急性前壁梗塞症における慢性期左室機能の改善—\(^{99m}\)Tcと\(^{201}\)TI Dual-SPECTによる早期評価—

中藤 秀明*，村上 晃二*，竹越 襲*，松井 忍*，
津川 博一*，金光 政右*，金山寿賀子*，松本 正光*

【目的】
急性前壁梗塞症における慢性期左室機能\((LVEF)\)の改善例の臨床的特徴と、梗塞急性期に施行した\(^{99m}\)Tcピロミジン酸と\(^{201}\)TIのDual-SPECT（以下D-SPECT）により左室機能が改善するか否かの予測診断の可能性を検討した。

【対象】
急性前壁心筋梗塞症例18例で、全例、緊急冠動脈造影で梗塞責任冠動脈が6番または7番と判定された例である。

【方法】
梗塞発症1週間以内の急性期にRIによるLVEFとD-SPECTを施行、さらにLVEFは1ヶ月後の回復期と約1年後の慢性期の計3回施行、LVEFの経時的改善程度から、以下の3群に分類した。
すなわちI群は、急性期から回復期に5%以上改善した正常LVEF改善例5例で、全例男性で平均年齢55±7.5歳。II群の回復期には改善はなく、慢性期に5%以上改善した慢性期改善例5例で、男性4例、女性1例、平均年齢64±8.3歳。
III群は、回復期・慢性期ともに改善を認めない非改善例8例で、全例男性、平均年齢56±12.5歳であった。これら3群につき、臨床像・急性期CAG所見・Peak-CPKならびにD-SPECT所見を比較検討した。

【結果】
各群の臨床的特徴は、I群において、自然再灌流が4例、PTCRによる早期再灌流が1例で、Peak-CPKは982±321.5 IU/Lと少なく、II群では、自然再灌流2例、PTCR・PTCAでの再灌流が3例で、Peak-CPKは3866±1355.6 IU/Lであった。
一方III群では、PTCR不成功例が4例、成功例3例、d-PTCAが1例で、Peak-CPKは7110±2846.6 IU/Lと、Peak-CPKはI・II・III群の順に高値を示した（表1）。LVEFは、I群で急性期33±9.3%から回復期52±11.2%と\(\Delta\)EFで19±9.6%と著明な改善が認められた。II群で急性期30±5.3%、回復期33±4.9%、慢性期42±9.5%と、慢性期にのみ\(\Delta\)EFで12±4.5%の改善が認められた。
II群ではそれぞれ19±4.1%、19±4.1%、18±2.4%と不変であった（表1）。D-SPECT所見は、I群の不完全欠損か小欠損像でPYPは軽度かつ小集積像例が多く、II群では、PYPのオーバー

ラップ例が多く認められ、II群ではTIは広範囲欠損で、PYP集積は強くかつドーナツ型の集積像が多く認められた（表2、図2）。

【考察】
I群の早期LVEF改善例は、Bolliらの提唱するBolliのstunned myocardiumと考えられ、早期再灌流により、梗塞扇が縮小され、D-SPECT所見上TIの不完全欠損で、梗塞部における可逆性心筋障害の存在が示唆された。
一方、慢性期で改善する例（II群）は、非梗塞部心筋の代償機能、左室心筋remodelingなどが関与している可能性が考えられた。このように急性前壁梗塞におけるLVEFの改善は、急性期に施行されるD-SPECTで予測し得ると考えられた。

文献
2）心筋梗塞慢性期左室機能回復に及ぼす急性期PTCA法とPTCR法の比較－左前下行枝－枝病変における急性期\(^{201}\)TI、\(^{99m}\)Tc-PYPシンチによる評価－
図2

<table>
<thead>
<tr>
<th>頭痛の部位</th>
<th>起立</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1/1</td>
</tr>
<tr>
<td>B</td>
<td>3/3</td>
</tr>
<tr>
<td>C</td>
<td>5/5</td>
</tr>
</tbody>
</table>

図1

<table>
<thead>
<tr>
<th>血圧</th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>SBP</td>
<td>110</td>
<td>120</td>
<td>130</td>
</tr>
<tr>
<td>DBP</td>
<td>70</td>
<td>80</td>
<td>90</td>
</tr>
</tbody>
</table>

図3

<table>
<thead>
<tr>
<th>血糖</th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>mmol/L</td>
<td>5.5</td>
<td>6.0</td>
<td>6.5</td>
</tr>
</tbody>
</table>

図4

<table>
<thead>
<tr>
<th>CTstudy</th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>White</td>
<td>50</td>
<td>60</td>
<td>70</td>
</tr>
<tr>
<td>Matter</td>
<td>20</td>
<td>30</td>
<td>40</td>
</tr>
</tbody>
</table>

図5

<table>
<thead>
<tr>
<th>ECGmorphology</th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>PQRST</td>
<td>Normal</td>
<td>Normal</td>
<td>Normal</td>
</tr>
<tr>
<td>RRinterval</td>
<td>400</td>
<td>300</td>
<td>200</td>
</tr>
</tbody>
</table>

図6

<table>
<thead>
<tr>
<th>Electrolyte</th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Na</td>
<td>140</td>
<td>135</td>
<td>130</td>
</tr>
<tr>
<td>K</td>
<td>6</td>
<td>5</td>
<td>4</td>
</tr>
</tbody>
</table>

図7

<table>
<thead>
<tr>
<th>Biochemical</th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Creatinine</td>
<td>0.5</td>
<td>1.0</td>
<td>1.5</td>
</tr>
<tr>
<td>Urea</td>
<td>10</td>
<td>15</td>
<td>20</td>
</tr>
</tbody>
</table>

図8

<table>
<thead>
<tr>
<th>Enzyme</th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>AST</td>
<td>40</td>
<td>50</td>
<td>60</td>
</tr>
<tr>
<td>ALT</td>
<td>15</td>
<td>20</td>
<td>25</td>
</tr>
</tbody>
</table>

図9

<table>
<thead>
<tr>
<th>Pathology</th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>MI</td>
<td>5</td>
<td>10</td>
<td>15</td>
</tr>
<tr>
<td>Stroke</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Tumor</td>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>