Objective Evaluation Method for Appearance of Fabric Wrinkling by the CCD Laser Light Measuring System

Mitsuo MATSUDAIRA, Zhifeng SU*, Jian HAN* and Mingzhuang YANG*

Abstract
The method evaluating the wrinkle appearance objectively with the CCD laser displacement sensor(CCD-LDS) system was described in this paper. A CCD was employed as the light-receiving element in the system, of which sensor enables to obtain the stably, highly accurate displacement measurement, regardless of the light quantity distribution of the beam spot. The wrinkle grades of standard replicas and fabrics were measured and analyzed with the system, which was an excellent tool for investigating 3-D surface shapes of wrinkles. The contours of wrinkle surfaces were also analyzed with the fractal method. Following conclusions were obtained: 1) It provided the high precision for measuring wrinkle shapes; 2) Fractal dimensions of wrinkle surfaces could quantify the wrinkle grades of replicas. Then, the method to objectively evaluate and to predict the wrinkle grades using the neural network was proposed in this paper. The wrinkle grades could be predicted by use of their textural features and mechanical parameters. The correlation coefficient between the predicted value and practical wrinkle grade was as high as 0.90. The results showed that the wrinkled grades of cotton fabrics not only could successfully be predicted using the neural network model that has been trained, but also could precisely be done using the one that has not been learned.

1. 統言
衣服の着用性を評価するとき、その外観の美的な評価は一つの重要な要素である。衣服を繰り返し着用および洗濯した場合、それらしが生じ、衣服の外観美に悪影響を与えていません。実物のしぶの定量的評価に関する、伝統的な評価法としては、主に人間の視覚的評価に基づいた主観評価法があるが、評価者の心理的・生理的影響、外観環境などによって大きく左右され、評価の精度が低く、評価者間の差が大きいと言われている5-7）。そのため、織物表面のしぶを3次元的に捕える何らかの客観評価法を開発する必要がある。
近年、しぶの評価に関しては幾つかの客観評価が報告されている8-12）。しかしながら、これららの方法は光源、布の色、花柄などの影響を受け、複数の布と花柄のある布には不適当である。また、E.H. Kimらは従来のPSD式レーザ変位計を用いたが、レーザセンサの分解能、精度ともに低く、地模様や柄のある試料に対しては、適用できなかった13）。これらの問題を解決するために、本研究では、しぶの標準レプリカ（AATCC Test method 128）を CCDレーザ変位計という新たな方法を用いて、しぶ形状の評価方法としての有用性を検証した。また、地模様や柄のある試料についても適用性を確かめた。
それから、縫布にしぶを付加させた試料を作成し、それらのしぶ等級を測定した。縫布の基
本実験特性や組織構造的な特徴が布のしわ特性に与える影響について検討すると共に、布のしわ等級の予測モデルに、ニューラルネットワークによる絞布のしわ等級の評価を試みた。絞布の基本光学特性や組織構造的な特徴を数値化し、それを入力値とし、各しわ等級値を教師値として学習させることにより、しわ等級の予測用ネットワークモデルを構築した。これらのモデルを用いて、しわ等級を予測し、モデルの適用性について検討したので報告する。

2．実験
2.1 測定システム
図1に示すように、測定システムは、CCDレーザ変位計（Keyence LK-080）、A/D伝送ボード（Keyence LK-2100）、防振台に設置されたXY移動ステージ（Oriental-motor SPF60B/86B）、移動ステージコントローラー（Oriental-motor LPG101）とコンピューター（FUJITSU FMVC 6/86LB）で構成される。

CCDレーザ変位計（CCD-LDS）では、光源が赤い半導体レーザ光を用いており、その波長は670nmである。また、ビーム・スポット径は約70μmである。その測定結果の分解能は3μmであり、直線性はフルスケールで±0.1％以内である。CCD-LDSでは一度に1ポイントだけ測定できる。また、測定されるサンプルの移動はCCD-LDSに対して比較的容易である。サンプルの全表面をすべて測定できるため、測定されるサンプルは、XY移動ステージの上に設置され、移動ステージコントローラーによって、X方向及びY方向に沿って移動される。

我々はCCD-LDSによって得られた情報をA/D伝送ボードによって変換した後、そのデータの収集と分析をコンピューターに用いて行う。

2.2 測定プロセス
本実験のサンプルは、AATCC Test method128で規定されているしわの標準見本のレプリカである。1級から5級まで、全で5枚（290mm×140mm）である。

図2に示すように、サンプルの測定範囲は標準レプリカの中心、160mm×80mmである。測定のとき、まず、サンプルが80mm/sの速度で、X方向に沿って、左から右へ移動する。同時に、CCD-LDSは毎秒100ポイントのデータをサンプリングする。その後サンプルはY方向に沿って、下から上へ0.8mmを移動した後、再び80mm/sの速度で、X方向に沿って、右から左へ移動する。全測定範囲を測定するまで、それらの動作を繰り返す。サンプル一枚ではすべて20,200ポイントが測定される。しかしながら、サンプルを移動するときの振動やA/D伝送ボードによって、高周波数のノイズが発生する。

Fig.1 Laser Light Measuring System of fabric wrinkle.

Fig.2 Dimensions of the samples.
この高周波数のノイズを駆逐するため、FFTの100Hzローパスフィルタにより、データを処理する。したがって、サンプルの表面の凹凸は、CCD-LDS測定システムによって、XY座標の三次元データとして計測できる。その得られたデータを用いて、フラクタル法によりしわ等級評価を行った。

2.3 フラクタルによる評価法

レプリカの特徴の抽出及び評価を行うために、新たに、フラクタル法による方法を応用した。1975年、Mandelbrot博士がフラクタル（Fractal）という言葉を作り出し、自然界に見られるような複雑な形状の幾何学を示した。実験データの解析に多用されるのは、基盤の目のように、空間を等間隔δの格子状の領域に分割し、図形の一部を含むようなボックスの数Nδからフラクタル次元を推定する方法である（図3参照）。海岸線のように複雑な曲線のフラクタル次元を測定する際によく使われている。図中で、CCD-LDSの測定により得られたしわの輪郭曲線が相似比δのN個の部分（セグメント）から構成されるものを仮定する、步幅δを様々な変えながら、曲線上の端から端までを歩くために必要な歩数Nδを調べ、これらの両対数プロットの勾配：

\[D = -\frac{\log N_δ}{\log \delta} \] (1)

からフラクタル次元Dを求める。

図中で、しわの凹凸曲線をパワースペクトルS(f)に変換できる。観測の相関化の度合を変えるということは、スペクトルの立場から見れば、カットオフ周波数fcを変えることになる。このことは、スペクトルの形が観測の尺度を変える変換f → f/δに対して不変であることと同値であり、そのような性質をもつスペクトルS(f)は、次のようないべきの型に限られる。

\[S(f) \propto f^{-\beta} \] (2)

スペクトルがこのようなべきの型になっているとき、そのべきの指数βとフラクタル次元の関係については、曲線のグラフのフラクタル次元Dは以下のようになる：

\[D_s = \frac{5-\beta}{2} \] (3)

という関係が成り立っている。また、地形の表面のような布の表面などの曲面を考える場合には、曲面の変動が等方的であるため、次のように対数的に拡張される。曲面をある平面で切ったときの断面グラフのスペクトルをS(f)とする。たとえば、布表面の場合ならば、2点間を直線で結び、その線に沿ったしきの高低の変動によるスペクトルをS(f)とすると、しわの輪郭のフラクタル次元D（2 < D < 3）は、次の関係を満たす。

\[D_s = \frac{7-\beta}{2} \] (4)

フラクタル次元Dが大きいほど、対象形状は入り組んだものとなっており、この値は、我々が慣れ親しんでいる2次元、3次元といった整数値ではなく、1.28次元とか2.75次元といった非整数値をもつものである。形状の複雑さを特徴づけるフラクタル次元に対して、以下の場合、線より点近い。1〜2の場合、線より複雑だが面を覆い尽くすほどではない。2〜3の場合、面より複雑だが立体ほどではない。本研究では、スペクトル法によるしわの表面のフラクタル次元Dを求めた。

Fig.3 Box dimension estimation by fractal analysis method.
2.4 試料の組織及び基本力学特性
22種類の異なる市販の綿布（原料：cotton 100%）を試料として用いた。表1には各試料の自重（W）、厚さ（T）、線密度、織物の糸密度を掲げた。

Table 1 Outline of samples.

<table>
<thead>
<tr>
<th>No.</th>
<th>W (mg/cm²)</th>
<th>T (mm)</th>
<th>Weave density (ends/cm)</th>
<th>Linear density (tex)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Warp</td>
<td>Weft</td>
</tr>
<tr>
<td>1</td>
<td>14.814</td>
<td>0.335</td>
<td>23</td>
<td>25.0</td>
</tr>
<tr>
<td>2</td>
<td>34.795</td>
<td>0.63</td>
<td>17.5</td>
<td>25.0</td>
</tr>
<tr>
<td>3</td>
<td>21.046</td>
<td>0.48</td>
<td>23.5</td>
<td>35.3</td>
</tr>
<tr>
<td>4</td>
<td>11.763</td>
<td>0.175</td>
<td>27</td>
<td>56.0</td>
</tr>
<tr>
<td>5</td>
<td>12.116</td>
<td>0.205</td>
<td>29.5</td>
<td>68.0</td>
</tr>
<tr>
<td>6</td>
<td>12.3</td>
<td>0.275</td>
<td>48</td>
<td>36.5</td>
</tr>
<tr>
<td>7</td>
<td>9.801</td>
<td>0.195</td>
<td>26</td>
<td>32.0</td>
</tr>
<tr>
<td>8</td>
<td>13.739</td>
<td>0.26</td>
<td>30.5</td>
<td>47.5</td>
</tr>
<tr>
<td>9</td>
<td>13.841</td>
<td>0.25</td>
<td>48.5</td>
<td>52.0</td>
</tr>
<tr>
<td>10</td>
<td>13.243</td>
<td>0.225</td>
<td>48.5</td>
<td>31.5</td>
</tr>
<tr>
<td>11</td>
<td>28.294</td>
<td>0.56</td>
<td>21.5</td>
<td>24.0</td>
</tr>
<tr>
<td>12</td>
<td>11.382</td>
<td>0.24</td>
<td>25</td>
<td>28.5</td>
</tr>
<tr>
<td>13</td>
<td>12.375</td>
<td>0.355</td>
<td>20</td>
<td>23.0</td>
</tr>
<tr>
<td>14</td>
<td>47.602</td>
<td>0.815</td>
<td>19.5</td>
<td>21.0</td>
</tr>
<tr>
<td>15</td>
<td>12.964</td>
<td>0.22</td>
<td>28</td>
<td>32.0</td>
</tr>
<tr>
<td>16</td>
<td>17.6</td>
<td>0.325</td>
<td>15</td>
<td>36.5</td>
</tr>
<tr>
<td>17</td>
<td>10.683</td>
<td>0.22</td>
<td>23</td>
<td>30.5</td>
</tr>
<tr>
<td>18</td>
<td>11.941</td>
<td>0.22</td>
<td>35.5</td>
<td>47.5</td>
</tr>
<tr>
<td>19</td>
<td>9.0945</td>
<td>0.155</td>
<td>42</td>
<td>70.0</td>
</tr>
<tr>
<td>20</td>
<td>26.612</td>
<td>0.415</td>
<td>21.5</td>
<td>36.5</td>
</tr>
<tr>
<td>21</td>
<td>14.764</td>
<td>0.305</td>
<td>24</td>
<td>27.0</td>
</tr>
<tr>
<td>22</td>
<td>18.388</td>
<td>0.475</td>
<td>13.5</td>
<td>25.5</td>
</tr>
</tbody>
</table>

各試料のカーバーファクタ C は以下の式によって算出できる。

\[C = \frac{n_e}{\sqrt{N_e}} + \frac{n_p}{\sqrt{N_p}} - \frac{n_e \cdot n_p}{28\sqrt{N_e \cdot N_p}} \] (5)

ここで、n と N はそれぞれ糸の密度と糸の太さである。たて糸、よこ糸に関連するものにそれぞれ e と p の添え字をつけて表すことにする21）。

試料の基本力学特性は、カトーテック（株）製 KES-FB 型計測システムを用いて、引張り、せん断、曲げなどの特性を20cm×20cmサイズの試料で以上の22枚すべての綿布について測定を行った。

2.5 試料のしわ等級の測定
まず、各綿布に対して、たてとよこ方向に145 mm×300mm又は300mm×145mmサイズに2枚ずつカットし、4枚の試料を得た。次に、その4枚の試料を Wrinkle Recovery Tester (Model155) により、しわを付加させた。その後、しわを1時間回復させた試料を CCD レーザ変位計システム（図1）を用い、それらの試料のしわ形状を3次元的に捕え、その表面形状のフラクタル次元Dの平均値を算出した。以上の過程を22枚すべての綿布について繰り返して行った。

2.6 ニューラルネットワークモデルによるしわ等級の予測
ニューラルネットワークは、人間の脳の思考メカニズムを模倣した情報処理システムであり、高度なパターン認識機能を要しており、様々な分野で応用されており、特に、特定が困難な要素を含んでいる非線形性関係の予測については、よく使われている22,23)。

本研究では、幅広く利用されている階層型ネットワークにより布のしわ等級の予測を試みた。ニューラルネットワークモデルは、図4のような入力層、中間層および出力層を各1層以上も

![Fig.4 Neural network model.](image-url)
つ3層の階層型ネットワークである。ここで、
正規化した試料のしぶ等級値を直接教師データ
として学習させたニューラルネットワークモデル
を構築し、同様に正規化した試料の組織構造
特徴値と基本力学特性値等という入力データか
ら直接しぶ等級の予測を試みることとした。中
間層のユニット数は1層以上いくつでもよいが,
そのユニット数が多いほど、計算値の2乗誤差
は小さく、学習の収束率は遅くなる。ここで,
中間層のユニット数を変化させた実験を行い,
また、ニューラルネットの学習率、慣性項はそ
れぞれ0.1、0.9と設定した。ネットワークの学
習方法については、次のとおりである。

いま、p 番目のパターが与えられたとき、
ユニットjへの入力値 netj は、ユニットjに結
合している全てのユニットiの出力 oji とユーニ
ットiからユニットjへの結合荷重 wij の積和
として与えられる。

\[netj = \sum w_{ji} o_{i} \] \((6) \)

入力層のユニットに対しては、o_i = 1 と仮定され
ている。ユニット j の出力 o_j は、次の式で

\[o_j = f_j (net_j) \] \((7) \)

与えられる。ここで、ユーニットの入力閾値 f_j は、
次の式を用いた。

\[f_j = \frac{1}{1 + \exp (-x)} \] \((8) \)

各ユーニット間の結合荷重 wij の修正は誤差逆伝
播法\(^3\)を用いた。これは、誤差関数 \(E_r \) を次の
とおり定義すると、\(E_r \) が最小となるように結
合荷重を修正する方法である。

\[E_r = \frac{1}{2} \sum (t_{ij} - O_{ij})^2 \] \((9) \)

本研究では、ニューラルネットワークモデルに
よる縦布のしぶ等級予測の適用性について検討
するため、以下のとおり検討した。
1）中間層のユニット数を変化し、全てのデー
タを学習した結果から、しぶの等級を予測する。
2）22枚試料の中、19枚のデータを学習した結
果から、3つの未学習試料のしぶ等級を予測する。

3 結果及び考察
3.1 標準レプリカの3次元的表示
図5には、標準レプリカの1級から5級まで
の表面形状（160mm×80mm）を示す。図中のZ
方向の寸法はX、Y方向の寸法より30倍拡大し
ている。図5において、視覚的に述べると、し
わの方向は水平面にランダムに分布している
が、3、4級では、多くのしぶが一方向に分布して
いることも見受けられる。1級はしぶの凹凸の
サイズが大きい、凹凸の数も一番多い。2級は
1級より凹凸のサイズが小さくなって、数も減
っている。3級と2級との凹凸のサイズはあま

![Fig.5 3D surface shape reconstruction of wrinkle replicas of AATCC test method 128 by CCD-LDS system.](image)
3.2 フラクタル法による標準レプリカの表面形状を解析・評価

図6には、しこれ等級とフラクタル次元D,

の対応関係を示す。ここでは、0.01の有意水準

で対数回帰関数が求められた。図中、横軸は

しこれた等級数を示す。縦軸は自然対数数

し、しこれ表面のフラクタル次元を示す。

各級のフラクタル次元D,

は2～3である。

Fig.6 Fractal dimension of surface and wrinkle grade.

これは、しこれ表面の変動がフラクタルであり、

面より複雑だが立体ほどではないことを示して

いる。級が大きくなるにつれて、D,

は減少していることがわかった。また、1級では最大2.55

となり、フラクタル次元が大きいほど、しこれの

凹凸の表面積は大きくなり、しこれの凹凸が激しく

なる傾向があることが分かった。図より、フ

ラクタル次元D,

の自然対数値としこれ等級の間

に高い相関関係 \(R = 0.98 \) がある。その時、

しこれ等級WGは以下の式によって求められ

る⑳。

\[
\ln(D,)=−0.055W,G+0.983 \quad (10)
\]
Table 2 The mechanical parameters, cover factor, fractal dimension of surface and wrinkle grade of cotton fabrics.

<table>
<thead>
<tr>
<th>No.</th>
<th>LT</th>
<th>WT</th>
<th>RT</th>
<th>EM</th>
<th>T</th>
<th>G</th>
<th>2HG</th>
<th>2HG5</th>
<th>B</th>
<th>2HB</th>
<th>C</th>
<th>D_4</th>
<th>W_0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.729</td>
<td>10.23</td>
<td>35.19</td>
<td>5.60</td>
<td>1.463</td>
<td>3.65</td>
<td>7.12</td>
<td>0.060</td>
<td>0.084</td>
<td>33.3</td>
<td>2.496</td>
<td>1.24</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0.860</td>
<td>7.67</td>
<td>43.58</td>
<td>3.56</td>
<td>6.281</td>
<td>23.38</td>
<td>21.69</td>
<td>0.680</td>
<td>1.001</td>
<td>38.3</td>
<td>2.438</td>
<td>1.67</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0.750</td>
<td>5.85</td>
<td>48.03</td>
<td>3.12</td>
<td>2.281</td>
<td>6.00</td>
<td>8.00</td>
<td>0.215</td>
<td>0.298</td>
<td>33.8</td>
<td>2.56</td>
<td>0.77</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0.858</td>
<td>8.3</td>
<td>50.13</td>
<td>3.80</td>
<td>1.844</td>
<td>1.50</td>
<td>8.62</td>
<td>0.098</td>
<td>0.113</td>
<td>26.1</td>
<td>2.500</td>
<td>1.22</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0.869</td>
<td>6.85</td>
<td>47.23</td>
<td>3.07</td>
<td>1.363</td>
<td>1.53</td>
<td>7.87</td>
<td>0.134</td>
<td>0.091</td>
<td>30.7</td>
<td>2.543</td>
<td>0.9</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>0.809</td>
<td>3.50</td>
<td>48.87</td>
<td>1.80</td>
<td>0.875</td>
<td>1.37</td>
<td>4.18</td>
<td>0.155</td>
<td>0.138</td>
<td>52.6</td>
<td>2.451</td>
<td>1.57</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>0.800</td>
<td>7.40</td>
<td>43.73</td>
<td>3.75</td>
<td>1.438</td>
<td>2.37</td>
<td>7.43</td>
<td>0.061</td>
<td>0.087</td>
<td>30.8</td>
<td>2.516</td>
<td>1.10</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>0.938</td>
<td>3.72</td>
<td>46.98</td>
<td>1.58</td>
<td>4.031</td>
<td>14.75</td>
<td>13.50</td>
<td>0.150</td>
<td>0.268</td>
<td>32.2</td>
<td>2.476</td>
<td>1.39</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>0.872</td>
<td>3.92</td>
<td>48.75</td>
<td>1.75</td>
<td>0.888</td>
<td>1.37</td>
<td>4.62</td>
<td>0.081</td>
<td>0.053</td>
<td>54.0</td>
<td>2.355</td>
<td>2.30</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>0.803</td>
<td>2.90</td>
<td>53.13</td>
<td>1.45</td>
<td>1.025</td>
<td>1.42</td>
<td>5.87</td>
<td>0.199</td>
<td>0.134</td>
<td>60.3</td>
<td>2.493</td>
<td>1.26</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>0.700</td>
<td>10.73</td>
<td>47.73</td>
<td>6.12</td>
<td>1.650</td>
<td>2.22</td>
<td>4.92</td>
<td>0.180</td>
<td>0.151</td>
<td>37.2</td>
<td>2.432</td>
<td>1.71</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>0.643</td>
<td>9.45</td>
<td>46.22</td>
<td>5.75</td>
<td>0.975</td>
<td>1.42</td>
<td>3.40</td>
<td>0.043</td>
<td>0.029</td>
<td>26.4</td>
<td>2.418</td>
<td>1.82</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>0.611</td>
<td>11.63</td>
<td>40.18</td>
<td>7.80</td>
<td>0.738</td>
<td>1.22</td>
<td>2.67</td>
<td>0.053</td>
<td>0.040</td>
<td>28.6</td>
<td>2.543</td>
<td>0.90</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>1.131</td>
<td>21.35</td>
<td>45.4</td>
<td>10.25</td>
<td>5.156</td>
<td>11.31</td>
<td>14.0</td>
<td>0.485</td>
<td>0.460</td>
<td>49.3</td>
<td>2.368</td>
<td>2.20</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>0.612</td>
<td>9.20</td>
<td>42.87</td>
<td>6.20</td>
<td>1.750</td>
<td>3.12</td>
<td>6.43</td>
<td>0.064</td>
<td>0.051</td>
<td>32.1</td>
<td>2.443</td>
<td>1.63</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>0.732</td>
<td>11.70</td>
<td>34.52</td>
<td>6.45</td>
<td>1.975</td>
<td>3.95</td>
<td>7.25</td>
<td>0.116</td>
<td>0.114</td>
<td>23.2</td>
<td>2.527</td>
<td>1.02</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>0.686</td>
<td>11.65</td>
<td>44.04</td>
<td>6.95</td>
<td>0.888</td>
<td>1.10</td>
<td>2.50</td>
<td>0.109</td>
<td>0.067</td>
<td>31.1</td>
<td>2.451</td>
<td>1.57</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>0.643</td>
<td>10.83</td>
<td>48.86</td>
<td>6.72</td>
<td>0.575</td>
<td>1.27</td>
<td>2.05</td>
<td>0.046</td>
<td>0.039</td>
<td>36.4</td>
<td>2.450</td>
<td>1.58</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>0.735</td>
<td>7.625</td>
<td>38.12</td>
<td>4.35</td>
<td>0.275</td>
<td>0.36</td>
<td>0.625</td>
<td>0.044</td>
<td>0.013</td>
<td>32.7</td>
<td>2.429</td>
<td>1.74</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>0.742</td>
<td>4.30</td>
<td>47.35</td>
<td>2.20</td>
<td>4.063</td>
<td>3.62</td>
<td>20.88</td>
<td>1.150</td>
<td>0.55</td>
<td>40.2</td>
<td>2.457</td>
<td>1.53</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>0.6905</td>
<td>8.875</td>
<td>47.13</td>
<td>5.32</td>
<td>1.563</td>
<td>2.92</td>
<td>6.35</td>
<td>0.085</td>
<td>0.073</td>
<td>34.8</td>
<td>2.496</td>
<td>1.24</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>0.620</td>
<td>14.13</td>
<td>33.76</td>
<td>9.75</td>
<td>1</td>
<td>2.90</td>
<td>4.25</td>
<td>0.080</td>
<td>0.080</td>
<td>30.1</td>
<td>2.530</td>
<td>1.00</td>
<td></td>
</tr>
</tbody>
</table>

Table 3 Correlation coefficient between wrinkle grade and mechanical & structural parameters.

<table>
<thead>
<tr>
<th>LT</th>
<th>WT</th>
<th>RT</th>
<th>EM</th>
<th>T</th>
<th>G</th>
<th>2HG</th>
<th>2HG5</th>
<th>B</th>
<th>2HB/B</th>
<th>C</th>
<th>W_0</th>
</tr>
</thead>
<tbody>
<tr>
<td>W_0</td>
<td>0.33</td>
<td>0.13</td>
<td>0.24</td>
<td>0.03</td>
<td>0.21</td>
<td>0.16</td>
<td>0.09</td>
<td>-0.30</td>
<td>0.26</td>
<td>-0.33</td>
<td>0.48</td>
</tr>
</tbody>
</table>

3.4.2 ニューラルネットワークの学習
ニューラルネットワークの学習データでは、すべて0～1の範囲内に値が要求されているため、まず、全てを正规化して、その後、入力層の各ユニットにはC,LT,2HB/B,2HG 5/GおよびWに関する教師データを、出力層のユニットにはW_0に関する教師データを入力した。中間層ユニット数が学習精度に影響を及ぼすため、今回は中間層ユニット数2,3,4のものも試した。
ここで、ニューラルネットワークに22枚試料（No. 1 ～ No. 22）のデータを入力し、誤差関数 E_r を0.1から0.005まで10段階に分けて、学習させた。図7は、横軸に学習回数を、縦軸にニューラルネットワークの学習過程での教師データと予測値の2乗誤差値をプロットしたものである。図7により、学習回数が増加すると2乗誤差が減少しているのが確認できる。中間層が2ユニットの時、2乗誤差値は0.10以下では（つまり、誤差関数 E_r は0.008以下であるとき）、収束できなくなる。2乗誤差値は0.10のとき、中間層が3と4ユニットの場合では、学習回数はそれぞれ9341と3128回である。一般には2乗誤差の値が最も小さくなる中間層ユニット数が用いられる。したがって、中間層ユニット数4はこのニューラルネットワークに最適であることが分かった。

未学習試料のしわ等級予測の精度を検討するために、22枚試料の内の3枚を残した。また、教師データをモデルに与えるときに、なるべく小さいしわの等級値から大きい等級値まで幅広く、バランス良く選択した。ここでは、試料19枚（No. 1 ～ No. 19）のデータを教師データとして、誤差関数 E_r が0.005とし、中間層ユニット数4で、学習回数8811回の場合の学習結果を綿布のしわ等級予測モデルとして用いたことにした。

3.4.3 学習後のニューラルネットワークの再現性

学習したニューラルネットワークの動作の再現性を検証するため、入力層には学習に用いたときと同じ19枚試料の教師データをしわ等級予測モデルに与えて計算した。図8から、予測モデルにより得た各試料のしわ等級値と実験値の相関関係は0.90で、危険率0.1%であることが分かった。図中の直線はしわ等級の実験値と予測値が等しい場合を示す。各試料の学習結果が直線から非常に近いことによって、このモデルの再現性は良好であることが分かった。

3.4.4 ニューラルネットワークによる綿布のしわ等級の予測

しわ等級予測モデルの有効性を調べるため、教師データ以外の未学習のデータを入力した場合のしわ等級を求めめた。表2の未学習試料3枚（No. 20, 21, 22）のデータを入力して、しわ等級を予測した。それらの予測値、実験値、両者の差を図9に示した。図から、3枚の試料に対し、予測値と実験値の差はそれぞれ0.2, 0.21, 0.15であった。予測値は実験値よりやや高いが、このニューラルネットワークによる綿布のしわ等級の予測が良好に行われていることが確認できた。
4 結論

CCD レーザ変位計という新しい方法を用いて、布のしぶわの 3 次元輪郭を測定し、しわを定量的に評価することが可能である。得られた結果は次の通りである。

1）CCD-LDS システムの測定精度はしぶわの形状の測定に対して十分である。

2）フラクタル次元 D の自然対数値としぶわ等級の間に高い相関関係（R＝0.98）がある。したがって、フラクタル法により、CCD-LDS システムによる定量的評価の可能性が示された。

3）縫布の力学特性や織物組織の構造特性中で、しぶわ等級に対しては、カーフアクタ C との相関が最も高く、引張り特性の直線性 LT、曲げ剛性 B に対する曲げヒステリシス幅 2 HB の割合 2 HB/B、せん断剛性 G に対するヒステリシス幅 2 HG 5 の割合 2 HG 5/G および自重 W とも比較的高い相関が認められた。

4）中間層は 4 ユニットである予測モデルが最適で、学習後のニューラルネットワークの再現性が高いことが分かった。この予測モデルを用いて、未学習試料について、しぶわ等級評価を行ったところ、素早く十分精度よく予測することができた。

文献
1. C. O. Bostwick; Tefno, No. 3 (1961)
8. M. Matsudaira, J.Han, and M. Yang; J.Textile Engineering, 48, NO. 1, 1 (2002)
10. J.Han, M. Matsudaira and M. Yang; J.Textile Engineering, 49, NO. 1, 1 (2003)
11. Toshio Mori, Tomiji Wakida and Yoshimiti Endou; Sen’i Gakakaiishi, Japan, 55, 424 (1999)
18. Zhifeng Su, Jian Han, Mingzhuang Yang and Mitsuo Matsudaira; Sen’i Gakakaishi, Japan, in press (2003)

22. T. Mori; *Kaiseigaku Zasshi*, 1, 51, 147 (2000)
