1. 緒言
材料の応力-ひずみ関係は、ひずみ速度や温度に依存することが知られている。そのため、機械や構造物の衝撃被害に対する解析や塑性変形時における加工パラメータの決定の際には、ひずみ速度や温度の影響を考慮する必要があり、これまでにもひずみ速度および温度依存性を考慮した構成式が幾つか提案されている。しかし、それらの多くは弾性が複雑であり、実用的なものは少ない。そこで、本研究では転位論より、ひずみ速度および温度依存性を有する簡便な動的構成式を提案するとともに、SS400鋼を供試材として、以前に提案した手法により試験片中に含まれる材料定数の決定を行った。

2. 動的構成式と材料定数の決定法
2.1 動的構成式
本論文で対象とするひずみ速度および温度下では、塑性変形の速度と温度に対する依存性が熱活性化過程で進行する転位の運動で説明されると考えられる。転位論によれば、熱活性化過程がアレニウスの式に従うとし、塑性せん断ひずみ速度は次式のように表される。

\[\dot{\gamma} = N b \exp \left(-\frac{U}{kT} \right) \]

(1)

\(\gamma, \dot{\gamma}, N, b, v, U, k \) および \(T \) はそれぞれ塑性せん断ひずみ速度、可動転位密度、パースベックレットの大きさ、熱エネルギー、転位の振動数、活性化エネルギー、ボルツマン定数および温度を表す。また、以上に示す変数および変形過程の進行の大部分は、転位の熱活性化過程によりパーキル・ボルツマン・セノンシャルを越えることにより生じると考えて次式に示す動的構成式を提案している。

\[\dot{\varepsilon}_p = \dot{\varepsilon}_v \exp \left(-\frac{D}{T(\sigma_s + \sigma_p)} \right) \]

(2)

ただし、\(\dot{\varepsilon}_p, \sigma_s, \sigma_p, D \) および \(T \) は定数であり、\(\sigma_s \) および \(\sigma_p \) は応力および降伏応力を示す。なお、上式は塑性ひずみに対する動的転位密度の増加を考慮しているが、本研究の範囲では、可動転位密度の増加による影響を示す定数 \(C \) の影響が無視できることを確認した。したがって、ひずみ速度および温度依存性を考慮した動的構成式として、Aを定数とし、次式を提案する。なお、\(\dot{\varepsilon}_v \) は単位ひずみ速度を表す。

\[\dot{\varepsilon}_p = \dot{\varepsilon}_v \exp \left(A - \frac{D}{T(\sigma_s + \sigma_p)} \right) \]

(3)

2.2 材料定数の推定方法
提案した動的構成式内の未知材料定数 \(A, D \) の推定は以下の方法を行う。まず、ホプキンソン棒形一軸圧縮試験を行い、入力棒に作用するひずみ速度の変化を測定する。次に、測定した衝撃速度波形を境界条件として、式(3)を用いた弾塑性波伝は解析を行う。さらに、解析より得られるひずみ速度変化の計算値に相関するようにガウス・ニュートン法を用いた非線形最小二乗法で動的構成式内の材料定数を決定する。

3. 試験方法および結果
3.1 高温下圧縮試験方法
動的構成式の決定に必要な測定値を得る衝撃試験に、前述のようにホプキンソン棒形一軸圧縮試験機を用い、常温から673Kまでの様々な温度において、最大ひずみ速度が500、1000、1500および近傍の動的応力-ひずみ関係を測定した。衝撃試験における試験片の加熱には小型炉を用い、予め加熱した試験片を試験片に炉から試験機に迅速に移動させることにより試験を行った。また、静的試験には万能試験機を用い、常温から523Kまでの温度域において試験を行った。応力は試験機に付属のロードセルより、ひずみ速度は非接触変位測定器を用いて測定した。なお、静的圧縮荷重は市販のニクロン線を試験片に直接巻きつけて加熱した。

3.2 試験結果
試験の結果を実験値を示す変数と熱的応力と温度の関係を図1に示す。図よりひずみ速度の上昇に伴い、応力値も増加し、ひずみ速度依存性が確認された。また、クラフトが全体的に下がりであるから温度依存性も確認された。しかし、衝撃試験では約673K付近、静的試験では約523K付近以降において温度に対する応力の変化が緩やかになる。温度依存性の影響が見受けられる。現段階では提案する動的構成式によって高精度域内の材料の変形挙動を表することは困難であるため、本研究では対象とする構成式の適用温度範囲を293Kから473Kまでとしたい。

4. 構成式の決定
4.1 静的構成式の数式化
提案した動的構成式を用いるためには、対象とする温度域での材料の静的な応力-ひずみ関係を必要とする。しかし、各温度域において静的試験を行い、応力-ひずみ関係をあらかじめ明らかにしておくことは難しい。そこで、任意の温度域における材料の応力-ひずみ関係に関しても数式化を行う。一般に、金属材料の真応力-真ひずみ関係は、各温度での応力-ひずみ関係を数式化することができる。なお、本研究で対象とする温度域は数度程度と小さく、また塑性域のみを考慮することから、式(4)を基本として応力と公称ひずみの関係を数式化に表す。

\[\sigma = K(e + \alpha) \]

(4)

ここで、\(e \) は弾性ひずみ、\(K, \alpha, n \) は温度に依存する材料定数である。検討の結果、293Kから473Kまでの温度範囲において、
Table1 Material constants of eq.(6)

<table>
<thead>
<tr>
<th>K_0(MPa)</th>
<th>1.02×10^7</th>
</tr>
</thead>
<tbody>
<tr>
<td>K_1(MPa/K)</td>
<td>-0.502</td>
</tr>
<tr>
<td>α_0</td>
<td>2.32×10^3</td>
</tr>
<tr>
<td>α_1</td>
<td>-2.22×10^4</td>
</tr>
<tr>
<td>n_0</td>
<td>5.80×10^3</td>
</tr>
<tr>
<td>n_1</td>
<td>2.69×10^4</td>
</tr>
</tbody>
</table>

Table2 Material constants of eq.(3)

<table>
<thead>
<tr>
<th>A</th>
<th>12.38</th>
</tr>
</thead>
<tbody>
<tr>
<td>D(MPa·K)</td>
<td>11.41×10^3</td>
</tr>
</tbody>
</table>

5. 結言

本研究で得られた結果を以下に要約する。
(1)温度およびひずみ速度依存性を共に表現し得る箇な動的構成式を転位論に基づき提案した。
(2)提案する動的構成式中の未知の材料定数を、ひずみ速度波形の測定値と、構成式を用いた弾塑性波伝は解析の計算結果が一致するように非線形最小二乗法で決定した。その結果、近似対象となる測定値を良好に近似可能な材料定数が決定された。
(3)決定された材料定数を用いて種々の温度およびひずみ速度下で、弾塑性波伝は解析を行い、得られた計算値と測定値を比較したところ、いずれの条件でも両者はよく一致し、提案した動的構成式が広いひずみ速度および温度下で、適用可能であることが確認された。

参考文献
(1)林卓夫・田中吉之助, 衝撃工学, 日刊工業新聞社, (1988), 64-70
(2)S.TANIMURA,Int.J.Engng Sci., 17-9(1979), 997-1004
(3)矢矢宏・松本明廣・安藤聡・茶谷明義, 非線形最小二乗法による応力の動的構成式推定, 機論, 59-563, A(1993), 1720-1725