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Abstract— The numerical property of the re-
cursive least squares (RLS) algorithm has been ez-
tensively studied. However, very few tnvestiga-
tions are reported concerning the numerical behav-
ior of the predictor based least squares (PLS) al-
gorithms that provide the same least square solu-
tions as the RLS algorithm. This paper studies the
numerical property of the backward PLS (BPLS)
algorithm. First, the stability of the BPLS al-
gorithm is verified by using state space method.
Then, finite-precision arithmetic error effects on
both the BPLS and the RLS algorithms are pre-
sented through computer simulations. Some im-
portant results are obtained, which demonstrate
that the BPLS algorithm appears quite robust to
round-off errors and provides ¢ much more accu-
racy and stable numerical performance than that
of the RLS algorithm under finite-precision imple-
mentation.

1. INTRODUCTION

In solving the least square problem for transver-
sal adaptive filters, the recursive least squares
(RLS) algorithms are well known. The principle of
the RLS algorithms is based on the so-called ma-
trix inversion lemma in order to get the recursive
equations. The RLS algorithms are characterized
by a fast convergence rate and a high computa-
tional load. As concern to the numerical property,
much research has been done. The results show
that divergence phenomenon may occur if finite-
precision arithmetic is used or the input signal is
ill conditioned [1]-[4].

Another approach for solving the least square
problem is to use the fast RLS (FRLS) algorithms.
The principle of these algorithms is different from
the RLS algorithms in that the relations of the for-
ward and backward predictors and the gain vector
are exploited, resulting in a fast convergence rate
with much less computation. However, the numer-
ical instability problem of the FRLS algorithms is
so serious that they cannot be continuously used in
real applications, especially under finite-precision
implementation [5],[6].

The reason for the instability of the FRLS al-
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gorithms is that the hyperbolic rotation (causing
the eigenvalues to go out of the unit circle) has to
be operated on the backward predictor to get the
recursive equation for computing the gain vector
[5]. So if we assume the recursion involve both
order- and time-update, the least square solution
can be obtained by using either forward or back-
ward predictor. Therefore, the stable structure
of both forward and backward predictors are re-
mained. This leads to the algorithms we called
the predictor based least square (PLS) algorithms
[7]-

Although the PLS algorithms can be easily de-
rived from the FRLS algorithms, very few investi-
gations concerning their numerical properties are
reported in the literature. In Ref.[7], we have
introduced the PLS algorithms and investigated
preliminarily their numerical performances. It has
been shown that the PLS algorithms perform more
stable than the RLS algorithm when the order of
adaptive filter is large and the forgetting factor is
small. Furthermore, since the symmetric property
of the input correlation matrix is exploited, the
computational load of the PLS algorithms is less
than 50% of that of the RLS algorithm. Neverthe-
less, the investigation presented there was carried
out by using a 32-bit floating-point arithmetic, the
stability of the PLS algorithms in a finite word-
length implementation remains unknown.

In this paper, the numerical property of the
backward PLS (BPLS) algorithm is further stud-
ied. First, the BPLS algorithm is given in Sec.2
for convenience of analysis. In Sec.3, the stabil-
ity of the BPLS algorithm is analized by using
state space method. A state space model is set up
for representing the relation between the order-
update of the gain vector and the time-update
of the tap-weight vector of the backward predic-
tor. The stability of the BPLS algorithm un-
der finite-precision implementation is also anal-
ized. These analyses are confirmed through com-
puter simulations in Sec.4. A floating-point arith-
metic with various word-length is used for simula-
tions. Finite-precision arithmetic error effects on
both the BPLS and the RLS algorithms are in-
vestigated. Two and three dimensional views of



the eigenvalues of the state space model in finite-
precision implementation are also presented. Fi-
nally, the conclusion is made in Sec.5.

2. BACKWARD PLS ALGORITHM

Experiments show that the numerical behavior
of the forward PLS (FPLS) algorithm is very sim-
ilar to that of the BPLS algorithm. So only the
BPLS algorithm is studied in this paper. For con-
venience of analysis, we write the BPLS algorithm
below.

Ym(n) = ¢L(n = Lum(n) +u(n —m) (1)
Bm(n) = ABm(n = 1) + 1m(n)¥i(n)  (2)
gt (m) = %m(n) 3)
cm(n) = em(n = 1) = Ym(n)km(n)  (4)

Kmia(m) = [

m(n)¥m(n) [em(n
st 0]
a(n) = d(n) — wig(n — upm(n) (6)

wy(n) =wum(n—1)+a(n)ku(n)  (7)

where ¥,,(n) is the backward a priori prediction
error, Bp,(n) is the minimum power of the back-
ward prediction error, ym(n) is the conversion
factor, kn(n) is the gain vector, cm(n) is the
tap-weight vector of the backward predictor and
u,,(n) is the tap-input vector, a(n) is the a priori
estimation error, d(n) is the desired signal, ws(n)
is the tap-weight vector of the adaptive filter.

To initialize the BPLS algorithm at time n = 0,
set ¢m(0) = O0p, Bm(0) = 6, km(0) = 0, and
Ym(0) = 1, where m = 1,2,---M — 1, M is the
order of the adaptive filter, § is a small positive
constant.

At each iteration n > 1, generate the first-order
variables as follows:

k() = g (®
nin) = 2= ©)

where ®;(n) is the first-order of the input corre-
lation matrix that satisfies

®,(n) = A®;(n — 1) + v%(n) (10)
where ®,(0) = 6.

3. STABILITY ANALYSIS OF BPLS
ALGORITHM

In this section, the stability of the BPLS algo-
rithms is analyzed by using state space method.

The analysis is based on the following conclusion
(8]:

The linear time invariant discrete system in the
following state space form

x(n + 1) = Ax(n) (11)

is stable (but not asymptotically stable) if and
only if the eigenvalues of A, X;(j = 1,2,-.-J)
satisfy

1Al <1 (12)

Applying the conclusion to the linear time vari-
ant discrete system expressed by

A(m,n)x(m,n) (13)

we get the stability condition as |A;(m,n)| < 1
where j=1,2,---J,m=1,2,---M,n=1,2,.-,
Aj(m,n) are the eigenvalues of A(m,n).

The state space variables we choose for the
BPLS algorithm are the gain vector and the tap-
weight vector of the backward predictor. If the
order- and time-update of these variables are sta-
ble, then we can say that the BPLS algorithm is
stable. .

To set up the state space model for the BPLS
algorithm, we substitute Eq.(4) into Eq.(5) and
use Eq.(2) to write

AB.(n —
km+1(n)= B,f;('n) 1) [kmo(n)]
rm(n)¥m(n) [cm(n —1)
Bm(n) [ 1 ] (14)

Let k7, +1(n) denote the vector of the first m ele-
ments of kn41(n), then Eq.(14) can be rewritten
as

x(m+1,n+1)=

+

rm(")'»bm(")
+ ——————cp(n—-1 15
e en(n=1) (15)
The state space representation of the BPLS al-
gorithm can be expressed by combining Egs.(15)
and (4), which is written as
Bm!ﬂ- m Ym
[ +1(")] [ Bm(n) L, * ;... n)nlm]
cm(n) "pm(n) m - I,
kf,(n)
.[cm(n_ ) (16)
where I,, is an m-by-m identity matrix.
For convenience of analysis, we write Eq.(16) in
the scalar form as
ABm 1 m Ym(n
[ mm(n)] [—4—%3,.?,. A ]
CmJ(n) _"pm n) 1
f
ek 4

cm](n—l

kL, (n)=
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where the subscripts m, j are the m-th order and
the j-th element, respectively. In practical com-
putations, we begin withn=1andm=1---M -
1,j<m,thenn=2---

The characteristic equation of Eq.(17) is

A2(m,n) = (B1 + 1)A(m,n) + B; + B2 = 0(18)

’\Bm(n— 1) and ,32 — 7m(n)¢3n(n)
Bm(n) Bm(n)
From Eq.(2), we know that §, + 82 = 1. Ap-

parently, this result is also true in finite-precision

implementation. Hence the two roots of Eq.(18)
are

where ) =

_hA+1 (Br+1)* -4
T2 2
In Appendix, we show that 0 < 8, < 1 is satisfied

in both infinite and finite precision arithmetic. So
two cases should be considered:

+

’\1,2(m1 n) (19)

1. If B, = 1, then (B1+1)2—4 = 0,50 A;(m, n) =
A2(m,n) = 1.

2. If0 < B; < 1, then (B, +1)2—4 < 0, resulting
in two complex roots:

G1+1 .

Al,g(m,n) = 5 :[:]

2

Eq.(20) is equivalent to

/\1,2(771, 'n) = eijo (21)
. _ .1 \/4—(ﬂ1+1)2 _
with 8 = 1 sin (—2 ) r 6 =
cos™! (El—ét— .
So in both cases, we get
[A1(m, n)| = [Az(m,n)| =1 (22)

It is interesting to note that even though the
state space model of the BPLS algorithm is time-
varying, the two eigenvalues are independent of
order m and time n and will always locate on the
unit circle. We also note that the round-off errors
produced by finite-precision implementation will
not cause the eigenvalues to go out of the unit cir-
cle as long as the condition 0 < 8; < 1is held. In
another word, the round-off errors will cause the
eigenvalues of Eq.(19) only to change their posi-
tions on the unit circle but without going out of
it. These conclusions are also supported by vari-
ous simulation results as shown in Sec.4. There-
fore the stability of the BPLS algorithm is verified.
The stability of the FPLS algorithm can be proved
following the same procedure.
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Like the RLS algorithm, the BPLS algorithm
will be unstable when the forgetting factor A = 1.
This is because the value of v, (n)¥2 (n) in Eq.(2)
is non-negative. If A = 1, then the value of B,,(n)
will be increased without bound and eventually
leads to the overflow of these variables.

4. FINITE PRECISION ARITHMETIC
ERROR EFFECTS

Extensive studies have been made concerning
the numerical stability of the RLS algorithm.
However, much of them considers only single or
local round-off error effects [2]-[4]. In this section,
a complete finite-precision implementation will be
carried out on both the BPLS and the RLS algo-
rithms in order to give a fare comparison for these
two algorithms.

An adaptive equalizer is employed for the sim-
ulation. Its block diagram is shown in Fig.1.
The blocks enclosed by the dashed line are imple-
mented by using a floating-point arithmetic that
consists of an 8-bit exponent and a variable man-
tissa (including a sign bit). The block labeled Q
quantize double-precision input data into finite-
precision ones that are used in the adaptive filter
algorithm. The impulse response of the channel is

9

h(n) = { H{l+cos(F(n—-2))} n= 1,2',3

0 otherwise
(23)
where W controls the eigenvalue spread x pro-
duced by the channel. We choose W = 3.5(x ~
47). White noise and speech signal are used as the
input u(n) to the channel. the additive noise v(n)
is a white noise with zero mean. The variances of
the channel output and v(n) are unity and 0.001,
respectively. The desired signal d(n) is obtained
from u(n) after a delay of seven samples. The

adaptive equalizer has 11 taps.

The RLS algorithm used in the simulation is the
stable version (version II) as shown in Ref.[9]. The
initial parameter 6 = 0.1 and the forgetting factor

oo | “ 5]
J S | =
da(n)
utn) + ve® | agapive Equaizer | Yol
&—e Fitering part wu (r) -
* eqfn)
v(n) Gain Vector Calculator
additive noise Prediction Part  ky, (n)
Finite-Precision Implementation

Fig. 1. Block diagram of adaptive equalizer
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Fig. 2. Finite-precision MSE of BPLS algorithm (white
noise input). Double precision (solid line), 8-bit (dashed
line), 6-bit (dotted line) and 4-bit (dashdot line).
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Fig. 3. Finite-precision MSE of RLS algorithm (white noise
input). Double precision (solid line), 9-bit (dashed line)
and 8-bit (dotted line).

A = 0.95 are used in both the RLS and the BPLS
algorithms.

For white noise input, the simulation results are
shown in Fig.2, 3 and Table 1. For speech signal
input, the speech signal is shown in Fig.4 and the
simulation results are shown in Fig.5, 6 and Table
2. The results are obtained by ensemble averaging
of 200 independent trials.

For the simulation results of the BPLS algo-
rithm, it has been confirmed that the eigenvalues
Ar2(m,n)(m=1,2,---M,n=1,2,---500) of the
state space model are all on the unite circle. Fig-
ure 7 and 8 show only one of the results, which
indicate the positions of the eigenvalues with re-
spect to time recursions. From Eq.(20), the real
part and the imaginary part of the eigenvalues can
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TABLE 1

MSE of BPLS and RLS Algorithms (white noise input)

Mantissa Bits BPLS Algorithm | RLS Algorithm
Double precision 0.005522 0.005522
16 0.005523 0.005523
10 0.005600 0.005611
9 0.005710 0.006966 .
8 0.005959 unstable
6 0.013074 unstable
4 0.157987 unstable
be computed as
1/ABnp(n—1)
Re(Ay 2(m,n)) = = (—— + l) 24
(A1,2(m, n)) = 5 B (%) (24)
' 1 ABn(n—1) \2
Im(A 2(m,n)) = += 4—(m_ 1)
(A2(m,n)) = +2 Byt
(25)

Since the difference between X ;(m,n) and
A2(m,n) is a sign in the imaginary part, only
A1(m,n) is shown in the figure. As expected, the
finite-precision implementation does not make the
eigenvalues go out of the unite circle even though
the speech signal is used as input. Figure 7 also
shows that most of the eigenvalues are concen-
trated on the unit circle near the real axis. This
is because the forgetting factor A = 0.95 chosen
for the simulations is near to 1, the real part of
the eigenvalues in Eq.(24) tends to unity and the
imaginary part in Eq.(25) tends to zero.

These results clearly demonstrate that in both
white noise and speech signal input cases, the
numerical performance of the BPLS algorithm is
very robust to finite word-length implementations.
On the other hand, the RLS algorithm is seriously
affected by finite-word length as well as the char-
acteristic of the input signal. This is consistent
with the analysis provided in Ref.[10] in which

Speech Signal Used for Simulation

3,

Magnitude

[} 50 100 150 200 250

Iterations

300 350 400 450 500

Fig. 4. Speech signal used for simulation.




Mean-Squared Error of BPLS Algorithm
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Fig. 5. Finite-precision MSE of BPLS algorithm (speech
signal input). Double precision (solid line), 8-bit (dashed
line), 6-bit (dotted line) and 4-bit (dashdot line).
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Fig. 6. Finite-precision MSE of RLS algorithm (speech
signal input). Double precision (solid line), 16-bit (dashed
line) and 15-bit (dotted line)

it was shown that when computing in an m-digit
arithmetic, the numerical problem of the conven-
tional RLS algorithm will occur if the eigenvalue
spread of the inverse correlation matrix x(®~1(n))
approaches 2™. It was also pointed out that the
use of the square root RLS algorithms will dou-
ble the arithmetic precision, therefore the numer-
ical problem will not occur until 22™. So we may
conjecture that the numerical performance of the
BPLS algorithm is also superior to that of the
square root RLS algorithms.

5. CONCLUSION

The numerical property of the BPLS algorithm
has been further studied. First, the stability of
BPLS algorithm in finite-precision implementa-
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TABLE 2

MSE of BPLS and RLS Algorithms (speech signal input)

Mantissa Bits BPLS Algorithm | RLS Algorithm
Double precision 0.002599 0.002599
16 0.002618 0.003324
15 0.002631 unstable
8 0.003293 unstable
6 0.014401 unstable
4 1.175265 unstable

tion is analyzed by using the state space method.
A state space model has been set up for repre-
senting the relation between the order- and time-
update of the gain vector and the tap-weight vec-
tor of the backward predictor. It has been shown
that the eigenvalues of the state space model are
independent of order and time recursions of the
BPLS algorithm and always locate on the unit
circle. So the BPLS algorithm is stable. The
stability of the BPLS algorithm has been con-
firmed through computer simulations on a vari-
ety of floating-point word-length implementations.
Some important results have been obtained, which
clearly indicate that the BPLS algorithm provides
a much more accurate and stable least square so-
lution compared with the RLS algorithm. We be-
lieve that it is very promising that the use of the
RLS algorithm and its square root versions may
be replaced by the PLS algorithms.

APPENDIX
ABp(n —1)

To show 0 < §;, = Bo(n)
m

Eq.(2) as
Bm(n)=ABm(n — 1) + 1m(n)5,(n)

=A8 4+ 30 A T () ()

i=1

< 1, we write

(A.1)

where A is the forgetting factor and § is a small
positive constant. From Eq.(A.1), we can see
that the value of B,,(n) will never be negative
if Ym(?) > 0. In another word, if ¥, (i) > 0, then
0 < /\Bm(z )
Bm(’)
ing Eq.(3), which involves only an order-update
recursion. So at every time-update recursion, we

A016—1) (cee Equ.(9)). Ap-

0]
parently, 0 < ¥;(¢) < 1. Hence, By(i) > 0 or

ABi(i— 1)
0< —————= Bl(‘l)

Eq.(3) as 7a(i) =

< 1. Ym(i) is computed by us-

begin from v, (i) =

< 1. Then we compute v5(¢) from
ABi(i—1)
B (i)

71(2). From finite-
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Fig. 7. Positions of eigenvalues (shown by circles) on the
unit circle (three dimensional view). Simulation conditions:
Speech signal input, 6-bit mantissa, A\; (M, n), where M =
11 and n =1,2,---500.

precision arithmetic we know that for multiplica-
tion with fractions, overflow can never occur since
the product of two fractions is a fraction. Fur-
thermore, if fractions are greater or equal to zero,
then the product can never be negative. There-
fore, 0 < v2(¢) < 1 is true. Following this pro-
cedure, we can conclude that 0 < ¥,(7) < 1 is
always satisfied despite finite-precision implemen-
tation.
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