N-A</td>
<td>N-A</td>
</tr>
<tr>
<td>white</td>
<td>N-A</td>
<td>N-A</td>
<td>N-A</td>
<td>N-A</td>
</tr>
<tr>
<td>block</td>
<td>N-A</td>
<td>N-A</td>
<td>N-A</td>
<td>N-A</td>
</tr>
<tr>
<td>red</td>
<td>N-A</td>
<td>N-A</td>
<td>N-A</td>
<td>N-A</td>
</tr>
<tr>
<td>black</td>
<td>N-A</td>
<td>N-A</td>
<td>N-A</td>
<td>N-A</td>
</tr>
<tr>
<td>white</td>
<td>N-A</td>
<td>N-A</td>
<td>N-A</td>
<td>N-A</td>
</tr>
<tr>
<td>block</td>
<td>N-A</td>
<td>N-A</td>
<td>N-A</td>
<td>N-A</td>
</tr>
<tr>
<td>red</td>
<td>N-A</td>
<td>N-A</td>
<td>N-A</td>
<td>N-A</td>
</tr>
<tr>
<td>black</td>
<td>N-A</td>
<td>N-A</td>
<td>N-A</td>
<td>N-A</td>
</tr>
<tr>
<td>white</td>
<td>N-A</td>
<td>N-A</td>
<td>N-A</td>
<td>N-A</td>
</tr>
<tr>
<td>block</td>
<td>N-A</td>
<td>N-A</td>
<td>N-A</td>
<td>N-A</td>
</tr>
<tr>
<td>red</td>
<td>N-A</td>
<td>N-A</td>
<td>N-A</td>
<td>N-A</td>
</tr>
<tr>
<td>black</td>
<td>N-A</td>
<td>N-A</td>
<td>N-A</td>
<td>N-A</td>
</tr>
<tr>
<td>white</td>
<td>N-A</td>
<td>N-A</td>
<td>N-A</td>
<td>N-A</td>
</tr>
<tr>
<td>block</td>
<td>N-A</td>
<td>N-A</td>
<td>N-A</td>
<td>N-A</td>
</tr>
<tr>
<td>red</td>
<td>N-A</td>
<td>N-A</td>
<td>N-A</td>
<td>N-A</td>
</tr>
<tr>
<td>black</td>
<td>N-A</td>
<td>N-A</td>
<td>N-A</td>
<td>N-A</td>
</tr>
<tr>
<td>white</td>
<td>N-A</td>
<td>N-A</td>
<td>N-A</td>
<td>N-A</td>
</tr>
<tr>
<td>block</td>
<td>N-A</td>
<td>N-A</td>
<td>N-A</td>
<td>N-A</td>
</tr>
<tr>
<td>red</td>
<td>N-A</td>
<td>N-A</td>
<td>N-A</td>
<td>N-A</td>
</tr>
<tr>
<td>black</td>
<td>N-A</td>
<td>N-A</td>
<td>N-A</td>
<td>N-A</td>
</tr>
<tr>
<td>white</td>
<td>N-A</td>
<td>N-A</td>
<td>N-A</td>
<td>N-A</td>
</tr>
<tr>
<td>block</td>
<td>N-A</td>
<td>N-A</td>
<td>N-A</td>
<td>N-A</td>
</tr>
<tr>
<td>red</td>
<td>N-A</td>
<td>N-A</td>
<td>N-A</td>
<td>N-A</td>
</tr>
<tr>
<td>black</td>
<td>N-A</td>
<td>N-A</td>
<td>N-A</td>
<td>N-A</td>
</tr>
<tr>
<td>white</td>
<td>N-A</td>
<td>N-A</td>
<td>N-A</td>
<td>N-A</td>
</tr>
<tr>
<td>block</td>
<td>N-A</td>
<td>N-A</td>
<td>N-A</td>
<td>N-A</td>
</tr>
<tr>
<td>red</td>
<td>N-A</td>
<td>N-A</td>
<td>N-A</td>
<td>N-A</td>
</tr>
<tr>
<td>black</td>
<td>N-A</td>
<td>N-A</td>
<td>N-A</td>
<td>N-A</td>
</tr>
<tr>
<td>white</td>
<td>N-A</td>
<td>N-A</td>
<td>N-A</td>
<td>N-A</td>
</tr>
<tr>
<td>block</td>
<td>N-A</td>
<td>N-A</td>
<td>N-A</td>
<td>N-A</td>
</tr>
<tr>
<td>red</td>
<td>N-A</td>
<td>N-A</td>
<td>N-A</td>
<td>N-A</td>
</tr>
<tr>
<td>black</td>
<td>N-A</td>
<td>N-A</td>
<td>N-A</td>
<td>N-A</td>
</tr>
<tr>
<td>white</td>
<td>N-A</td>
<td>N-A</td>
<td>N-A</td>
<td>N-A</td>
</tr>
<tr>
<td>block</td>
<td>N-A</td>
<td>N-A</td>
<td>N-A</td>
<td>N-A</td>
</tr>
<tr>
<td>red</td>
<td>N-A</td>
<td>N-A</td>
<td>N-A</td>
<td>N-A</td>
</tr>
<tr>
<td>black</td>
<td>N-A</td>
<td>N-A</td>
<td>N-A</td>
<td>N-A</td>
</tr>
<tr>
<td>white</td>
<td>N-A</td>
<td>N-A</td>
<td>N-A</td>
<td>N-A</td>
</tr>
<tr>
<td>block</td>
<td>N-A</td>
<td>N-A</td>
<td>N-A</td>
<td>N-A</td>
</tr>
<tr>
<td>red</td>
<td>N-A</td>
<td>N-A</td>
<td>N-A</td>
<td>N-A</td>
</tr>
<tr>
<td>black</td>
<td>N-A</td>
<td>N-A</td>
<td>N-A</td>
<td>N-A</td>
</tr>
<tr>
<td>white</td>
<td>N-A</td>
<td>N-A</td>
<td>N-A</td>
<td>N-A</td>
</tr>
<tr>
<td>block</td>
<td>N-A</td>
<td>N-A</td>
<td>N-A</td>
<td>N-A</td>
</tr>
<tr>
<td>red</td>
<td>N-A</td>
<td>N-A</td>
<td>N-A</td>
<td>N-A</td>
</tr>
<tr>
<td>black</td>
<td>N-A</td>
<td>N-A</td>
<td>N-A</td>
<td>N-A</td>
</tr>
<tr>
<td>white</td>
<td>N-A</td>
<td>N-A</td>
<td>N-A</td>
<td>N-A</td>
</tr>
<tr>
<td>block</td>
<td>N-A</td>
<td>N-A</td>
<td>N-A</td>
<td>N-A</td>
</tr>
<tr>
<td>red</td>
<td>N-A</td>
<td>N-A</td>
<td>N-A</td>
<td>N-A</td>
</tr>
<tr>
<td>black</td>
<td>N-A</td>
<td>N-A</td>
<td>N-A</td>
<td>N-A</td>
</tr>
<tr>
<td>white</td>
<td>N-A</td>
<td>N-A</td>
<td>N-A</td>
<td>N-A</td>
</tr>
<tr>
<td>block</td>
<td>N-A</td>
<td>N-A</td>
<td>N-A</td>
<td>N-A</td>
</tr>
<tr>
<td>red</td>
<td>N-A</td>
<td>N-A</td>
<td>N-A</td>
<td>N-A</td>
</tr>
<tr>
<td>black</td>
<td>N-A</td>
<td>N-A</td>
<td>N-A</td>
<td>N-A</td>
</tr>
<tr>
<td>white</td>
<td>N-A</td>
<td>N-A</td>
<td>N-A</td>
<td>N-A</td>
</tr>
<tr>
<td>block</td>
<td>N-A</td>
<td>N-A</td>
<td>N-A</td>
<td>N-A</td>
</tr>
<tr>
<td>red</td>
<td>N-A</td>
<td>N-A</td>
<td>N-A</td>
<td>N-A</td>
</tr>
<tr>
<td>black</td>
<td>N-A</td>
<td>N-A</td>
<td>N-A</td>
<td>N-A</td>
</tr>
<tr>
<td>white</td>
<td>N-A</td>
<td>N-A</td>
<td>N-A</td>
<td>N-A</td>
</tr>
<tr>
<td>block</td>
<td>N-A</td>
<td>N-A</td>
<td>N-A</td>
<td>N-A</td>
</tr>
<tr>
<td>red</td>
<td>N-A</td>
<td>N-A</td>
<td>N-A</td>
<td>N-A</td>
</tr>
<tr>
<td>black</td>
<td>N-A</td>
<td>N-A</td>
<td>N-A</td>
<td>N-A</td>
</tr>
<tr>
<td>white</td>
<td>N-A</td>
<td>N-A</td>
<td>N-A</td>
<td>N-A</td>
</tr>
<tr>
<td>block</td>
<td>N-A</td>
<td>N-A</td>
<td>N-A</td>
<td>N-A</td>
</tr>
<tr>
<td>red</td>
<td>N-A</td>
<td>N-A</td>
<td>N-A</td>
<td>N-A</td>
</tr>
<tr>
<td>black</td>
<td>N-A</td>
<td>N-A</td>
<td>N-A</td>
<td>N-A</td>
</tr>
<tr>
<td>white</td>
<td>N-A</td>
<td>N-A</td>
<td>N-A</td>
<td>N-A</td>
</tr>
<tr>
<td>block</td>
<td>N-A</td>
<td>N-A</td>
<td>N-A</td>
<td>N-A</td>
</tr>
<tr>
<td>red</td>
<td>N-A</td>
<td>N-A</td>
<td>N-A</td>
<td>N-A</td>
</tr>
<tr>
<td>black</td>
<td>N-A</td>
<td>N-A</td>
<td>N-A</td>
<td>N-A</td>
</tr>
<tr>
<td>white</td>
<td>N-A</td>
<td>N-A</td>
<td>N-A</td>
<td>N-A</td>
</tr>
<tr>
<td>block</td>
<td>N-A</td>
<td>N-A</td>
<td>N-A</td>
<td>N-A</td>
</tr>
<tr>
<td>red</td>
<td>N-A</td>
<td>N-A</td>
<td>N-A</td>
<td>N-A</td>
</tr>
<tr>
<td>black</td>
<td>N-A</td>
<td>N-A</td>
<td>N-A</td>
<td>N-A</td>
</tr>
<tr>
<td>white</td>
<td>N-A</td>
<td>N-A</td>
<td>N-A</td>
<td>N-A</td>
</tr>
<tr>
<td>block</td>
<td>N-A</td>
<td>N-A</td>
<td>N-A</td>
<td>N-A</td>
</tr>
<tr>
<td>red</td>
<td>N-A</td>
<td>N-A</td>
<td>N-A</td>
<td>N-A</td>
</tr>
</tbody>
</table>
溶結火砕岩を形成する一連の大規模な噴火においても、珪長質側から苦鉄質側へマグマの組成が変移したことかわかりなかった。以下にTypeA, TypeBの分布と、層序及び分析結果に基づいた噴火の推移を述べる。

まずTypeAは、一連の堆積物であったと推測される。後述のように、TypeAは苦鉄質の1フローユニットに対応しているが、このフローユニットは赤色のマトリックスを含む非常に特徴的な岩相をしており、数回発生した事実は確認されていない。また、今回の分析においても、異なるフローユニットに存在する試料においても、組織的に同様の組成領域が見られた。しかしTypeA直下の溶結火砕岩はloc.L1, loc.L2aで珪長質側、loc.L2bで苦鉄質側の組成を示す。従ってL1, L2a上のTypeAと、L2b上のTypeAは異なる堆積物である可能性もある。ただ、以下のよう推移をたどった場合、一連の堆積物であると説明することがある。

1) はじめに珪長質側の組成に卓越するマグマが大量に流出し、続いて苦鉄質側の組成に卓越するマグマが噴出した。その間堆積した火砕岩は斜面を経験した。従って溶岩流の先端部は珪長質側、火口付近では苦鉄質側の組成を示していた。2) 噴火が一時的に治まった後、2端成分を示すマグマが完全に混じり合わずに噴出して火砕流となり比較的広範囲に一度に堆積した（TypeA；苦鉄質の1フローユニット）。3) その後溶岩流が二次流動した。L2bは火口付近に存在した物が、L2cによって押し出され、末端部まで流動した。

次に、TypeBはすべて61.0wt%から61.5wt%の範囲に集中した。また、TypeBは珪長質側から苦鉄質側の組成に変移する溶結火砕岩の上に堆積している。この傾斜は約2km離れたloc.L2c-1, L2c-2において同じであった。従って以下のような推移をたどったことになる。1) まず珪長質のマグマが大量に噴出し、これらが火口付近に堆積して滞留している間に、マグマの組成が苦鉄質側に変移した（溶結火砕岩）。2) 一度噴火が治まった後、火砕内に固結した溶結火砕岩が再び火口近くに放出されて堆積（TypeB）。3) その後二次流動して、末端付近まで流動した。つまり、マグマの組成が変化し、さらに一度固結した火砕物が再度放出されるまでの間、火口周辺で留まっているわけではないことになる。このことは、火口出溶岩流が火砕丘の二次流動によって形成されたとする筆者の考えを裏付けるものである。
6-2 既存の分析値との対比
浅香(1888)および本論の分析値から、各フローユニットの組成を推測すると以下のようになる。
L1, L2a 表層部は珪長質の組成を示すと考えられる。L2aにおいては少なくとも表層から10数mは珪長質である。
L2b 表層部は苦鉄質質の組成を示す。この部分は従来分析されていなかった場所である。
L2c は表層1数mが苦鉄質質、それより下部で珪長質の組成を示す。この傾向は、末端部(10c, L2c-2)と、これより約2km離れた地点(10c, L2c-1)において同じであったことから、広範囲に渡って同様の傾向を示すと考えてよい。既存の分析値が示す組成領域の差異は、探集部分の差異による可能性が強い。またこのフローユニットにおいて、1992年建設省土木研究所によってポーリングコアが採取されているが、その全岩化学組成は、60数mのコアのうち最下部から14mの地点を除いて、珪長質質の組成を示す(安井・荒牧, 1997)。
ことから、L2cの主体部はほとんど珪長質質の組成を示し、表層から数mの動核溶結が苦鉄質質の組成を示していると考えられる。
L3 表層部は苦鉄質質の組成を示す。
6-3 1783年噴火における位置づけ
本論の結果と1783年噴出物について既に分析されているものの対比を行い、その問題点および今後の展望について述べる。
1) 吾妻火砕流との関係
安井・小屋口(1988a)は、従来一連の堆積物であるとされていた火砕流堆積物を複数枚のフローユニットに分けた。そのうちTypeAは岩相や分布から、火砕流堆積物第3部に分ける。本論ではTypeAの本質岩片は黑色部と白色部が不均質に混じった岩相を示しており、全岩化学組成も、組織の違いによって異なることが明らかになった。一方、安井・小屋口(1988a)が第2部層とした吾妻火砕流の本質岩塊は、ほとんどが均質に黑色である。既存の分析値(浅香, 1988)において、吾妻火砕流は苦鉄質質に卓越した組成を示しているが、これらは第2部層を試料としたとされている。
今後、改めて第3部層の岩相および分布を再確認し、また、L2b上のTypeAとの関係を明らかにすることにより、第3部層の噴出時期と吾妻火砕流を形成する溶結火砕岩の噴出および流動時期をより詳細に考察することが可能である。
2) 降下軽石堆積物との関係
荒牧(1993), 浅香(1988)によると、ブリニエ式噴火のクライマックスの間に出た降下軽石堆積物は、SiO2含有量が62.5〜63.2wt%付近に卓越したマグマの噴出から、2端成分が混合したマグマの噴出に移る。鬼押出溶岩流はブリニエ式噴火のクライマックスの間に発生(早川, 1995; 田村・早川, 1995; 穴口, 1998)した可能性が指摘されているが、本論にあって、鬼押出溶岩流の主体部は吾妻火砕流から苦鉄質質へ少なくとも2回反覆し、その主体は苦鉄質質であると推測された。従って、この部分と降下軽石が関節している可能性がある。
3) 鎌原火砕流/岩屑流との関係
鎌原火砕流/岩屑流の本質岩片は、SiO2含有量が60.0〜62.5wt%を示し、苦鉄質質の組成に卓越する(Yasui, 1996)。早川(1995), 田村・早川(1995)は若泉の記載等から、鬼押出溶岩流内の高溫高圧部が急激に減圧した結果、熟熔が発生し、鎌原火砕流/岩屑流となったと考えた。この場合、鎌原火砕流/岩屑流になかったと考えられるフローユニットは吾妻火砕流の組成を示すと考えられるL1であることに矛盾する。しかし、鎌原火砕流/岩屑流には「鎌原石」といわれる黒色石英岩片の他に、赤色酸化鉄の金田溶結火砕岩からなる本質岩片が存在しており、鬼押出溶岩流に酷似している。従って鎌原火砕流については岩屑岩の岩片について、系統的に分析を行う必要がある。
一方、井上公(1995)は、鎌原火砕流/岩屑流は馬蹄形凹地内から側噴火し、鬼押出溶岩流のうち、馬蹄形凹地内に存在する部分は、鎌原火砕流/岩屑流が発生した後、同じ火口から流出したものであると考えた。しかし本論の結果から、L2cにおいて、馬蹄形凹地の上部と下部の両両側で、全岩化学組成の傾向は一致しており、一連の噴火によって堆積したと考えるのが妥当であり、馬蹄形凹地内の鬼押出溶岩流が、馬蹄形凹地からの側噴火した可能性は低い。
7 おわりに
本論では鬼押出溶岩流表層部を構成する火砕物について、層序に基づいた系統的な全岩化学分析を行った。その結果以下のことが明らかになった。
1） 鬼押出し溶岩流表層部の溶結火砕岩は、SiO₂ 含有量が 62.0%付近を境にして、より珪長質側、もしくはより苦鉄質側に卓越する構成を示す。
2） L2c では溶結火砕岩 SiO₂ 含有量が、垂直方向に珪長質側から苦鉄質側へ変化した。このことは溶結火砕岩が形成する一連の大规模噴火において、マグマの組成が移動したことを示している。
3） 溶結火砕岩の組成が移動し、さらにその上部に非溶結火砕岩を堆积させるためには、一定時間、火口付近に停滞しなくてはならない。この事実は、鬼押出し溶岩流が火砕火に類似した形で火口付近に堆積した後、二次流動したことを裏付ける。
4） 鬼押出し溶岩流を形成した噴火プロセスにおける化学組成は、全体的に見て珪長質側の組成から、区鉄質側の組成へ変化する傾向が見られた。

今後他の 1783 年噴火類似の詳細な全岩化学組成が明らかにされれば、1783 年噴火における鬼押出し溶岩流の位置づけがより明らかになる可能性がある。

謝 辞

本稿は、金沢大学大学院文学研究科に提出した筆者の修士論文の一部を加工・修正したものである。修士論文を作成するためにあたり、金沢大学地理学教室の守屋以智雄教授には、数多くの助言・指導をして顶いた。本稿を守屋以智雄先生の御退官に際して謹んで呈いたします。

また、日本大学文理大学荒牧重雄教授、安井真也氏には共に現地を歩いて頂き、数多くの貴重な御意見を頂くと共に、全岩化学分析について全面的にご指導頂いた。金沢大学教育学部総合学習教授には全岩化学分析試料作成の指導をして頂いた。福岡大学理学部奥野光氏、東大地震研究所小屋口剛博士教授には現地において討論して頂き、数多くの助言を頂いた。金沢大学文学部地理学教室の諸先生方には、多くの助言を頂き、御学術には調査および試料作成に協力して頂いた。ここに厚く御礼申し上げます。

引用文献

浅香尚英 (1988)：噴火直前マグマ流に於ける地球化学的研究 III (MS).
安井真也・小屋口剛博 (1998a) : 浅間火山東北東山腹における 1783 年噴火の噴火物の産状とその意義. 日本大学文理学部自然科学研究所「研究紀要」, 33, 105-126.
山田隆・石川芳治・尖島重美・井上幸夫・山川克己 (1993) 天明の浅間山噴火に伴う北側斜面での土砂移動現象の発生・流下・堆積実態に関する研究. 新砂防, 45, 3-12.