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Abstract

We investigate critical temperature of the classical O(NN) spin model in two

dimensions. We show that if NV is large and there is a phase transition in
the system, the critical inverse temperature (3. obeys the bound [.(N) >
const. Nlog N.
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I. INTRODUCTION

Quark confinement in 4 dimensional non-abelian lattice gauge thoeries and spontaneous

mass generations in two dimensional (2D) non-abelian sigma models are widely believed
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[18]. These models exhibit no phase transitions in the hierarchical model approximation of
Wilson-Dyson type or Migdal-Kadanov type [10], but we still do not have a rigorous proof
for the real system.

We recently considered a block-spin-type transformation of random walk which appears
in the O(V) spin models [3,4], and showed that [11] the correlation functions are represented
by self-avoiding walks on Z”. This considerably improves our previous estimates for the

inverse critical temperature (3. of the system

&> Hv ’
N~ u2—-1

as N — oo (1.1)

where i, € (v,2v—1) is the connective constant of self-avoiding walk on Z" (p = 2.653 - - -).
In this paper, we amalgamate our previous methods with the idea of the N=! expansion
[14,15] and the cluster expansion [5,9,13,16], the technology to represent quantities of infinite
volume limit by finite volume quantities. In a spirit, our single block cluster expansion is
similar to that in [1]. Our main conclusion in this paper is

Main Theorem The critical inverse temperature $.(N) of the two-dimensional O(N)

Heisenberg Model obeys the following bound for large N :
Be(N) > const. N log N (1.2)

where const. > 0 is independent of N.

This result is announced in [12]. As will be discussed, for the dimension v > 2, we have

Be(N)
= Zuy (1.3)

Go(0) =

where Gy(x) is the lattice Green’s function on the v dimensional lattice Z”. Therefore a
strong deviation exists in the N dependence of the critical temperature of the 2D O(N)
Heisenberg model. We expect a combination of the present method and renormalization
group type argumemts will establish our longstanding conjecture on the 2D sigma model.

The v dimensional O(N) spin (Heisenberg) model is defined by the Gibbs measure

@) exp|—Ha (¢ H5 o7 — 1)dg;. (1.4)




Here A C Z" is the large square with its center at the origin. Moreover ¢(z) =
(p(z) M), - d(x)N)) is the vector valued spin at x € A, Z, is the partition function defined

so that <1 >=1. H, is the Hamiltonian given by

Hy = -"Y S ). (15)

2 lz—yl1=1
where | — y|; = >, |x; — y;| and B(N) is the inverse temperature. To appeal to the 1/N

expansion [15], we set
B(N) = NpB. (1.6)

We organize the paper as follows: in Sect.2, we represent the theory in terms of a
determinant by introducing an auxialiary field 1) and integrating out the spin variables. We
discuss the reason why phase transitions may not occur in two-dimensional systems which
have O(N) symmetries. In Sect.3, we argue the polymer expansion when |¢(z)| are all small.

Sect.4 is the main part of this paper in which we prove that the contributions from large
fields are small and negligible. Since ¥ (z) can get large, we decompose A into two regions,
the large and the small field regions and we estimate their contributions separately. The
polymer expansion will be done combining these two regions. In Sect. 5, we represent the
free energy by the convergent polymer expansion, from which analyticity of the free energy
follows. We discuss some related problems in Sect. 6.

In Appendixes, we calculate decay rates and inverses of Green’s functions used in this
paper. We also discuss polymer expansions of Green’s functions and Gaussian measures

restricted to subsets of Z2.

II. DETERMINANT REPRESENTATION

We substitute the identity §(¢* — 1) = [exp[—ia(¢? — 1)]da/27 into eq.(1.4) with the
condition [3,4] that Ima; < —vN3. We set

2

Ima; = —NB(v+ %), Rea; = VNG, (2.1)



where m? > 0 will be determined soon. Thus we have

N 9 Ao dab
Z, — CA|/”,/eXp[_25 <¢,(m2_A+\/ZN¢)¢>+Zi\/Nﬁ¢j]H¢§ﬂ%

= CA|/--~/det(m2—A—|—\/2i_@/)) N/2exp fﬁz¢j Hd¢]
— A det(m N/Z/ /F (2.2)

where ¢ are constants which may be different on lines, A;; = —2vd;; + 0j;—;|, 1 is the lattice

laplacian and

F(y) = det(1 + —N/2 exp[imﬁzzpj]. (2.3)

2iG
Y
Moreover G = (m? — A)~! is Green’s function (matrix) discussed later. In the same way,

the two point functions are given by

di;

o (2.4)

<owte> = 5 [ [t = A+ P T

where Z is the obvious normalization constant. We choose m > 0 so that G(0) = /3, where

G(x) z/ / e [ 27: (2.5)

1 1
= € — . 2.6
m2+22(1—cospk) m2—|—41/’m2] (26)

K

—

=
I

This choice is possible for any 8 (and N ) if and only if ¥ < 2, that is, if and only if

Go(0) = G(0)|n2=0 = 00. In other words, we can rewrite eq.(2.3) as

F() = deta(l + %wm exp|~Tr(G)?) (2.7)

for any 3, only for v < 2, where det 3(1 4+ A) = det[(1 + A)eA+4%/2].

The factor exp[iv/NBGY 1, in (2.3) is the reminiscence of the double-well potential
[16(¢? — 1) which is responsible for phase transitions. Then roughly speaking, the disap-
pearance of exp[iv/N3 Y 1,] in (2.7) means absence of the effect of the double-well potential

and is consistent with absence of phase transitions [2].



An explicit calculation shows that m? = g71(y/1+432 — 203) for v = 1. For v = 2,

G(0) is expressed by the complete elliptic integral of the first kind F(k,7/2) = [ /2 dp(1 —
k2 sin? ) ~1/2;

- / dp

2m Jo \/(1 + 2¢ — cosp)(3 + 2 — cos p)

1 1
= Ept ) = Lio@) + §1og2+ Jlog 1],
2 2m

G(0) =

where e = m?/4 and k = (1 +¢)~!. Then the condition G(0) = 3 implies that
m? ~ 32e 1 as f — oo (2.8)

which is consistent with the renormalization group arguments, see [6] and references therein.

If v > 3, such an m > 0 exists if § < Gp(0). If 5 > Gy(0), there exists spontaneous
magnetization in the system [7]. That is NGo(0) > B.(N) > N/pu, for v > 2.

If m is chosen so that G(0) = g, dets(l + 2iGy/v/N)"N/? is almost equal to
exp[4iTr(Gv)?/(3v/N)] and is regarded as a small perturbation to the Gaussian measure
~ exp[—Tr(Gy)} [1dy. Namely F(¢) looks like |F(¢)] = det(1 + 4Gy Gy /N)~N/* which
is strictly positive. If this is justified, then from eq.(2.4), we have exponential decay of the

correlation functions :

<¢0¢m>~—/ /m—AJr— ol JF (v |Hd¢]
2 1
< |s:1pp(m _A+ﬁ¢)01’

< (= A)gl ~ el

III. POLYMER (CLUSTER) EXPANSION IN SMALL FIELD
A. Polymer Expansion

Let

dual) = det PO expl- < v, 5] T 242 (31)



be the Gaussian probability measure of mean zero and covariance %C where C~! = G°? and

G°? is the matrix given by G°*(x,y) = G(x — y)?. The partition function Z, is given by

Zy = Zo [ det;™ 1+\§%G¢)d/~m(¢), (3.2)
Zoo = det 7V2[C7Y) = det VY?[C), (3.3)

up to a non-important multiplicative factor. Our purpose is to discuss analyticity of the free
energy ap = — limlog Z, /|A| in 3. Since m is analytic in 3 > 0, the assertion is trivial if
there is no determinant. In the present case where we have the determinant, which is quite

non-linear and non-local in 1(z), we represent Z, in terms of polymers:

Theorem 1 The partition function Zy is represented by polymers px, X C A:

Z >, Ilrx,

'UPX =A i

Iy = Zo , (3.4)

where X; are unions of squares A C A of size L x L (L >> 1 is determined later ) and
XinX; =0, (i #j). Gwen 3 >0, if Nis chosen large, N > explconst.3], there exist

strictly positive constants 6. and m. such that
lpx| < exp[—denx log N — m.L(X)], (3.5)

where nx is the number of squares A; in X and L(X) is the length of the shortest connected

tree graph over centers of A; C X. The free energy is the convergent series of px.

Each px is analytic in §. Thus the Main Theorem follows from Theorem 1 since a is
represented by the convergent series of px. The proof of this theorem is, however postponed
until Sect.5. Here we restrict ourselves to the small field case where the expansion can be

easily done by the N~! expansion.

B. Small and Large Fields

We let G = [G°?]'/2. Then C and G have the following Fourier expansions:

2

T ip(a—y) dp;
_ / / @0 5=2(p) T =, (3.6)
—m J—T i=1 T




= [ [l o

i) = | [ [ ot g ﬁdk ea g (58)

m?+8" m
Here and below, ¢ stands for generic constant independent of 3 which may change from
place to place even in the same equations, and ¢y, ¢, - -+ stand for similar constants which

are kept in the same equations. The following lemma is proved in Appendix A:

Lemma 2 Form < 1, the kernels G, G, G and C' ezhibit the followng exponential decay:

Glr,y) < clog(l+ ) expl-m.la — ] (39)
Gl y)] < cloa(l+ ) expl-mlz — y]] (3.10)
G @)l < oL+ m?)expl-mlz ], (3.11)
)| < 1+ m?) expl-mlz — ] (312)

where |z| = \/23 + 23 and m, > 0 is a constant defined by 2 cosh(m,) = 2 + m?.
We introduce the notion of large field region R and small filed region K:
R={x;N°<[¢(2)]}, K=A-R (3.13)

where N = N () and a positive constant § < 1/2 is chosen so that if |¢(z)] < N° for all x,
then N~=1/2||GY/2¢G'/?|| << 1. Then the determinant is perturbatively expanded and the

higher order terms are negligible. Since spec G € [(8 + m?)™!

,m~2 and m~2 ~ (32)"Let™,
these conditions are satisfied if exp[1273] < N for large 3. The following is one of the most

typical choices satisfying these conditions (though they are not optimal ) :

5= 112 N(B) = exp[40073]. (3.14)

Remark 1 For matrices A and B, we define Ao B by (Ao B)(x,y) = A(z,y)B(x,y). This
is called the Hadamard product of A and B. It is easy to see that Ao B >0 if A >0 and
B>0.



Remark 2 The kernel functions C(z), G(z) and G (x) decay faster than exp[—v/2m|z|],
see Appendiz. Of course, m, < m, m, = m — O(m?). However since m, is almost equal
to m in the present problem where m << 1, we use m for m, for notational simplicity in
the remaining part of the paper. If 3 < O(1), it is enough to choose L (the size for the
expansion) and N larger than some constants for the convergence. So it suffices to consider

the case 8 >> 1.

Remark 3 In this paper, we use free boundary conditions for Green’s function G and its
inverse, and we assume that the 1) field distributes only in the large square region A C Z2.
Other boundary conditions can be easily adopted without changing the main estimates in the

present paper.

C. Polymer Expansion in Small Field Region

We first consider the case of R = (). In this case, we decompose A C Z? into squares
(denoted A or A; below ) of size L x L whose centers are at A N LZ?. Collections of these

squares are called paved sets. We also define Ly << L, where L and Ly are chosen so that

L<<N<<e™ G(Ly)=N"72 (3.15)

For this to be satisfied, we take L slightly larger than m~!.

Typically we may take L =
20m~tlog N so that e™ = N?Y in which case Ly = L/10. These satisfy the conditions on
L and N.

Let 7(¢) be an even, positive and decreasing (in |¢| ) C*° function such that

1 for [yp| < N°
T(¢) = : (3.16)
0 for || > N° +h
We may take the limit h — 0 after all calculations (limy,_o7 (1)) = 8(N° — [¢])), but we can

keep h as a non-zero constant (say 1).

We multiply

1= Y ()™ (Un) (3.17)

KCA



to duy, where 7¢(¢p) =1 —7(¢), R= K= A — K and 7(¢x) = [loex T(¥(x)), 7¢(Yr) =
[Tocr 7¢(¢(2)). We call K the small field region and R = K¢ the large field region. Then

Zy = Zo Y Z(R), (3.18)
R
2(7) = [ et (14 ZoGU)r () (U )din (), (3.19)
We put Zx(R) = ZoZ(R) and we first consider the case R = (:
Z(R=0) = Zw [ madun(v). (3:20)
= det ;Y21 + 2Ly I1 ( (3.21)

\/_ zEA

We introduce interpolation parameters s; into dua (1)) to expand the measure [5,16]. Let

Y C A be a paved set consisting of p squares {Ay,---,A,}. Let {A; A; } be any

PR
permutation of them such that A; = A; and let @ be a map from {1,---,p — 1} into itself
such that a(k) < k. Then we have a set of ordered links {(ja(i), ji+1);¢ = 1,---,p— 1} which

is regarded as a tree graph 7" over {A;} with root A;. Let

Cy = xyCxy, (3.22)

where yy is the charcteristic function of Y. For a given permutation and a function a = ay,

we define

Cy({s}) = [11((T = s)Pi + s:)]Cy, (3.23)

My =

Tl
E[ ]‘[ (3.24)

where P; are operators which bisect paved sets: P,Cx = Cx\x, + Cxnx;, X; = U, A,

See Appendix C for the construction and for the proof of next theorem, see [5,16]:
Theorem 3 Z)(R = 0) have the cluster expansion

Zy(R =10) A (3.25)

=7 |Y o ¥ IS

TUMY;=A i




where Y; are paved sets such that UYY; = A and Y;NY; =0 fori # j. Let Y = U,_ Ay be

one of Y;. Then Sy 1is the differential and integral operator given by

Sy = ;/01 sy -+~ dsy 1M (s) [ de ({5}, 0)

p—1 1 92
<II| > X 2 Clan ) grrsare— | (3.26)

k=1 kaAja(k) yk+1€A]~k+1

where Y _p is the sum over all tree graphs T" = {(jar), i)} over {j1, ja, -+, Jp} (J1 = 1) and

duy (s}, 0) = det Py (9] expl— < 0. €7 (sh > TT d‘j(;).

Here Cy ({s}) is given by (3.23) and depends on permutations only.

(3.27)

There are many graphs 7" which have the same links and vertices but belong to different

permutations {ji, ja, -+, jp} of {1,---,p}. The following lemma is well known [5,16]:

Lemma 4 The measure My [[ds; is the probability measure in the following sense:

1 p—1
> [ M ldsi=1, (3.28)
7.7(T")=T""° 1

where Y .qpry—r means the sum over tree graphs T which have the same links with T

Let

2

for simplicity, and let A = UY_,Y; be one of the partitions which appear in eq.(3.25). Since

{¢y,} are coupled in the determinant, we introduce interpolation parameters s;; and set

Ay = Y Ay + D (Avy, + Ay, y,) — A+ B(s), (3.30)
1<J
A= ZAsz B(S) = Zsij(AYi,Yj + ijyi), (331)
1<j

in the determinant, where

Ay, = XviAaxy:, Aviy; = Xy Aaxy;- (3.32)

10



We iteratively apply the identity f(1) = Jy dsdsf(s) + f(0) to dets(1 + A+ B(s)). If all s,

are set zero, then the determinant is factorized with respect to ¢y,. We thus have :

SRS HpX].

! UTXi=A i

ZA(R=10) =

Here {X;}}] are partitions of A into polymers, X; N X; =0, (i # j), UX; = A and

= > TS| X dsvayl nx({¥)). (3.33)
P YiU-Un=X V€T ({Yi})
p({3) = ety (14 5 Ay + 5o (v, + Ay ) r0), (3:34)

1<J

where Sy is the interpolation operators on Y defined by (3.26) and

1. UY; = X and Y; are mutually disjoint paved sets,

T({Y;}) is the set of connected graphs (not necessarily trees) over {Y;}?_,,

3. dsy = [1(ij)e dsij and O =[] m@(a/asw) (put s;; = 01if (4,5) € v ).

In the rest of this section, we prove the following theorem which ensures that the free energy

log Zx(R = () is the convergent series of py [13], if N is chosen large:

Theorem 5 Assume that R = () and let n be the number of A in X C A. If N > N(3),

there exist strictly positive constants 6y and mq such that

lpx| < exp[—ndglog N — moL(X)], n>2 (3.35)

pa = exp[-Wal, n=1 (3.36)

where L(X) is the length of the shortest tree graph connecting all centers of squares A; C X,

and Wa is the single square activity defined later.

To prove this, we first set

ax(¥i) = expl—5 V(A B) [ r(w(a), (3:37)
Vi(A,B) = ;Tr <32 - (BliA)2> + ;Tr (1iAB) , (3.38)
V(A B) — 1ogdet3(1+A)+1ogdet4(1+HlAB). (3.39)

11



The derivatives of V; with respect to s;; can be done by the contour integrals:

dtm
<H 83”> nx(s / H i — sw 27rz

where C is the product of the circles |t;; — s;;| = 7;; on C with their radiuses r;; given by

~ 4 -
rij = N° exp[5mdlst(YZ, Y;)], where 6 > 0. (3.40)
Put Bz‘j = 22t1J(GYZY]'¢YZ + GYJYﬂ/JYJ)/\/N Then for |t'Lj| < Tij +1 , We find that

By, )] < const.log(1+m™ N V24 expl- Lz —y),

N|TrXX33XX| < N_1/2+36+3S+QEO|X|,

—2.1 x logm/log N (~ 1/100 if N ~ e*0075), (3.41)

€0

where &g is chosen slightly larger than —21logm/log N so that N > cm~2log(1+m™!) and

some trivial constants can be absorbed by N¢°. We choose 6 > 0 so that

0==—3(00+0)—2e >0. (3.42)

N —

For example, we can choose as § = 1/12, § = 1/16, § = 1/16 — 2g5. Thus we have:

Lemma 6 If N is chosen so large that (3.42) holds, then
| I 9/0sinx| < exp[—nd log N — my > dist(Y;, Y;)]]Inx]| (3.43)
(ij)ey (i7)ey

where my = 4m/5 and 7y are connected tree graphs over {Y; C X}, and n is the number of

the bonds in the graph ~v. Moreover

x| = sup  |nx(t)] < exp[N~°|X]]. (3.44)
{Itsj1<rsj+1}

Lemma 7 Let Ul A, =Y and let x; € A;. Then

n

|/dMY( H&D )

1

¥)| < exp|—ndlog N + N7y (3.45)

12



Proof. Each derivative acts either on det ;W(. -+) or on 7(¢). If it acts on det ;N/2(~ -, it
yields the factor bounded by N~°. (We can get a much smaller factor N~1/6+¢0 this case. )

On the other hand, if 9/0v(x) acts on 7(¢(x)),

= uniless 0 xXr g .
Gy (@) = 0 wnless N? < ()] < N 4

Note that

dv(s) = TTewpl-(a) 222

by the linear transformation ¥ (z) = (Gy'z)(z), where Gy' = \/Cy. Since C~! = G°% and

Cy(s) is a convex linear combination of {Cy,}, we see

2 =< v G 02 (s T

zeY zeY
If [i(z)| > N°, then {y : |z(y)| > N°=0, [ —y| < Lo} # 0 since [¢/(x)| = | T, Gy (2, y)2(y)]
and |G~'(z)] < ¢(1 + m2)e ™. Thus the contributions from the derivatives of 7 are

exponentially smaller than those from the derivatives of dets N/ (-0, Q.E.D.

The single square activity pan = e~"4 is defined by

pa = [ dety™(1+ An)r(va)dpua(¥), (3.46)
Since |log det; "/*(1 4 Ax)| = O(N| TrA3 |), we have W = O(N~1/2+35+3%) which is inde-
pendent of locations of A (JA] = L? < N®0).

Let d; be the number of lines which connect A; with other A; in the tree graph, i.e. d;
the incidence number. Then } 7 | d; = 2n — 2, where n is the number of squares A; in Y.
In this case there can appear d; derivatievs 9% /0 (z)%, x € A; in eq.(3.26). By integration
by parts, we can shift the action of 9/0¢ from 7 to det ;N/z(- -+) or to exp[— < ¥, Cy 1 >].
Lemma 8 [16] With the notation of (3.26) in Theorem 3 (with p replaced by n), let

n—1 n—1 82

F(21,92, , Yn) = | Z:Hl C(xi’y”l)/d'u}/(s’w 1:[ 3¢($i)a¢(yi+1)ny

where x, € Aj, 5 Y1 € A Let v is the tree graph defined by a(-). Then

Jk+1"

(¥)]

- 4 .
ST F(@1, 9, yn) < exp[—n(d — 4eg) log N — ?mEO(X) +N7X] (3.47)
{xkvyk+1}

where x, € Aj, ) Y1 € A and Lo(X) = X jey dist(As, 4).

k41

13



Proof.  Without loss, we assume {j, = k}}_,. Let d; > 1 be the incidence number of the
vertex A;. Since #{A; : dist(A;, A;) < 2,0 # j} =8, > |xi — yit1] is larger than
L di 132
*Z’xz Yirr| + 102 > > le-yl=¢ Z|5L‘z Yit1] +TOZ[§] ;

i xel; y(z,y)€y

where [x] = the maximal integer not larger than z. By integration by parts, we see that

’f(xby% ‘ - ’ H C xuszrl /d,uY (b\Ij‘ (348)
where relabelling {z;, yir1} as {zi, T, Tig, 117, Tip € A,
U= ﬁ 8 77y(¢) (349)
i1 0v(xy) ’
Z n d;—1
e : (3.50)
ST e
H = <y, 0y (s)dy > (3.51)

Rewriting {z;;} as {&}1 72, we put

Z DT He (DS 1 He e, (3.52)

i€l PCI° (j,k)eP
where [ are subsets of {1,---,n — 2}, P are sets of unordered pairs of elements in /¢ and
Hf - 22071(57 <>1/}<C)7 H£1£2 = 2071(51752)- (3.53)
¢

The number of partitions I C {1,---,n — 2} is 2"73 (|I°| must be even) and note that
> I Hye= /ch& )dvi (¢
PCI¢ (jk)eP iele
where dvg(¢) is the Gaussian measure of mean zero and covariance H = 2G°2.
We first estimate the first term of ®, I = {1,---,n —2}:

ZH2|C mz,ylﬂ |H|O €Z7CZ [/qu )H|¢(C’L)||\P|

> <M [/ duy(s,@b)‘lﬂr

where the integral of ¥? is bounded by Lemma 7 ( easily extended to ¥? ) and
1
M = Y IT2(C @y TTIC € 61 | [ i (s TT0G?] (354
Gi

14



We take the sum over {&}}2 C {xg, yrr1}7~ " and put
YooY 20 ONCTHE E)CTHE, Grrn)| = mTHOf (At Ak Tk, Tir1)-
EEAG (k) §'E€EAR 1

Then 6 f(Aagk), Ak+1)(Zx; Ur41) is bounded by
exp[—m{dist(Aqe), Akt1) + dist(Aggw), Tr) + dist(Axs1, Jrs1) }H (3.55)

except for a coefficient O(log*(1 + m™')) which originates from C~' = G°2. Here the
constraints Ty € Agg) and P41 € Agyq do not hold anymore. For w or y4; not con-
tained in {£}17", we put & = xp or Gep1 = Yrrr and put 6 f(Aamys Ari1)(@ry Jrr1) =
20 (g, gk+1)XAa(k) (Tk)XAgy: (Uks1). This again satisfies the bound (3.55).

Assume that A; C A contains d; points of {¢G:}. 1If d;; points in A, couple with di;
points in A; (the same points appear twice in [](¢)?), >jdiy = 2d; and we have the factor
(ZJI') (i%)dij! ( 2d;; for (,4).) Since [];(ds;)! < (2d;)!, we find that

ij

JanTlw)? < TIPS - o)

PN | | |C(dist(A~i,Aj))|§dij
i {dijy; 0L cod ! j
2d;

S H[(2di>!]% 11 Z C(dist(A;, A)))|?

< " P II12dy))2 (3.56)

where ¢y = O(1). Since (2d)! < e24°824 and 16 f(Auky, Akt1)(Zx, Ge+1) is bounded by

4m ) . N . . mL 13
GXP[—? zk:{dISt(Aa(k), Ajyr) + dist(Agy, Tr) + dist(Apr1, Jres1)} — 10 2 [5]3

we see that (2d;)! are compensated and the sum over {&y, Jj41} vields m=4=1),

The coefficients [ [I¢ese @(§)dvy of [Tee He are again bounded by (3.56) by replacing cq
by colog(1+m™1) and 2d; by corresponding incidence numbers. Thus the total contribution
of @ is bounded by 2773 times of the result of [ = {1,---,n — 2}. Q.E.D.

We introduce mass parameters m; for later conveniences :

4
0<m0<m0<m1:%<m2:?m<m. (357)

where Lmgy ~ O(f3) >> 1. The following lemmas are well-known to experts [5,8,16]:
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Lemma 9 ( [16], Lemma A.5 ) For a paved set X consisting of n squares {A;}, let T(X)
denote the set of tree graphs vy over A; and L(X) denote the length of the shortest tree graph
over centers of A; C X. Let dist.(A;, A;) be the distance from the center of A; to that of

A;. Then there exist constants K1 = o(1) and Ky = o(1) such that

(1) Y. > exp[—mo Y diste(A;,A))] < KT, (3.58)
X230 ~eT(X) (ig)€v
(2) Y exp[-moL(X)] < KJ. (3.59)

Proof. (1) Interchange the order of 3y and )_., and take the sum over positions of A; for
each . If A; are distinguishable, the result is bounded by K™™' where K = o(1) since A;
are squares of size L x L and e~™! << 1. However the same configuration is counted n/!

times. Then
m

- . K
> expl—mg Y diste(A;, Aj)] < g

X30 (if)ey

We finally note that the number of tree graphs is n" 2 < nle” to take the sum over ~.

(2) This is clear from exp[—moL(X)] < 3, er(x) €XP[—1M0 X(ij)ey diste (A, Aj)]. Q.E.D.

Lemma 10 ( [5], Appendix C) Let X be a paved set consisting of nx squares A; C X.

Let f(Y) be functions satisfying the bounds
|f(Y)] < exp[—nydplog N — moL(Y)],

where ny is the number of squres A; in'Y and L(Y) is the length of shortest tree graph over
centers of A; C Y. Then there exist strictly positive constants &y (~ 50) and mqo (~ mg)

such that

1

= > TIr) < expl—nxdolog N — moL(X)], (3.60)
D yiu-Ovp=x

where {Y; :i=1,---,p} are paved sets such that X cannot be devided into two disconnected

parts without bisecting some Y;.
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Proof.  We first extract the tree decay factor exp[—nxdolog N — moL(X)] from [T f(Y;)
choosing 9y and my slightly less than 50 and mg. We show that the remaining sum con-
verges. By Cayley’s theorem on the number of the tree graphs with fixed incidence numbers
dy,---,dy, we have
OIS S Ol T e (0]
T {d;} T,{d; Hixed wydp (T,d):fixed

and take the sum over the Y;’s starting from the end branches of the tree. Let Y, be one of
the end branches and let Y; be the ancestor. Fix A; C ¥,NY; and take the sum over Y,,. The
sum is convergent and is bounded by 3=y 50 [ f(Y})]. Next take the sum over A; C Y;, which

1. Repeating this, we see that the sum is bounded by nx[>y 5o |f(Y)]e™ P

yields (ny,)%~
since Y nd /d! < €. €™ is compensated by a fraction of exp[—nydylog N| in f(Y). See
also [5,16] for the detail. Q.E.D.
Proof of Theorem 5. We obtain f(Y) in Lemma 10 from Lemma 8 by taking the sum
over T" in (3.26). This yields a constant less than 1. Thus we obtain f(Y") in Lemma 10.
We determine the parameters 0y and 7i2g. In Lemma 8, X may be single squares A, and
they do not have tree decay factors. Moreover A; and A; may be nearest neighbour each
other and dist(A;, A;) = 1. Then we put dy = (6 — 4¢0)/2 and borrow N=% from N-2% in
eq.(3.47) in Lemma 8 to extract the factor exp[—moL(A; UA;)] = e™F this case. Namely

~ log N
E(Soi(

~ S% if I = 201log N/m). (3.61)

Let T'({Y;}) be the set of tree graphs (no loops) over {Y;} such that UY; = X. Thus applying
(3.43) and (3.47) to (3.33), we have from (3.33) that

BN P B | (A% )(znbw),

uy X 1 T (if)eT

where A(Y) < exp[—nydplog N — moL(Y) + et N7O|Y]|, (c; = O(1)), Y;NY; = for i # j,

and b;; = exp[—go log N — mydist.(Y;, Y;)] comes from 0/0s;; and

dist.(Y;,Y;) =  min _ dist.(A;, Aj). (3.62)

b AiCYZ’,A]’CYj
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Moreover we have put ( effects of loops in T({Y;}) )

1+ Zbié + Z bicbi, + -+ < eXp[Z bij] < i g = O(N_SO),
L# {<m i
Then we can extract exp|—nxdglog N — mgL(X)] choosing dy and my slightly smaller than

do and 7, respectively, to compensate N _5|X | < nxN —d+e0, Finally we use lemma 10 to

prove that the ramaining terms converge. Q.E.D.

Remark 4 We may choose 6 = 5 and o= + so that o= 5 — 30+ 5) — 20 = £ — 2¢0.

Then &y ~ 6 = 3—12 For large N, 6g ~ o and mg ~ .

1
2
IV. POLYMER EXPANSION WITH LARGE FIELDS

We here show that the contributions from large field regions are small and that the
dominant contributions come from small field regions we discussed. The analysis is easy in
two extremal cases where |1)(x)| are very small or very large. If || are small, we expand the
determinant using the N~! expansion, and we extract small fields as exp[— < ¢, C™1¢ >,
leaving large fields untouched. Very large fields are easily estimated by the |¢)|~"/2 behaviour
of the determinant (thus the contribution is small). But it is hard to estimate contributions
from N° < |[¢p(z)| < NY?* and from [¢)(x)| < N° near R. We bound their contributions by
the stability. This makes our analysis complicated ( crude ).

For the large field region R introduced by [T,cr 7¢(¢(x)), we define another large field
region RY = R(Lg) which includes points of K = A — R near R:

R’ = R(Ly) = {x € A;dist(x, R) < Lo}. (4.1)

Let D be the smallest paved set containing R°. We denote D the union of D and those
A C K nearest to D. We set 9D = D — D, and we call it a collar [8] or a corridor [16].
Decompose D into connected components D;, and set R; = D; N R and RY = D; N R°. Then
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It is convenient to define two types of small field region:
K'=A—-D, K=A-R° (4.4)

In the following, we may write

21 21

where o = Xz, X1 = Xro, 1.6, Ag = Ag, A1 = Apo, Aox = A po and so on when there is

no danger of confusion. Then we can factorize the determinant (see Remark below):

det(1+ Apr) = det(l + Ago)det(1 + Az — Wg), (4.6)
1
Wf( = Af(J%OmARO’f(. (47)

Here and hereafter we regard Az, G and so on as operators on C*, and Ag, g,, Gr,.r, and

so on as operators C — CF2 where R, R, Ry C A.

Theorem 11 Let D; be any connected paved set and let R; be a large field region consistent
with D;. Put R} = {x € D;;dist(x, R;) < Lo}. Then the following (stability) bound holds:

J1det 721+ Age)| T dua) = expl— < g, Ty, > —Elwz,)] (48)

TER;
E(vs) = fOrRirN‘b (4.9)

where R; = RI\R;, < VY., Tivp, > is a positive bilinear form of ¢y defined later and

O(1) (=1/24) is a strictly positive constant discussed later.

Theorem 12 The small field contribution is represented by the polymer expansion:

/exp[— Z <p,Tibp > —|—gTrAI~<] det M2(1+ Az —Wi) ] dy(x)
; ‘ ‘ 2 rxeK ﬁ

= Zo (de“ ) [Z > HﬁXi] (4.10)

Z

U"Xi:K

where Cr = [xzG*x |~ px satisfies the following bound uniformly in V¥g(z):
1px| < exp[—moL(X A D) — onxlog N + wL3|Rx|6log N|, for nx > 2. (4.11)

Here Rx = RN X, nx the number of unit squares A C X such that AN R° = (0, and

L(X A D) is the length of the shortest tree graph over D, C X and centers of A C X.
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The reader should note that these theorems mean that
ZoZ(R) ~ Zg exp[— Y riun Eg)]
i R;

and px ~ px exp[— miny, E (¥, )] (The estimate of g, in Z; remains.) Since the factor
E(vr) compensates mL3|Rx|dlog N in px which originates from small fields near Ry, we

obtain sufficiently small py. We prove these theorems in the rest of this section.

Remark 5 For matrices A,B, C' and D of sizes £ X £, m x m, m x £ and £ X m rspectively,

we have (blockwise diagonalization [11]):

A D 1 0 A 0 1 A7'D
- . (4.12)
C B CA ' 1 0 B-—CA™'D 0 1
A. Polymer Expansion of A; with Large Fields
1. Properties and Expansions of J(R)
We note that
Weg = Gg ROJ(RO,wRo)GRO R—ﬁﬁbk, (4.13)
, w TN
1
J(RY ¢po) = (4.14)

Gro = 5
where Gro = XpoGXpro, G ro = XgGxro and so on, and Yo is regarded as the diagonal

matrix: po = diag(¢(z),r € R°). We first study properties of the operator J(R, ).

Lemma 13 The following relations hold:
(1) ||J(R,vR)|| < ||GR'| <8+ m? uniformly in R # (0 and ¢p.

(2) [Gr — iR (z,y) decays exponentially fast uniformly in R # () and ¥g :
[Gr — ivg'] H(x,y)| < const. Gr(x,y). (4.15)

Proof. (1) Since m™2 > Gy > (m?+8)~! > 0 uniformly in R # 0, G}/* and G5"/* satisfy

inequalities of the same type. Moreover since G;{l/ 2¢§1G}}1/ ? is self-adjoint, we see that
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|11 — igG;/Q@Z)}EIG;/QH > 1. Then the conclusion follows from

- 1 ~1/2
J(R,) = GRH*—— G2
( ) R 1— @G;«zl/zw}}lG;/Q R

(2) We first note that
1 1
S S S ¢
G G i
where ( [17], Theorem VIII.1, or use (4.12))

Gr' = xr(—=A+m*)xg — Bor, (4.16)
Bor = E(Xre(—=A+m®)xpe) " E", (4.17)
E = Xr(—=A)Xge (4.18)

Here Byg is a positive operator bounded by xr(—A + m?)xx (by the positivity) and has
non-negative matrix elements. Bpr(z,y) # 0 if and only if (z,y) € OR x OR where OR =

{x € R;%y € R°, |x — y| = 1}. Then we have the convergent Neumann expansion

1

i :
¢RXR(—A +m?+i)xr — Bor

eGP W) [i(BaRGW»"]

n=0

where GR(¢) = [xr(—=A +m? + i) xp] " and

GR(W)ayl < GR(Y = 0)sy

[eGR(W)ayl < (4+m*)GR () = 0)sy

as is proved by the random walk representation of GE(1)). Putting all ¢ = 0, we find that

()] < (44 m?) Y Galm QIGR Gy
GR “bR ¢

Then (2) follows since |Gz (¢, y)| = 2(m? + 4)d¢, — G (¢, y) by (4.16). Q.E.D.

Lemma 14 J(R,v) admits the following cluster (random walk) expansion:

J(R, ) = Y 6J(X,¢) (4.19)

XCR
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where X are intersections of R with paved sets (X = U;(A; N R)). Moreover §J(X,)
depends only on (x), v € X. If diam(X) > /2(2L + 1), then

10J(X, )| < exp[—mi L{X)], (4.20)

10J(X, )2y < expl—miL(X,z,y)], (4.21)

where 6.J(X, 1))y, is the (x,y) component of 6J(X,¢) (x,y € X ) and L(X,z,y) is the

length of the shortest walk from x to y through all centers of Ay C X, x & Ny, y & Ay.

Proof. We apply the expansion procedure by Federbush and Brydges to G,}l. For any
X CR, X =U(A;NR), we choose AN R C X and s; € [0,1] and define

G(X,91) = [(1=s)(Gx\a, +Ga) +5:Gx]
J(X,51) = [G(X,s1) —ihx] ",

where h = VNy~'/2, G = xxGr'xx and A; N R is denoted as A; for simplicity. Then

J(X)=J(X,s; =1) and J(X, s1) is bounded uniformly in h and s;, and we have
J(X) = J(X,s1 =0) +/ T(X, 51)ds:
— JX\AD S J(A) - Y / J(X, )G (X, 51)8G T G(X, 51) (X, 51)ds1
No#A,
where 6G;' = GEA], + GZ;AZ, and we have used
0
—G(X,s1)=— > G(X,51)|Ga} s, + Gaba,| G(X, 1)
951 A2CX\A o o

and so on. We choose A, # A; and s, in the next step and continue the process inductively.
(See Appendix and the proof of Theorem 3).
Let J(R).y be the (z,y) component of J(R). Then we have

= D 0J(X)ay, 0J(X)zy =D _0J(X

XCR

where T" are tree graphs over {A; N R, -+, A, N R} with root Ay and 0.J(X)r(z,y) is given

by
ke I/M H ds; Z (X, s,)G(X, 87)]w’gw(l>5G;1<1) sy
: T 1 k;=0,1
(k1) 1 (kn—1) -1
XGmﬂmvfw(z)5G€w<2>7mw(z> o Gmw(n—mvfw(n—l)5G4w(n—1)»mw<n—1> (G(X, 5,)J (X, 87>]mw<n71>’y
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with GO = G(X,s,) and GV = G(X,s,)J(X,s,)G(X,s,). Here v are tree graphs over
{Aj,,---, A} (j1 = 1) and for given tree v = {b1,bo, -+, by_1}, by = (lg,mi) (L, my, €
{j1,--+,jn}), ™ stands for permutations of {b, = (¢, my)}7'. Moreover s; are introduced
following the tree graph . (See Theorem 2 for the notation.)

G~(X,s,) is a convex linear combination of xy (—A 4 m? — Bsg)xy, Y C X. Then the

non-diagonal terms of G~!(X, s,) are negative (ferromagnetic), and we have
|G(i) (X, 87)ayl < cm™? exp[—maz|x — yl],

uniformly in {s;} and X, where i =0, 1, my = 4m/5 and ¢; is a positive constant.
If A; and A; are nearest neighbour and « € A; and y € A; are close to each other,

—mL

some of the matrix elements (5Gi_j1)xy may be large. Since e << 1, this happens only

for blocks of form UY_; A; with diam(UA;) < v/2(2L + 1) (thus p < 4). Then for n > 4

1
_ k _
|G(S)p7£w<l>5G57r1(1)»m7r<1)G( 1)(S)Pvf7r(1) o (SG@rl(nfl)vmwwfl)G(s)’mr(wl)vq| = exp[_ngEW(’Y) (P, 9)];

Ew(?’) (p7 Q) = diStc<p7 gw(l)) + diStc(&r(l); mw(l)) + diStc<m7r(1)> gﬂ(Q)) +-+ diStc(mw(n—1)7 Q)7

where dist.(7, j) = dist.(A;, A;). We can then extract either the tree decay factor of v
exp[—my (diste(p, Lr(r) + diste(Ma(n1), 7)) 11 exp[—m, dist.(4, j)], (4.22)
(ij)ev
or the decay factor proportional to the length of walk, exp[—m)L(A,, {A}, A,)] with the
remainder bounded by Y exp[—m) Ly (p, q)] where m; +m] = my/5. We complete the

proof by Lemma 9, by replacing m/1 by m1 =m/10 < m'1 to compensate K. Q.E.D.

Remark 6 In the proof of Lemma 14, we may introduce interpolation parameters s; in such

a way that
Gr — Ggr(s) = (1 — s)(xmaGrXra + XaGrxa) + sGr

in the denominator of J(R,1)), though Gg'(s) may not be ferromagnetic this case. See
Appendiz B. Moreover if R = UR; and {R;} distribute dilutely, we can just Taylor-expand

the off-daigonal terms Gg, g, (i # j). This is the standard random walk expansion.

23



2. Proof of Theorem 11 (Large Field Contribution )

Let us consider the contribution from the large field region R® = URY, RY = R°N D;:

dety* (14 Am) = |[[det; (1 + AR?)] det 3 (1 +3 5Aij) , (4.23)
i i#i
5A; — ARg,RQHlA ENC . — (4.24)
] & "OR  2i
Since R} and R} are separated by distance more than 3L, we sce that
16441l < m™* exp[—mdist(R{, R})] x min{|R?[, |R}|}
< min{|R?|,|R?|}exp[—?dist(R?,R?)] (4.25)

uniformly in ¢(z),z € R°, where ||A|[F = Tr|A]” (p > 1). (Note that [|A|]; = Tr|A| <
S |A(x,y)| and ||A]]2 = X |A(z,y)|?. ) Then it is enough to consider det(1 + Apo).

Let 07 be a positive constant such that 0 < 26 — 307, and set R; = L; U M; where
Li={z € Ry |[¢(x)] > N¥*"}, M; = {z € Ry; [yo(x)| < N30}, (4.26)

(L stands for Large, and M stands for Medium. Only in this subsection, L and L; stand for

regions of very large fields ). We apologize for the abuse of notation.) We also introduce

Li(Ly) = {x € R};dist(x, L;) < Lo}, (4.27)

7

M;(Lo) = {z € R);dist(x, M;) < Lo}, (4.28)

7

and set ]\;[i = R? —L; = MlUI%Z For notational simplicity, we omit the subscript ¢ for a while
and we denote RY by R, R; by R and L; by L and so on. We first extract ¢, = xz¥xz:

det(1 + Apo) = det(1 + Ayr) det [1 + (T — 5TM)2;V¢M , (4.29)

VN

where we have used the following abbreviations:

21
A = x1Gxr—=r, 4.30
L = XL XL\/NwL (4.30)
Ty = Gy — GM,LGzlGL,Mv (4.31)
W N
0Ty = Gyry [(GL =20 I Gﬁ] Gpr (4.32)

24



Lemma 15 If {c; < [¢(x)] < co;2 € A}, 0 <¢; , then

1/2 1/2 C1 (&)
spec|G { YaG 7| C [mQ el W] (4.33)
Proof. Since (8 +m?)™t < f, f ><< f,Gaf ><m™2 < f, f > for f € CA, we have
1GP0aGL P = < waGl?f, GavaGl?f >
> (8+m?) " < paG’fvaGY f >
> (84 m?) 7 (inf [p(@)") < f.f>.
The other inequality is also immediate. Q.E.D.
Lemma 16 The matrices Ty; and 0Ty; have the following properties:
Ty = (Gro)st = X GroXir (4.34)
/2 172 ,1)2
Ty = GL+tl, (4.35)
1/2 —4 m .. .
ity (x,y)] < em™“exp — (dist(x, L) + dist(y, L) + | — y])| , (4.36)
16T ll1 < |L|N°Feo, (4.37)

Proof. To show (4.34), we take the inverses of the both sides of the block-diagonalization of

GRO > 0:

Gr 0 1 0
Gpo=U U, U =

0 Ty Gy Gt 1

To show the second, using 7Y% = 2 [°(T + u?)~'du/7, we have

“1/2 _ —1/2 p—1)2
T = a il
~1/2 1 1 1 du
- _.2/4————7G~ Gr &
M Gy+u2 MEF(u) ™Gy +u?r

Fr(u) = G — GGy +v*) "Gy

t

where |G]T~41(x,y)| < ce ™Y |Gy (z,y)] < clog(l +m e ™ ¥ (z € M, y € L) and

Fr(u) Yz, y) < ce™™l#=vl 2 y € L uniformly in v > 0. In fact F; ' is essentially equal to
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(Ggs)r. Then £7%/2 has the decay property (4.36) except for the coefficient. We multiply
Ty; to the expression of T]\;[U ? to obtain (4.35).
To estimate |[6T|]1, we expand (G — ingz)’l into series of G;* which converge abso-

lutely since [v/N /¢y (z)] < N~%. Since [|G.'|| < 8+ m? and ||Gy. |13 = 5, G%, (z,y) <

c|L|log?(1 4+ m~')ym~2, (4.37) follows from the definition (3.41) of . Q.E.D.
Let
det(1 + Aro) = det(1+ Ap)det |1 — 0T, ! d1T~2i~ 4.38
et( + R0> = et( + L) et - MW et( + Mﬁwl\/[) ( . )
20y
Using det(1 + A) = exp[Tr(A + O(A?))] and |det(Az)| < |det(1+ Ar)|, we have estimates
1
|det ~2 (1 — 0T i) < exp[[L|N'7F<], (4.39)
TM n 2051
N/2
N VN
|det 72 (1+ AL)| < [ ] det ~N2(Gy)
e
1 2|¢p()] 2
< exp|—=N {1og ( —log(8 +m*) ¢ (4.40)
53 o (2202 —soggs
Therefore we have (using 2/5 instead of 1/2) :
Lemma 17 If N > N(() so that §; > €q, then
C 2 v(@)
x
M Yar
It remains to estimate the final determinant in the R.H.S. of eq.(4.38) :
21 4 . A
det 214+ —=T"2y;T"?)| = det M*(1+ —[Tp + T
| de (+\/N YT = det N1+ [To + 1))
= exp[—\Ifo — \Ifl] (442)
where T'= T, and
Ty = T T’ Xapso T 0T, (4.43)
Ty = TV T *X ey T 05 T2, (4.44)
N 4 -
Uy = ZTr log (1 + NTO) : (4.45)
N 4 1 A 1
VU, = —Trlog | 1+ — < T - . 4.46
= s (14 St ) .
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Both 7}, and T} are positive. Put

Oy = TrTy = > Ul VTo (2, y)¥(y) =< Y Toty >, (4.47)
zyeM

o = Ty = > o(@)Ti(x, v)d(y) =< vy Ty >, (4.48)
z,yeM

T = (T3 Xrwon T ) © Ty, (4.49)

To = (T Xinron T ) 0 Ty = T + 07, (4.50)

T = (G Xro\R(Le/2 O ) © G ro. (4.51)

where M = RO\L and note that M\R(Lo/2) = R°\R(Lo/2). Since Gy (z,y) < ce™™l*¥l
and G}f(:c, y) < ce”™*=¥ (Appendix B), we have

|(G}%/OQXRO\R(Lo/Q)G%{OQ)(xvy)| S N_1+60a if v € Ra Yy € R07

(G X\ m(zo/2 G )@, y)| < N2 itz € R,y € R.

Since ¥; = V5 + Y, we have

Qy = <V, Tp > +62o, (4.52)

6®g| < const.|L|LZNY/2+2e=mbo/2 < |[|N~1/2H20+20, (4.53)

The argument of the same type shows that ||Th/N|| < N=1+20+e0 and ||T}/N|| < N21+eo,
We remark the following facts: Let A and B be any positive matrices. Then

(i) Tr(zA — 2% A%) < Trlog(1+ A) < TrA for any z € [0, 1].
(ii) Ao B > cdiag(A) if B > cl1, where 1 is the identity.
The fact (i) is trivial and the fact (ii) follows from Ao B = Ao (¢l + (B —cl)) > cAo 1
where A o1 = diag(A). Then we have

Dy > Uy > (1 - O(NH))Dy = By + O(N1H20t2|R|),

d; > Uy > (1 - O(N 2220 ) N30p,
(we used (i) with 2 = N~3% in the second.) To obtain the lower bound for ®; > 0, we apply

(ii) by setting A = T2\ ar(1,/2T"/? and B = T, where T = Ty;. Therefore we have

Bz Y [ > TG o?] V(@) (1.54)

zeM |CER(Lo/2)
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since ||T|| > (8 + m*)™!, see Lemma 16. Here again by Lemma 16, we have
Yeermo TV (#,)? = Gy(z,2) — O(N"Y*e0) = g — O(N~/2+e0) >> 1 for z €
R(Ly/2)\L(Lo/2). Thus we find that

o, >

©ol®

> U(x)? (4.55)

x€R(Lo/2)\L(Lo/2)

Therefore we choose §; > 0 so that
0y =20 — 301 > 1.2 x gy, 01 >1.2x% ¢, (4.56)

which are satisfied by § = 1/12 and 6; = 05 = 1/24. (d2 > 1.2 X ¢¢ is needed later.)
Proof of Theorem 11. Putting 7 =7;, R = R;, L = L; and so on, we have

|det —N/2(1+AR?)’ < exp[— < ¢R,->7;¢Ri > _|_|LA|N—1/2+5+30 +N—1+25+250|R.|

LNy 2y Nog U2

a:ERi(LO/Q)\Li(LO/Q) D el

where ¢; > (3/9. We fix L; C R; and integrate over ¢(x), x € R; noticing that [.° e dx =
e /25(1 + O(s71)) and ¢1|L;(Lo)|[N% < (1/15)8;|L;| N log N:
/|det N1 4 Ap)| T dv(e) T dve)
zeL; LEERZ'\LZ'

- . ~ 1
< e YR TR oxp[—(ey — o(1))| Ry N%2 — 551|Li|Nlog N]

Take the sum over all L; C R; and put c; = ¢; — o(1) — O(e™V) > 3/10. Q.E.D.

B. Polymer Expansion of the Gaussian Measure
1. Stability of Small Fields

For any large field region R, we integrate the following function:

=) = [] D(Agy) det =5 (1437 64g) ety (1+ Ag = We)e ™V r(t) (), (4.57)
where 1 -

D(Apy) = dety"*(1+ Apo) exp[< ¢z, Tibg, >], (4.58)

T, = (G Xpo\ri(ro/2 G ) © G (4.59)
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and

V = <p, G%p > +6Vig = Vo + W, (4.60)
Vo = < i, G%g > +2 < g, G%Ypog > + > < Vro\r;s Tivrovg, >, (4.61)
N N 1
=T (Wi = Ag povrApo ) — o T(AgWg = S W) (4.62)
N 1
Vi = > <vp, Tabp > —ETr(Wf( + AW — §W§(). (4.63)

(Remark that R; = R%\R;). V; does not depend on ¢ (z), z € R, and V; contains 9 (x),
x € R only through Wy. W is bounded uniformly in ¢)(z), x € R, because of the small field
region surrounding R. We would like to stress that < 1z, G*tpo\ g >= _%TIAI?,RO\RARO,K

is extracted from TriVy.

Lemma 18 The following bounds (stability bounds) hold uniformly in | (x)| > N°, z € R
and (x) € [-N°,N°], z € K = A\R:

V| < const. N~Y/2+20%e0|p|, (4.64)
Vo > —O(|R|N~Y/*#20+20), (4.65)

Proof. To show the first, we note that

Apo 1
Wi = Ag po\rApo g = —AR,RO\RmARO,R + AR,RTAROARO,R‘

Then the trace of the left hand side is bounded by Y, O(N~3/2+0+2%0| R, |).

To show the second, we introduce the positive function

P() = <4, [(GXa\R(Ly/2)G?) © Gl >
= < Uz, (G xmr(oGY?) 0 Gl > +2 < U, (G2 X\ R(2o/GY?) 0 Gl >
+ < g, (G2 xa\R(1o/2)GY?) 0 Glibg > (4.66)
which approximates Vj and interpolates K = A\R® and R = R°\ R. Since

G}{OQXRO\R(LO/Q)G}g/Oz = Gpro — G}Q/OQXR(LQ/%G}{/OQ’

G2 XM\ R(1o2)GY? = G — G xRy /G,
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and Gro = G on C*’, we see that G}%/(?XRO\R(LO/Q)G}%/OQ is equal to G2y A\ r(Lo/2)GY? on (olia
with an error of order O(m~2e~mko/4) = O(N~1/2+%0), To prove this, we estimate

[G}{/OQXRO\R(LO/Z)G}{/OQ] (z,y) = Z G}%/oz (z, ()G}{f (&)
CERO\R(Lo/2)

for x,y € R°. Since G}%/OQ(SC, y) < ce”™*=vlif dist(x, R) > 3L /4, the sum over ( is extended
to all ¢ € R® with a correction bounded by O(m~2e~™%0/4), Thus this is equal to G o (z,y) =
G(z,y). If dist(z, R) < 3Lo/4, then dist(z, (R®)®) > Ly/4 and G (z,y) = GY%(x,y) with

—mL0/4)

a correction bounded by O(m™2e . Thus we have

|Z < Vpovr, Tbpom, > — < Vg, (G Xa\R(L0/2) G?) 0 Glibg > | < Z | Ry| N~/ 200%<0

since dist(R;, R;) > L. The same relation holds between the first two terms in V and P(1)).
Since P(i) > 0, this implies Vo > O(|R|N~Y/2+20+20) yniformly in ¢ (z) € [-N° N°],
z € A\R. Q.ED.

2. Proof of Theorem 12 (Small Field Contribution)

Let dpz (1) be the Gaussian measure of mean 0 and covariance § [y G x| ™"

dipq

dp(¥) = det PO expl— < xg O x> 1T (4.67)
wek VT
where C™1 = G2, C’If(1 = xzC ' Xz We define the small field contribution Zz by
Zi = det 0L [ dpgni(®), (4.68)
(V) = dety (1 + Ag = Wg)exp[—dVi] [] 7(v(x)), (4.69)

zeK

where 0V is defined by eq.(4.63). We again use the cluster expansion of the Gaussian
measure. But this time, the covariance 3[xzG**x ]~ depends on locations of R}.

We introduce interpolation parameters s; € [0,1] into (4.67) as follows [16,5]:

C=0C\— C(Sl) = (1 — 81)(01\\)(1 + CX1> + 5:Ch.
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The integral is decoupled into X; and A\ X; if s; = 0. Integration by parts yields

0 0? _
aSI/du(sl) = /d,u (s1) 831A)zyme v (4.70)

where A = [xyzHxz] ' and H = C™! (s) Then we have ( see Appendix C)

881"4 = A(CA\Xl,Xl + C1X1,A\X1)*’4

= Y [OF(X1,Xs) + 0F(Xa, X))
XQCA\XI

by decomposing A = [xzHx ] 'xzH into polymers, A = I+ x 6C(X), where I is the
identity operator on CK and 6C (X) is the Green’s function represented by random walks
passing all squares A only in X, X N R? # () and then exhibits tree decay over A C X.
Next theorem is an extension of Theorem 3. We would like to remind the reader that
OF (X, X;)(x,y) = O(e™™F) unless € X; and y € X;. See Appendix C for the construction

of 0F(X;, X;). The sum over partitions ¥ = UX; is harmless thanks to Lemma 10.

Theorem 19 Let K = UY; be partitions of K into paved sets {Y;}. Then

/UK(WCZ#R: Z > IIs™) | k(v (4.71)

'u”Y =K

syvy=% % Z/ dsy -+~ ds,_ My (s /duy {s},)

P U X;=y T’

Tk yk+1

X 1:[ [Z Z 5F Ja(k)? MH)(xk’ykﬂ)aw(fk)glb(ykﬂ)] (4.72)

where Y = UV X; are partitions of Y by unions of A; CY and Dy CY. Ifi < j, then
|5F(XZ>X])('$7 y)’ < In}n eXp[_mlﬁ(Af U (X] A D)a xay)L (AE C Xl)7 (473)

where X N D means that D, C X are regarded as one sets Dy, and L(X,x,y) means the

shortest length of walks from x to y passing all centers of A; C X, z,y ¢ A;.
Here and hereafter, we use the following notational convention for paved sets Y:
Ry =RNY, RL=R°NY, Y =Y\R). (4.74)
By Lemma 14, we expand (1 + Ago)~! and obtain polymer expansions of Wz and §V.
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Lemma 20 The following cluster expansion holds:

1
Wf{ = AR’ROHTARO’K ZWY —+ Z 5WX, (475)
R XAY;
1
Wy = AY\R?/,RQ,WARQ,,Y\RQ,, (4.76)
Y
1 1
v YiUX'ZmQX Yl\R&ROYj L+ AROYA ( )1 + ARO Ry, Ye\RY» ( )

YUY, Cx’
where {Y;}| are paved sets in eq.(4.71), X is a paved set consisting of Y; more than or equal
to 2. (R° must be subtracted. ) F(X) are the non-diagonal terms coming from the random

walk expansion of (1 + Apo)™t, R® = UZR(}Z_. They satisfy the bounds

IF(X)|: < O |RY.])exp] —mymin > dist(Ry,, Ry.)],
(ij)ey
[eW (X[l < O] |RY.|) exp] mgmvln > dist Ry,RO )] (4.78)

(ig)€v

where 7y are tree graphs over Y; C X.

Lemma 21 The following expansion holds for Vi defined in (4.63):
Vi = 3 oW, + 3 6V (X), (4.79)
i X

1W§), (4.80)

N
(SVY = Z < 'lbéj,’]}iﬂ}}j > —gTI‘ (WY +Aywy — 7

J:D;CY
where Y; are paved sets made by the expansion of the Gaussian measure, X is a paved set

consisting of Y;. Moreover

1SV(X)|], < (O_|RY.|) exp[— mgmm > dist R?/,RY )], (4.81)

(i7)evy

where 7y are tree graphs over Y; C X.

For each partition UY; of K, we introduce interpolation parameters s;; connecting Y; and
Y; in the determinant :

0
\/ZNXRG%DXR — Z \/—XYGl/)XY + ZS”\/— Xv;GYxy; + xy,G¥xy;)

1<J

Z Ay, + > sijBy.y;, (4.82)

1<j
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where Y; should be regarded as f/, =Y, — RV if Ry, # (). We also introduce interpolation

parameters {tx} and {fx} into the decompositions (4.75) and (4.79) of W and §Vi :

WK — ZWY + Z tfoW ) (483)
X=UY;

Vi — Z(SVY + Y ExdV(X), (4.84)
X=UY;

where X = UY; are paved sets consisting of more than or equal to two Y;’s. Thus we have

Z Z 15 i)nK(w):Z; > 1lnx. (4.85)
px—z S IIsml ¥ [dsanx(s). (4.56)

v veﬂ{m)
where X = UY; are partitions of X into decoupled paved sets Y;, T({Y;}) is the set of
cennected graphs over {Y;} and nyx is the n function restricted to the paved set X = UY;.
Proof of Theorem 12. (step 1.) We consider the action of the differential operators in

S(Y') on ny. By integration by parts, we start with

p_l 82
/d,UY({S}al/)) géF(Xja(k),Xjk-‘—l)(xk?yk—’—l)a’éb(xk)ad}(yk—f—l) Ty
p—1
H 5F ]a(k)’X]k+1)(xk57yk?+1 /dﬂY 5} ¢) —oV(¥) (I)\I[ (487)
k=1

where putting H =< 1y, Oy (s)¢y >, Y = Y\RY and Ry = R\ Ry, we have set
0

di—1
® = "] |(-1)% H e, (4.88)
i (i)
SVo(Y) = 9
U= W - 4.89
’Ll_Il aw(fﬂi,di)ny ( )
ny = det3 "2 (1+ Ay — Wy) exp[—dVo(Y) — Vi(Y)]7(¥y), (4.90)
Vo(Y) = 2 <4y, C p, >+ > <vp, Tiog, >, (4.91)
P R;CY
N 1,
Vi(Y) = -5 [Wy — Ay po\ny Arg\my 7 + Ay Wy — 2WY} , (4.92)

and d; is the number of {a:k,ykﬂ}’f_l such that x, € X, or yp1 € Xj,. If 2, € X, and

Ja(k)

Yr+1 € Xj, ., d; is the incidence number of the vertex X;,. By Theorem 19

4 m dl 3
| H 5F(Xja(k) ) Xjk+1)(x’ y)| < eXp[—g Z ml‘C(Aja(k) U Xjk+1717k> yk—H) - Z 71[’[*} 2]
k k 7

10
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( AD is omitted for simplicity.) Then (See Appendix C)

(i) we can extract tree decay factors [Texp[—emi L(X})], Xj = A, UXj,
(ii) if Xj,,, consists of more than or equal to two Ay or Dy, 6F(Xj,, ,Xj,,,) contains

exp[—mdist(Xja(k),

RN Xjk+1>]7
(iii) z ¢ Xj,,, takes place if and only if F consists of walks passing through RY C

X, UX;

a(k) Jk+1°

So |§F] is bounded by e~ (E+Eo)m,
The fact (i) means that it is enough to show that the derivatives and the summations over
{zk, yx+1} do not yield very large terms.

(step 2.) We show the stability of e~ dyuy. It suffices to consider a paved set Y such
that Ry # (). Then Vo(Y) =< by, Oy ' (s)5 > +0V,(Y) is given by

< Wy + D, ), Oy () (g + Dby ) > + < i, Bty > +O(|Ryle™ ™)

where D = Cy(s)(C Yy, B = Ty — (Cil);%yyCY(s)(Cfl)i/,Ry and Ty =
G;/QXY\RY(LO/Q)G%P oG. Then E > —const.e”™/2 on RY by Lemma 18. (Accurately

speaking, duy and Cy' should be written duy and C’;l.) Let us define

diiy = det 1/2[0;1(5)] eXp[_VO(Y)]T(wRQ,\Ry) H di\ﬁ/_(:) (4.93)
€Y\ Ry

Then dfiy is Gaussian with respect to ¢y if ¢ are fixed. Since [¢(z)| < N° for z € Ry,
we have [ djiy < exp[rL|R|dlog N]|. Thus we can regard djiy as the probability measure
with an additional factor bounded by exp[rLZ| R|d log N].

(step 3.) The application of 9/0v(§) on H yields — 3, CyH(€,0)¥(¢). Then using
Schwarz’s inequality, we find it enough to estimate
SO 6L Gl [/ djiye ) ngﬂ 1/2 [/ dpiye o0 | 2 1/2

{G} @

where {¢} are {z;1, -+, %4, ,}, see Lemma 8.

Consider W. As for the derivatives of 7y, we first see that the derivatives of Wy with
respect to ¥(y), y € Y vyield the factor N='*39 thanks to the small fields enclosing the large

fields. Thus derivatives of det 5 N/ 2(- -+) yield factors bounded by N~'*39 We estimate the
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derivatives of Vi = 6V4(Y)+ Vi (Y). The derivatives of V; yield factors bounded by N~1+2,
The derivatives of 6Vo(Y') yield 23 ccro\r, C(y, Ov(C), [1(¢)] < N°. But they come with
SF(X,

Ja(k)?

Xjk+1)(xka yk-i—l) ( Y=Yg+1 OL Y = Tk ) Then E(Aja(k) U X]k+17xk7yk+1) + |yl€+1 -
¢| > L. Thus we can bound || by N—"v%||®Vopy || uniformly in vy by a fraction of [ F.
Differentiations of 7 can be treated as before.

Let us consider [T4(¢;)2 We first shift ¢(z), z € Y by —(Dg,,)(z) which is bounded

—mdist(z.R") " Thep dfiy decomposes into duy and the integration over ¥ (z), = € Ry.

by e
Then we can regard djiy as duy. Therefore the proof of Lemma 8 can be applied and we

obtain the same results by replacing dist(A;, A;) by £(A;UX;) and so on. In fact we define

ZéF Ja(k)? ]k+1)(£ f)’C (f?xk”lcil(f/aylﬁrl)‘ = 45f( Ja(k)? Jk+1)<xk7yk+1)'
&¢
Then 6 f(Xj, > Xjpr )Tk Yrt1) again has the property (4.73) except for a multiplicative

constant log*(1 + m™") which comes from C~' = G°2. Then we repeat the arguments in
Lemma 8 by replacing A; by X; and dist(A, x) by £(X,z,y) and so on. We remark that
the volume |Xj, | is compensated by a fraction of exp[—miL(Xj,,,)].

(step 4.) Finally take the sum over partitions Y = UX;. Since we already have tree decay
factors of Xj, the proofs of Lemma 8 and Theorem 5 apply to the rest. Q.E.D.

To expand det 2(C)/Zoo, Crc = [x 7Gx )", we put H = G° and observe that
Hy Hn

det — det(Ho) det(Hy) det(1 — Hy /> HyHy \Hoy Hy V?)
HlO Hl

= det(Ho) [ det(Hpo) det(1+ Y 6HY) det(1 — Hy V> HyoHy ' Ho Hy /%),
where Hy = xgHx i, Hi = xXroH xpo and
OH;; = (HR?)71XRZQHXR?7 (4.94)
and we have used the notational convention Hx = yxHyxx and Hxy = xxHyy. Thus
Hl_l/Ql-Ilol-]O_lHOlHl_l/2 is the matrix of size |R°| x |RY|.

H;(z,y) and (xxH;xx) *(z,y) decay exponentially fast (see Appendix B). We expand

Hy' and H{"? by introducing interpolation parameters like [(1—s)(Hx\a+ Ha)+sHx]|™*
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and repeating the method used in the proof of Lemma 14. (We use H~ Y2 = 2 [(H +
u?)~'du/7 to expand H; ?).
Lemma 22 The matrix Hl_l/QHlOH()_nglHl_l/Q has the following expansion:

~1/2 1 ~1/2

H VP HyHy Hy H Y = SS0H(Y) + S 6H(X),
i X=uy;

where X are paved sets consisting of more than or equal to two Y;’s and include at least one
R? C D;. The functions §H(Y;) and §H(X) depend on variables located on Y; and X only.

The diagonal terms 6H(Y') are given by
SH(Y) = Hp*H Hy\po H Hp?, Ry = R°NY.
- R) Ry YA\RY HIY\RY HY\RY, R M RO = .

The non-diagonal terms §H(X) (X = UY;) satisfy the bound

|0H (X)(z,y)| < exp[—miL(X,z,y)].

—-1/2

The proof of Lemma 16 (1) means that 0 < O(1)m* < 1 — H; ">HygHy "Hy H; * < 1.

Then the diagonal terms satisfy the bounds
exp[—const. L3|R|logm™'] < det 1(1-0H(Y)) < 1. (4.95)

Since Ly ~ 2m~llogN ~ Be*P if the condition (4.56) is satisfied, the factors
exp[mdL3|R|log N| from [dfiy and exp[O(1)L3|R|logm™!] from detl/z(HR?) are all com-
pensated by exp[—(3/12)N°|R|] given in Theorem 11 (the large field stability). In fact for

§=1/12and 6, = 1/24, we have §, = 1/24. If N ~ 1978 we have N%2 > 100 > m=8 ~ L8

V. ANALYTICITY OF THE FREE ENERGY
A. Proof of Theorem 1 (Former Half)

To carry out the integration over {¢(z);x € A}, we introduce a series of interpolation

parameters {s;, s, tx,tx, uy, v, ¥;;} to decouple R? C D;, R? C Dj,i# j, Y, C KY
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(K° = A\D) and D;\R? C D. From now on, let Y; stand for either ¥; C K° or D;\RY C D
or for their unions. We summarize the interpolation parameters:
(1) Given configuration of R, we decompose K = A — R? into squares A; C K° and paved

set D; with RY subtracted. Introduce interpolation parameters s; to the measure duz(¢) .

det'*(Cg) t1/2
Z(R) = =

g X Tsu|m

(2) To each decomposition K = UY;, introduce real interpolation parameters sij € [0,1] for
By,y, like eq.(4.82).

(3) Introduce ty € [0,1] and tx € [0,1] following eq.(4.83) and eq.(4.84).

(4) Introduce uy € [0,1] in such a way that

H{'*HyoHy "Hy H, '? — Z(SH )+ Y uxdH(X). (5.1)

X=UY;
The diagonal terms 0H (Y;) such that Hy = HYZ'\ROYi and H; = H Ry, are untouched and
coupled with D(AR?), D; CY,.
(5) Redefine A;; and H;; by
1 1
= ) ) Aw VT A 0Hyj = z—Hpy my - (5.2)

k:R,CYi £:RCY; RY RY. i

K3

and introduce v;; € [0,1] and 7;; € [0, 1] in such a way that

Z (5141] — Z Uij(;Aij; Z (5sz — Z Uzg 237 (53)
i,J ]

Thus both of |[0A;|| and ||0H,;|| are bounded by m™? exp[—m dist(RY,, Rg/j)], and both of
||6ATJ||1 and H5H1]||1 are bounded by

. dm
min{|RY, |, |ROY]|} eXp[—? dist(RY., Rgfj)],

Substituting these into the integrand Zg(v) defined by (4.57), we have our final expression
of Zy = Zoo Y p Z(R), where

ua lz T TSk S Riseee Dt (5.4)

(eERY

37



and Z({Y;}, R;s,---,0) is the Z—function with the interpolation parameters introduced

through Y; and explicitly given by

det 53/

i Y;NR#£D i#j X

x det N2 11+ 3 004y

ij

det 2 [1 - Z SH(Y;) — ;uX(SH(X)]

xdet? |1+ 3 #,0H;

ij

LD, exp [~ ot — 87 (0)] () 0485)

Here D(RY.) is the contribution from RY) = R’ NY with the small fields subtracted :

D(RY) = T [dety™*(1+ Apo)det  (xpo Hxpo) exp[< Ypov,: Ttrovg, >1]  (5.6)

©:R;CY

where by Theorem 11

. di(x) 8 :
S [ 1Dl (ry) TT =72 < explog RrIN®) (5.7)

If all parameters are set 0, we have the completely decoupled result:

Z(R) - ¥~ 3 TIn(vi Ry,).

PGy =a i

_ aw(c)
YiRy) = | SYyE(Y;Ry)T(Yro\gy )T (Vry :
WY Ry) = [ SyE(Yi BT (Wngn, )7 (U I

E(Y;Ry) = det3V2[1+ Ay — W(Y)] exp|—V4]

xdet "2 [1 = H(Y )] D(RY )7 (¢y\ g, )-

Here and hereafter, 7 means integrated activities which may contain contributions from g.
IfY = A, Ry =0 and Sa = dua(v) (with [(2)| < N°, 2 € A), and n(A) = pa. If

Y = D;, then Sy = dpy\go (¢) and by Theorem 11, we have
n(Ds R)| < expl~|RIN + N75|Dy| + 7L R, [5log N, (5.5)
where |D;| < 9|R;|L? and Ly < L ~ m~'log N. Then

Lemma 23 Take the sum over all R C D; which are consistent with D;. Then
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> n(Di; R)| < exp[—|Di| N*], (5.9)
R
03 = 0y — O(N~%). (5.10)
Proof. Take a square A C D; of size L x L such that RN A # (), and take the sum over

RNA (|[RNA|=1,---,L?). Since L? ~ 400m2log? N ~ N®, we have estimates

5™ expl—Z|BIN] < (1+expl-2

N)E 1
RCA 12

< exp[L? exp[—li]\f‘b]] — 1 < exp[—|A|N%].

Since D; is the connected set of {A C D;}, the conclusion follows [9]. Q.E.D.

We iteratively use the identity f(1) = [y dwd,f(w) 4+ f(0) with respect to all inter-
polation parameters except for s; already used to expand the Gausiian measure. We thus
obtain Z(R) = >y(r) [Ixeumr) n(X; R), where U(R) are partitions of A into paved sets which

consists of A; C K° and D; C D, and n(X; R) is the quantity given by

Z ) HSY ({vi}) /E(X,{E},Rx)T(wxmk)rc(wa) I1 @) 5

UY =X =1 z€XNRO \/7_T
Namely if 4 = {X;,---,X,,} is a partition, X; are unions of A; and D; and UX,; = A.
Moreover Z(X, {Y;}, Rx) is the restriction of Z(A, R) to the region X equipped with Rx =
RN X, together with the interpolation parameters following the decomposition X = UY;.
Z({Y;}) is the interpolation operator over {Y;}, RY and so on defined by

> Iz, (5.12)

UX/ =X &J
where Xl-j is a paved set consisting of Y; C X connected by the interpolation parameters (s;;
for i =1, tx for i = 2, tx for i = 3, ux for i = 4, v;; for i = 5 and @;; for i = 6). The paved
set X cannot be decomposed into two disconnected pieces without bisecting some Xl-j and
1

LX) = Y /dw,y&ww, (5.13)
VET(X])
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where T'(X7) is the set of connected graphs over the constituents Y, ¢ X7 or R? € X7 made
by w (= sij, tx, tx, Uy, v;; and ¥;; ). (Multi-indices are used for w...) Then we have

Z;, > prz}, (5.14)

! Uzlei:A 1

px = Y n(X;R), (5.15)

RCX

Iy = Zoo

where the sum over R C X is chosen so that the locations of R are consistent with the
polymer expansion, i.e., RO N A = () for A C 9X. We can now prove Theorem 1:

Proof of Theorem 1 ( former half ). Put X = US_ X, and X; = U; X/ where X7/ is a
collection of paved sets {Y; C X} such that X; = UX/, and is constructed by the action of
Z;(X7) on Z. X cannot be divided into two disconnected sets without bisecting some X7
and X;.

Sy, yields the tree decay factor exp|—dgny, log N — moL(Y;)], ny, > 2 over the squares
A C Y;. Moreover as is seen from Lemmas 9 and 10, the action of I,-(Xij ) on = yields the

factor o;(X7) bounded by the tree decay factor:
|04(X7)| < exp[—dpiix: log N — moLy (X7)],

where nx is the number of Y; contained in X (ny > 2) and Ly (X) denotes the length of
the shortest tree graphs over Y; C X (from center of A; C Y; to center of A; C Yj).

The factor D(RY) is combined with det'/?(1—6H(Y)) < 1. By Lemma 23, we see that it
yields the factors bounded by exp[— Y p, -y |Dy|N%]. Since oy, - - -, and 0, contain the tree
decay factors over Y; and D;, and since Sy, contains the tree decay factors over Ay, C Y;, we
can extract a part (e.g. 7/8 ) of the tree decay factors over A; C X\D and D, C DN X in

advance from oy ... ,,(X) (we denote the remainders again by o ... ,,(X) for simplicity). Thus

we have
7 o T
pX) < Y exp [—850nx\upk log N = &1 0 [DeIN* = SmoL({A € X\U D} {Di})
DpC X0
1 pP1 ) 1 Pe )
<t 212 X oD >X > —ITow(Xe)
UX;=X \ p1 uxi=x, P17 i=1 e UXi=X, 6 i=1
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where X° = X — 90X, ¢ = O(1) > 0 (in fact ¢; ~ 1), {D;} are the large filed regions
consistent with X7 and £({A; € X\ U D.},{Dy}) is the length of the shortest tree graph
over {A;} and {D;}. Then we can assume that X; cannot be bisected without bisecting
some X7 by adding 1/8 of the dacay factor to each of [[oy(X}), i = 1,---,6. Thus the
sum over { X7}, is convergent for i = 1,---,6. Since X cannot be devided into two pieces
without bisecting some X;, the sum over X; is again convergent. The result is bounded by

exp|—d.ny log N — m.L(X)] if N is large, where d. > &y/8 and m. > my/8. Q.E.D.

Remark 7 It is obvious that m. and . converge to mqy and oy, respectively for large N since

the contributions from large fields are exponentially small.

B. Proof of Theorem 1 (Latter Half)

We now resum eq.(5.14) in the following form:

2y = Zuespl- L WY o ¥ Tlixd

CUXGCA i
= Zexp[— > Wa—=> Wyl (5.16)
Y
where px = exp[>acx Walpx is the polymer activity with the single square contributions

subtracted. Thus pa = 1. Moreover ny > 2 (ny=number of squares in Y ) and
N 1 N
Wy = — g Z Z H 6(6) H/OXC‘ (517)
k " {Xii=1,,kHUX =Y Ve Leye ¢
In this equation, k is the number of {X;} and ~, runs over connected graphs of lines {¢}
joining vertices {1,2,---,k}, e(¢) = —1 if X,, N X, # ( where ¢ = ({4,¢_) and zero

otherwise. Then it follows [5,13,16] from (3.5) that

Theorem 24 For given > 0, if N is chosen large (N > expl4007/3]), then

Wa 1 .
a=—+3 —Wy (5.18)
L? Y >0 ’Y’

converges absolutely as A — Z%. The free energy ap = o + o is analytic in 3, where

a0 = lim |i| [JQV log(det(m? — A)) — ;log(det(CA)) . (5.19)
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VI. CONCLUSION AND SOME REMARKS

We have shown that the free energy is represented by the convergent polymer expansion,
which establishes the analyticity of the free energy. Exponential decay of the correlation
functions will be proved in the same way, but with some additional tricks. The mass pa-
rameter m ~ e 2™ is almost zero for large 3, and our result is weak in the sense that
B:(N)/N increases just logarithmically. Note that we used blocks of single scale only. Our
longstanding problem will be solved by iterative usages of block-spin-type calculations.
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APPENDIX A: PROPERTIES OF G, C, G AND THEIR INVERSES

We first consider G(x) = (27)~2 [ €®*g(p) [1dp. Since g(p) is ananlytic and periodic in
p, the integral is invariant by the shift of pj, by ey where ey = ey (22 +22)71/2 ¢ > 0. Then
ipr — ipxr — e|z| and g(p +ie)~! is equal to

m? + 2 zk:[l — cos(p) cosh(eg)] + 2i zk: sin(py,) sinh(ey)

= m*+2 Ek:[l — cosh(eg)] + 2> (1 — cos(py)) cosh(ey) + 2t Ek: sin(py,) sinh(eg)

Here we can set ¢ = m, by m? + 2(1 — cosh(m,)) = 0 since >(1 — coshey) > 1 — coshe.
Then € = O(m) and it is immediate to see that [ |g(p + ic)| [ dp < const.log(1+m™!)
In eq.(3.8), we consider the complex displacement of p; by ic;. We again shift k; by ie; /2

since g(p — k) is periodic. Then g*(p + i€) is equal to

9

[ 9 —k+i2)gk+i) [T

2 J (A1 + BY)(A3+ B3) +t 2
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where A} = m? + 2X°[1 — cos(p; — k;) cosh(g;/2)], By = 23 sin(p; — k;) sinh(g;/2), Ay =
Ai(p=0), By=—Bi(p=0) and D = A;A; — B1By. Note that 2D = (A; + By)(As — By) +
(A} — By)(Ag + By), where A; + By = m* +4 — 23, y/cosh(g;) cos(p; — k; £ §;) and so on,
where tan §; = tanh(g;/2). Then D > 0 if m? +4 — 23 \/m > 0. Since 2 = 3 &? and
> \/eosh(e;) = 2+ 12 — O(*), D > 0 if |e| < v2m. Then C(z,y), G(z,y) and G~ 1(z,y)
have uniform exponential decay faster than exp[—+v/2m|z — y]].

By Schwarz’s inequality, [ |§(p + ie)|dp < const.log(1 4+ m™") if |¢| < v/2m. Thus the
bound for G follows. Maximize A? + B? and integrate D over k to obtain Re j(p + ic)? >
co(8 +m?)72, ¢g = O(1) > 0. Thus the bounds for C' = [G°%]~! and G~ follow.

The function g(p) is exactly obtained in the continuum limit, and is analytic in [Imp| <

2m. Thus our estimate will be improved.

APPENDIX B: POLYMER EXPANSIONS OF KERNEL FUNCTIONS

Let H(z) be a positive type function defined on Z? whose Fourier transform H (p) satisfies
the following;:
(1) 0< e < H(p) < co.
(2) H(p) is periodic in p;, i = 1,2.
(3) H(p) is analytic in p € Q. where Q. = {(p1,p2); |Imp;| < &}, L2 < m?. |H(p)| and
|H(p)|~" are bounded on the boundary.
(4) 0 < ¢, <ReH(p) < ¢, and [ImH (p)| < ¢ for p € Q..

Then we have shown that both H(z) and H'(x) decrease exponentially fast in |z|. Put

H(z,y) = /exp[ip(af —yIHP) ] 02[]:-

Let X C A and we define the matrix Hx of size | X |x|X| by Hx(x,y) = xx(z)H(z—y)xx (v).

Then ¢; < Hy < ¢y and we have:

Theorem B 1 Hy'(x,y), H)l(ﬂ(x,y) and H)_(I/Q(a:,y) again decay exponentially fast :
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[Hx'(2,y)] < const. exp[—ml|z —y]],

|HEY?(2,y)| < const. exp[—m|z — y]].

Proof. First suppose that X is a rectangle of side lengths X; and X5 with the center at the

origin. The operator Hx(x,y) is strictly positive. Let Hx (p,q) be its Fourier kernel:

dk;
Z / i(pt+k)r—i(g+k) yH(/{Z) 5 z' (B]_)
N

z,yeX

This is strictly positive and hence invertible. The properties (2) and (3) mean that Hy can

be analytically continued by

x(i2)(p.q) = Hx(p+ iz g +ie) = Y [e@ =i i) [T ()

z,yeX T

and we see that
(i) Hx is strictly positive as an oprator on ¢2(X*), where X* is the dual of X: X* =
{(27m1/X1, 27T77/2/X2); n; = O, 1, cee 7Xi — 1}

(ii) The self-adjoint part of Hx (i€) is strictly positive for |e| < m.

Since
Hx(z,y) 5 2 / T HOpr9)
p,gEX*
1 (ptic)a+ila+ie)y f
= 2 Z e*Z(P+ZE)x+Z(Q+ZE)yHX(ig)(p7Q)7 (B3)
|X| pP,geEX*
we have
1 —i(p+ie)z+i(g+ie)y I7 ., (;2)~
M rg) = [y 3 €0 (i) (g >
P,gEX™

where | X| = X; X5, Then take e, = —m(;/|C], ( =2z —y.

If X is not a rectangle, choose the smallest rectangular set X containing X. Define
HX = xxHxx + Lo where L\ x 18 the identity operator on X\X Then lfIX is strictly
positive on £2(X ) and the previous discussion applies. The proof is same for H)I(/ Q(x, y) and
Hy (). QED.

For (G)~'/?, we have an alternative : we can apply polymer expansion or random walk
expansion to the right hand side of the integral representation G5"/* = 2 [(Gr+u2)~‘du/T.

(This is left to the reader.)

44



Let X = X; U X, where X; N X, = () and we assume that X7, Xy and X = X; U X,
are rectangles. Let Hx(s) = (1 — s)(Hx, + Hx,) + sHx. Then H(s) is strictly positive

uniformly in s € [0, 1]. What is important is that the Fourier transform of H(s)(x,y) is

Hy(p.q) = (1 — s)(Hx, (p,q) + Hx,(p, q)) + sHx,(p, q)

which satisfies the conditions (i) and (ii) uniformly in s € [0, 1]. This implies that

Theorem B 2 Let Hx(s) be a convex linear combination of {Hx, & --- @ Hx,; X =
UX;, XiNX;=0,(i #j)} . Then the following bound holds uniformly in s; € [0, 1]:

|Hy'(s)(x,y)| < const.exp[—m|z —y].
For Hx(s) with X = X; U X3, we have :

1
H)_(l = H)_(ll D H)_(zl _/0 HX(S)_l(H)ﬁXz + HX2X1)HX($)_1dS

This is the first step of the polymer expansion of Hy' in the form of Lemma 14, but here
we have introduced the interpolation parameter s = s; into the denominator (not in G™1
like in Lemma 14). All these mean that we can apply the Brydges-Federbush method to

cluster-expand some Green’s functions.

APPENDIX C: POLYMER EXPANSION OF GAUSSIAN MEASURES

We here discuss a cluster expansion of Gaussian measures with an interaction V':

Zn = [ expl-V()du (C1)

dp = det ~*(C)exp[— < ¥, Cy >]T] d?\/f/(%lf) (C2)

Since C' is strictly positive, we use the cluster expansion of Brydges-Federbush type which

keeps positivity of the operator. To do so, we first choose A; C A and define
C(Sl) = [(1 — Sl)Pl + 1}01\ = (1 — 81)(CA\A1 + OAl) + Sch, (03)
PiCx = Cx\a, + Cxna,s (C4)
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where we have used the notational convention C'x = xxCxx, Cxy = xxCxy and X¢ =

A\X as usual. Thus we have (C' in [5,16] is written 3C' here)

Zy = [ expl=V(@)ldu(sr = 1)

92
= ZnaZa, + dsy | dp(sy) C’xy eV, (C5
nadat [t 2 22w
where
d
dp(s1) = det "V2[C(s)] expl— < v, C(s1) "6 > [ 13(;)- (C6)
In fact, this follows from the observations of
/ du )er) = exp[i < [,Cs)f >, (1)
0? 4
h. = = ()
831 (I‘ S) Z 881 31 :py/du Sl )81/1( ) ’ (CS)
0
8780(81) = Z (CAl,A2 + CAz,Al)' (Cg)
1

AsCA\A,
This establishes the claim for the decomposition into A; and A\A;.

We next apply the same steps to each term of eq.(C5): we introduce an interpolation
parameter s; to Zx\a, to decouple A, from A\A; and introduce next interpolation parameter
So to the rest to decouple Y = A; U Ay from Az C A\Y. See [5,16] for the detail.

Tree graphs 7" over {Ay,---, A, } with the root A; are graphs defined by permutations
{1, Jpy of {1,2,---,p} with j; =1 and amap ap» : {1,2,---,p—1} = {1,2,--- ,p—1}

such that az/ (k) < k. They define a set of ordered links (tree graph 7") ¢, = (A A

Ja(k)? jk+1)7

k=1,2,---,p—1. Set

M (s H H (C10)

i=1 j=ag (i)

Theorem C 1 [16] Z have the cluster expansion

Zp, Z HZY II Za (C11)

i ACA\UY;
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where Y; are paved sets which are disjoint each other and consist of more than two A; C A.

Let Y = UY_|A; be one of Y;. Then Z% has the following expression:

S ) o eedsyaMp (s) f ()

p—1 1 82
X kl;ll xkg]:'a(k) ykﬁg%ﬂ 50(%, yk+1)8¢(wk)3¢(yk+1) exp[—V (¥)], (C12)
where T = T, = {(Jak)» Jr+1) b
du({s}) = det 20 (s)] expl— < . ({sh S]] d‘j(;), (C13)
C(tsh) = (0 - s)Pi-+ s]Cn c14)
P,Cx = Cx\x; + Cxnx,y (X; = Ui Aj,). (C15)

There are many tree graphs 7" with root A; which have the same links and vertices with

T. They differ each other by Mz/(s) and C~1(s) [5,16]:
Theorem C 2 My [[ds; is a probability measure in the following sense:
1
> [ My ldsi =1, (C16)
7.7(1)=T""°
where Y pr.pery—r means the sum over tree graphs T' which have same links with T'.

For the Gaussian measure dpu ; restricted to the region K, we have :

dip(z)

dug(s) = det 2(x g H(s)xg) exp [ <o, xgH(s)xzv >] ] Jr (C17)
where H(s)™' = C(s) = (1 — 5)(Ca\x, + Cx,) + sCy (we used X; for A;) and
d [ _ 1 0? _
£/6 Vdpg = /dﬂk(s)%4(ABA)zy(W€ Y (C18)
A = [xgH(s)xg]™ (C19)
B = AT = H(s) - Ols) H()xir (C20)

Since (ABA),, depends on locations of R}, we expand ABA into polymers. In fact using

the method of Lemma 14 to expand [xz H(s)xz] " in terms of Ha, and Hp, go, we have

g H(s)xgl "Xz H(s) = I+ IxgH(s)xz] Xz H(s)Xro

=Iz+ Y. 6C(X)

XNROAD
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where [ is the identity operator on CK and 6C (X) are the polymers expressed by random
walks passing all squares A; only in X and at least one of {RY, D;\RY} if D; C X.

We proceed inductively. After j steps, ABA is the sum over i of the following terms:

1z {Cxi,/\\u{xk + CA\UjX X} ikt 250 (X7) [( same )] 1z

+ Z 1z [( same )] 6CH (X)) + Z Z 6C(X7) [( same )] 6CT(X3)

where X, N X, =0 (k # (), 1 <i < j and {s;}] are ommitted. Next step is :
(i) In 1z[---]1z, choose any X, 1 = Ay C A\ U] Xj or X;41 = Dy C A\ U] X;. Define
5F1 (Xi7 Xj+1) = CXi>Xj+17 51 (Xj+17 Xl) = CXJ'-H,Xi'

(i) In 6C(X})[- - ]1, choose any X1 C A\ U] X;. Define

410

5F2<Xj+17 X;) = ZX{ 6C<X{)CX]'+17X¢

where X! ¢ U™ X}, and XN X, ; must contain X, 1 NK® and at least one of { RY, D\ R}

if D, C X,41. This is same for 1z[---]6CH(X)).

(iii) In 6C(X})1z[ - -]0C(X3), choose any X1 C A\ U] Xj. Define

0Fy(Xi, Xj) = 2X1,X} 5C(X1)0Xi,A\U{Xk50+(Xé)7

5F4(Xj+1, Xz) = ZX{,Xé 5C(X1)0A\UJ1X;€7X150+(X£)

where X| U X5 € U]7' Xy, and (X} U X}) N X;4; must contain X;,; N K° and at least one

of {R Dk\R } if Dk C Xj+1

Then we define §F(X;, Xj41) = Y5 0Fu(X;, X;41) . ( Same for §F(X;,1,X;) ). The
following facts are immediate from the construction:
(1) Thanks to the random walk expansion, the sum in the right hand sides converge and
exhibits tree decay property with respect to blocks Ay C X;.; and D, C X,41. The
factor 0 F'(X;, Xj11), with ¢ < j + 1 includes the tree decay factor exp[—mL(X;4+1 A D)] and
exp[—mdist(X;, X;11)], where X117 A D implies that D, C X;;; must be regarded as one
sets and must not be decomposed into A, C Dy.
(2) If X411 consists of more than or equal to two Ay or Dy, then the factor dF(X;, X;41)

must contain exp[—mdist(R° N X1, X;)] < exp[—3mL].
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(3) The matrix element dF(X;, X;)(z,y) is less than minsexp[—mL(A, U (X; A D), z,y)],
where A, C X;.
(4) The matrix element §F(X;, X;)(z,y) # 0 even if x ¢ X, or y ¢ X;. But it is less than
the value given above, and bounded by exp[—m(L + Lg)] since it contains R°.

We then introduce s;4; to C(sy,---,5;) to separate Ut X}, from its complement. We

repeat the argument and obtain Theorem 19.
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