Studies on Turning of Difficult-to-Machine Materials with Actively Driven Rotary Tool
—Thermal aspects of spinning round insert—
Graduate School of Kanazawa University: Yuuya Uhehara
Kanazawa University: Akira Hosokawa, Takashi Ueda, Ryutaro Tanaka, Tatsuaki Hurumoto

Turning characteristics of austenitic stainless steel SUS304 with an actively driven rotary lathe tool is invented from the thermal aspects. The tool temperature during one revolution of this spinning tool is measured using a newly assembled two-color pyrometer. There is an optimum tool rotational speed at which the tool temperature is at a minimum with respect to the cutting conditions.

1. 総 言

チタン合金やNi基合金などの難削材の旋削加工においては、切削温度の上昇や切りくずの凝集などによる工具損傷が大きな問題となっている。このため、通常のバーを用いた旋削ではなく、工具回転（Spinning tool）による旋削加工が提案されている(1)。これは円形工具をモータによって動的に回転させながら旋削を行うもので、切れ刃は加熱（切削時）と冷却（空転時）が繰り返されるため、工具寿命の増大が期待される。しかしながら、その加工特性、特に工具がどのような熱負荷を受けているかについては明らかになっていない。

そこで本研究では、非接触で微小領域の温度測定が可能な光ファイバ型2色温度計を用いて、スピニングツールの加熱－冷却特性を測定し、工具への熱負荷の面から本加工法の有効性を検討している。

2. 実験装置および実験方法

2.1 実験装置

実験はミリング旋盤（NL2000Y/500；森精機製作所）を用いて行った（図1(a)）。工具温度は、切削速度および空転時の冷却特性を測定した。工具材はSUS304を用いた。工具には、TiAIN-コーティングド硬硬使用した。

2.2 スピニングツールによる旋削加工

図1(a)に実験装置を示す。図1(b)に示すように、工具をアップカット方向（反時計方向）に回転させながら乾式およびMQLで外周旋削を行った。MQL加工時に使用する油剤は生分解性ミストオイルで、供給量は27ml/hである。実験は主として工具回転速度を変化させて行った。実験条件を表1に示す。

3. 切削点温度測定

3.1 温度測定方法

温度測定にはファイバ連結型2色温度計を使用した。温度計の構成を図2に示す。ファイバ-Aは円筒状工作物の内部に組み込まれており、これによりファイバ-Aは工作物とともに回転する。ファイバ-Aの受光面は工作物表面に貫通した測定孔（φ1.1mm）に挿入されており、工具が測定孔を通るとき工具から放射される赤外線を受光する。ファイバ-Aにより受光された赤外線はもう一方の固定されたファイバ-Bに非接触で伝送される（ファイバカプラ）。2種類の光電変換素子へと伝送される。

2色温度計とは対象の温度を2種類の光電変換素子の出力比から求めるもので、測定値が測定対象物の反射率に依存しない特徴をもっている。

Table1 Cutting conditions

<table>
<thead>
<tr>
<th>Workpiece</th>
<th>SU304, Inconel718</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diameter</td>
<td>d_w</td>
</tr>
<tr>
<td>Cutting with</td>
<td>l_w</td>
</tr>
<tr>
<td>Tool</td>
<td>TiAIN-coated carbide</td>
</tr>
<tr>
<td>Diameter</td>
<td>15.8 mm</td>
</tr>
<tr>
<td>Operating parameters</td>
<td></td>
</tr>
<tr>
<td>Cutting speed</td>
<td>v_w</td>
</tr>
<tr>
<td>Work revolution</td>
<td>N_w</td>
</tr>
<tr>
<td>Revolution ratio</td>
<td>N_r/N_w</td>
</tr>
<tr>
<td>Tool rotational speed</td>
<td>V_f</td>
</tr>
<tr>
<td>Feed</td>
<td>f</td>
</tr>
<tr>
<td>Depth of cut</td>
<td>a</td>
</tr>
<tr>
<td>Cutting type</td>
<td>DRY, MQL</td>
</tr>
<tr>
<td>Flow rate of oil mist</td>
<td>q</td>
</tr>
<tr>
<td>Mist pressure</td>
<td>P_m</td>
</tr>
<tr>
<td></td>
<td>200 m/min</td>
</tr>
<tr>
<td></td>
<td>950 - 1079 min$^{-1}$</td>
</tr>
<tr>
<td></td>
<td>1/1000 - 6/1</td>
</tr>
<tr>
<td></td>
<td>0.05 - 286.6 m/min</td>
</tr>
<tr>
<td></td>
<td>0.3 mm/rev</td>
</tr>
<tr>
<td></td>
<td>1.0 mm</td>
</tr>
<tr>
<td></td>
<td>DRY, MQL</td>
</tr>
<tr>
<td></td>
<td>27 ml/h</td>
</tr>
<tr>
<td></td>
<td>0.5 MPa</td>
</tr>
</tbody>
</table>
3.2 実験結果（切削点温度測定）
工具温度と工具回転速度の関係を図4に示す。ここでは切削速度
V_t (工具物回転数 N_t) を200m/minとし、工具 - 工具
物回転比 N_t / N_w すなわち、工具回転速度を変化させた。

図より、全体的に $V_t = 250$mm/min程度まで乾式、MQL加工
ともに工具温度は工具回転速度が増加するにしたがって減少す
ることがわかる。この理由として、工具回転数が増加するに
従って回転工具の加熱 - 冷却サイクルにおける加熱時間が減少す
るためと考えられる。また、工具空冷時の冷却効果も効果的
に作用しているものと思われる。

一方、工具回転速度が $V_t = 250$mm/min以上になると温度は再
び上昇に転じている。これは冷却よりも工具 - 切りくす間の摩
擦熱の影響が大きくなったためだと考えられる。このことから
工具の回転速度には温度特性が存在し、工具温度の低下が顕著に
なる推奨工具回転域 (V_t=50–250mm/min) があることがわかる。

ここでMQLの効果をみることを、前記の推奨工具回転速度域
($V_t=50–250mm/min$) においては、ほぼ50°Cの温度低減効果が得
られている。極低工具回転速度域においてはその効果がみられ
ないが、これは工具がとんど回転しないため十分な量のオイル
リリースが切削点まで供給されなかったためと考えられる。一
方、高工具回転速度域では、工具 - 切りくす間の摩擦熱によっ
て十分な油膜が形成されないためと思われる。

4. 工具の空冷時の冷却特性

4.1 温度測定方法

図3に示すように、光学ファイバーを回転工具の遠方および
遠方の周囲に設置して、空冷時の温度をファイン型2色温
度計を用いて測定した。ファイバーの設置位置は、遠外の場

Fig.3 Measuring method of tool temperature in air cutting

![Fig.3 Measuring method of tool temperature in air cutting](image)

$V_t = 200$mm/min
$
\phi = 1.0$ mm
$q = 0.3$ mm/rev
$q = 27$ ml/h

Fig.4 Change of tool temperature against tool rotation speed

![Fig.4 Change of tool temperature against tool rotation speed](image)

切削点から90°、180°、270°、すくい面の場合切削点から180°、
270°である。

4.2 実験結果（工具空冷時の温度測定）

図4に工具の冷却特性の測定結果を示す。図中の$\theta_t = 0$°の
事実を$\theta_t = 3$°的方法によって得られたものであるが、図にみるように、工
具の空冷 (冷却時間の増加) とともに工具のすくい面・遠方面の
温度が下がっている様子がわかる。通常の旋削における工具温
度はすくい面の方が遠方面より高温であるとされているが、ス
ピンシングツールでは両者に顕著な差はみられなかった。これ
より、スピニング工具では切れ刃マチッピング近傍が最も高温な
っていると考えられる。

ここで乾式とMQLの温度測定結果を比較すると、MQL加工
において、すくい面・遠方面温度よりもおよそ40°C程度工具
温度が低減されていることがわかる。これは、§3の結果とほぼ
同じである。

5. 結 言

スピニングツールによるステンレス鋼SUS304の旋削加工時
における工具温度をファイバー型2色温度計を用いて測定を行っ
た。以下に得られた結果をまとめめる。

(1) スピニングツールにおける旋削加工では、工具温度の低
下が顕著になる工具回転速度が存在する。また、MQL切削
では乾式に比べ工具温度が50°C程度低減される。よっ
て、本方法は工具温度が高温となる難削材の旋削加工
において有効であると考えられる。

(2) すくい面と遠方面において顕著な温度差がみられないこ
とから、工具温度は切れ刃マチッピング近傍が最も高くなる
と思われる。工具は空冷時において乾式・MQLともおよそ
40°C以上冷却される。

謝 詞

本研究の遂行にあたり、工作機械の無償貸与をいただいた
MTTRFならびに鴻渕精機製作所精機に深謝する。

参考文献
1) Hosokawa,A., Tanaka, R., Furumoto, T., Ueda, T.: Turning of Difficult-
to-Machine Materials with Actively Driven Rotary Tool, CIRP Annals,
2) Ozawa, M., Hosokawa, A., Tanaka, R., Furumoto, T., Ueda, T.: Minimum
Quantity Lubrication Turning of Ferrous Metals by means of Fiber Tool
Temperature Measurement Using Fiber-Coupled Two-Color Pyrometer,

Fig.5 Tool temperature in air cutting

![Fig.5 Tool temperature in air cutting](image)