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Abstract

We investigate critical temperature of the classical O(N) spin model in two

dimensions. We show that if N is large and there is a phase transition in

the system, the critical inverse temperature βc obeys the bound βc(N) >

const. N log N .
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I. INTRODUCTION

Quark confinement in 4 dimensional non-abelian lattice gauge thoeries and spontaneous

mass generations in two dimensional (2D) non-abelian sigma models are widely believed

∗E-mail : ito@kurims.kyoto-u.ac.jp

also at : Division of Mathematics, College of Human and Environmental Studies, Kyoto University,

Kyoto 606, Japan.

†E-mail:tamura@kappa.s.kanazawa-u.ac.jp

1



[18]. These models exhibit no phase transitions in the hierarchical model approximation of

Wilson-Dyson type or Migdal-Kadanov type [10], but we still do not have a rigorous proof

for the real system.

We recently considered a block-spin-type transformation of random walk which appears

in the O(N) spin models [3,4], and showed that [11] the correlation functions are represented

by self-avoiding walks on Zν . This considerably improves our previous estimates for the

inverse critical temperature βc of the system

βc
N
≥ µν
µ2
ν − 1

, as N →∞ (1.1)

where µν ∈ (ν, 2ν−1) is the connective constant of self-avoiding walk on Zν (µ2 = 2.653 · · ·).

In this paper, we amalgamate our previous methods with the idea of the N−1 expansion

[14,15] and the cluster expansion [5,9,13,16], the technology to represent quantities of infinite

volume limit by finite volume quantities. In a spirit, our single block cluster expansion is

similar to that in [1]. Our main conclusion in this paper is

Main Theorem The critical inverse temperature βc(N) of the two-dimensional O(N)

Heisenberg Model obeys the following bound for large N :

βc(N) > const. N logN (1.2)

where const. > 0 is independent of N .

This result is announced in [12]. As will be discussed, for the dimension ν > 2, we have

G0(0) ≥
βc(N)

N
≥ 1

µν
(1.3)

where G0(x) is the lattice Green’s function on the ν dimensional lattice Zν . Therefore a

strong deviation exists in the N dependence of the critical temperature of the 2D O(N)

Heisenberg model. We expect a combination of the present method and renormalization

group type argumemts will establish our longstanding conjecture on the 2D sigma model.

The ν dimensional O(N) spin (Heisenberg) model is defined by the Gibbs measure

< F >≡ 1

ZΛ(β)

∫
F (φ) exp[−HΛ(φ)]

∏
i

δ(φ2
i − 1)dφi. (1.4)
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Here Λ ⊂ Zν is the large square with its center at the origin. Moreover φ(x) =

(φ(x)(1), · · · , φ(x)(N)) is the vector valued spin at x ∈ Λ, ZΛ is the partition function defined

so that < 1 >= 1. HΛ is the Hamiltonian given by

HΛ ≡ −β(N)

2

∑
|x−y|1=1

φ(x)φ(y), (1.5)

where |x − y|1 =
∑
i |xi − yi| and β(N) is the inverse temperature. To appeal to the 1/N

expansion [15], we set

β(N) = Nβ. (1.6)

We organize the paper as follows: in Sect.2, we represent the theory in terms of a

determinant by introducing an auxialiary field ψ and integrating out the spin variables. We

discuss the reason why phase transitions may not occur in two-dimensional systems which

have O(N) symmetries. In Sect.3, we argue the polymer expansion when |ψ(x)| are all small.

Sect.4 is the main part of this paper in which we prove that the contributions from large

fields are small and negligible. Since ψ(x) can get large, we decompose Λ into two regions,

the large and the small field regions and we estimate their contributions separately. The

polymer expansion will be done combining these two regions. In Sect. 5, we represent the

free energy by the convergent polymer expansion, from which analyticity of the free energy

follows. We discuss some related problems in Sect. 6.

In Appendixes, we calculate decay rates and inverses of Green’s functions used in this

paper. We also discuss polymer expansions of Green’s functions and Gaussian measures

restricted to subsets of Z2.

II. DETERMINANT REPRESENTATION

We substitute the identity δ(φ2 − 1) =
∫

exp[−ia(φ2 − 1)]da/2π into eq.(1.4) with the

condition [3,4] that Imai ≤ −νNβ. We set

Im ai = −Nβ(ν +
m2

2
), Re ai =

√
Nβψi, (2.1)
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where m2 ≥ 0 will be determined soon. Thus we have

ZΛ = c|Λ|
∫
· · ·

∫
exp[−Nβ

2
< φ, (m2 −∆ +

2i√
N
ψ)φ > +

∑
j

i
√
Nβψj]

∏ dφjdψj
2π

= c|Λ|
∫
· · ·

∫
det(m2 −∆ +

2i√
N
ψ)−N/2 exp[i

√
Nβ

∑
j

ψj]
∏ dψj

2π

= c|Λ| det(m2 −∆)−N/2
∫
· · ·

∫
F (ψ)

∏ dψj
2π

, (2.2)

where c are constants which may be different on lines, ∆ij = −2νδij + δ|i−j|1,1 is the lattice

laplacian and

F (ψ) = det(1 +
2iG√
N
ψ)−N/2 exp[i

√
Nβ

∑
j

ψj]. (2.3)

Moreover G = (m2 − ∆)−1 is Green’s function (matrix) discussed later. In the same way,

the two point functions are given by

< φ0φx > =
1

Z̃

∫
· · ·

∫
(m2 −∆ +

2i√
N
ψ)−1

0x F (ψ)
∏ dψj

2π
, (2.4)

where Z̃ is the obvious normalization constant. We choose m ≥ 0 so that G(0) = β, where

G(x) =
∫ π

−π
· · ·

∫ π

−π
g(p)eipx

ν∏
i=1

dpi
2π

, (2.5)

g(p) ≡ 1

m2 + 2
∑

(1− cos pk)
∈ [

1

m2 + 4ν
,

1

m2
]. (2.6)

This choice is possible for any β ( and N ) if and only if ν ≤ 2, that is, if and only if

G0(0) ≡ G(0)|m2=0 = ∞. In other words, we can rewrite eq.(2.3) as

F (ψ) = det 3(1 +
2iG√
N
ψ)−N/2 exp[−Tr(Gψ)2] (2.7)

for any β, only for ν ≤ 2, where det 3(1 + A) = det[(1 + A)e−A+A2/2].

The factor exp[i
√
Nβ

∑
ψx] in (2.3) is the reminiscence of the double-well potential∏

δ(φ2
x − 1) which is responsible for phase transitions. Then roughly speaking, the disap-

pearance of exp[i
√
Nβ

∑
ψx] in ( 2.7) means absence of the effect of the double-well potential

and is consistent with absence of phase transitions [2].
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An explicit calculation shows that m2 = β−1(
√

1 + 4β2 − 2β) for ν = 1. For ν = 2,

G(0) is expressed by the complete elliptic integral of the first kind F (k, π/2) =
∫ π/2
0 dϕ(1−

k2 sin2 ϕ)−1/2:

G(0) =
1

2π

∫ π

0

dp√
(1 + 2ε− cos p)(3 + 2ε− cos p)

=
k

2π
F (k, π/2) =

1

2π
[O(ε) +

3

2
log 2 +

1

2
log

1

ε
],

where ε = m2/4 and k = (1 + ε)−1. Then the condition G(0) = β implies that

m2 ∼ 32e−4πβ as β →∞ (2.8)

which is consistent with the renormalization group arguments, see [6] and references therein.

If ν ≥ 3, such an m ≥ 0 exists if β ≤ G0(0). If β > G0(0), there exists spontaneous

magnetization in the system [7]. That is NG0(0) > βc(N) > N/µν for ν > 2.

If m is chosen so that G(0) = β, det3(1 + 2iGψ/
√
N)−N/2 is almost equal to

exp[4iTr(Gψ)3/(3
√
N)] and is regarded as a small perturbation to the Gaussian measure

∼ exp[−Tr(Gψ)2]
∏
dψ. Namely F (ψ) looks like |F (ψ)| = det(1 + 4GψGψ/N)−N/4 which

is strictly positive. If this is justified, then from eq.(2.4), we have exponential decay of the

correlation functions :

< φ0φx > ∼ 1

Z̃

∫
· · ·

∫
(m2 −∆ +

2i√
N
ψ)−1

0x |F (ψ)|
∏ dψj

2π

≤ | sup
ψ

(m2 −∆ +
2i√
N
ψ)−1

0x |

≤ (m2 −∆)−1
0x ∼ e−m|x|.

III. POLYMER (CLUSTER) EXPANSION IN SMALL FIELD

A. Polymer Expansion

Let

dµΛ(ψ) = det 1/2[C−1] exp[− < ψ,C−1ψ >]
∏ dψ(x)√

π
(3.1)
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be the Gaussian probability measure of mean zero and covariance 1
2
C where C−1 ≡ G◦2 and

G◦2 is the matrix given by G◦2(x, y) = G(x− y)2. The partition function ZΛ is given by

ZΛ = Z∞

∫
det

−N/2
3 (1 +

2i√
N
Gψ)dµΛ(ψ), (3.2)

Z∞ ≡ det −1/2[C−1] = det 1/2[C], (3.3)

up to a non-important multiplicative factor. Our purpose is to discuss analyticity of the free

energy αF = − lim logZΛ/|Λ| in β. Since m is analytic in β ≥ 0, the assertion is trivial if

there is no determinant. In the present case where we have the determinant, which is quite

non-linear and non-local in ψ(x), we represent ZΛ in terms of polymers:

Theorem 1 The partition function ZΛ is represented by polymers ρX , X ⊂ Λ:

ZΛ = Z∞

∑
p

1

p!

∑
∪p

1Xi=Λ

∏
i

ρXi

 , (3.4)

where Xi are unions of squares ∆ ⊂ Λ of size L × L (L >> 1 is determined later ) and

Xi ∩ Xj = ∅, (i 6= j). Given β > 0, if N is chosen large, N ≥ exp[const.β], there exist

strictly positive constants δc and mc such that

|ρX | ≤ exp[−δcnX logN −mcL(X)], (3.5)

where nX is the number of squares ∆i in X and L(X) is the length of the shortest connected

tree graph over centers of ∆i ⊂ X. The free energy is the convergent series of ρX .

Each ρX is analytic in β. Thus the Main Theorem follows from Theorem 1 since αF is

represented by the convergent series of ρX . The proof of this theorem is, however postponed

until Sect.5. Here we restrict ourselves to the small field case where the expansion can be

easily done by the N−1 expansion.

B. Small and Large Fields

We let G̃ ≡ [G◦2]1/2. Then C and G̃ have the following Fourier expansions:

C =
∫ π

−π

∫ π

−π
eip(x−y)g̃−2(p)

2∏
i=1

dpi
2π

, (3.6)
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G̃ =
∫ π

−π

∫ π

−π
eip(x−y)g̃(p)

2∏
i=1

dpi
2π

, (3.7)

g̃(p) =

[∫ π

−π

∫ π

−π
g(p− k)g(k)

2∏
i=1

dki
2π

]1/2

∈ [
c1

m2 + 8
,
c2
m

]. (3.8)

Here and below, c stands for generic constant independent of β which may change from

place to place even in the same equations, and c0, c1, · · · stand for similar constants which

are kept in the same equations. The following lemma is proved in Appendix A:

Lemma 2 For m < 1, the kernels G, G̃, G̃−1 and C exhibit the followng exponential decay:

G(x, y) ≤ c log(1 +
1

m
) exp[−m∗|x− y|], (3.9)

|G̃(x, y)| ≤ c log(1 +
1

m
) exp[−m|x− y|], (3.10)

|G̃−1(x, y)| ≤ c(1 +m2) exp[−m|x− y|], (3.11)

|C(x, y)| ≤ c(1 +m2) exp[−m|x− y|] (3.12)

where |x| =
√
x2

1 + x2
2 and m∗ > 0 is a constant defined by 2 cosh(m∗) = 2 +m2.

We introduce the notion of large field region R and small filed region K:

R = {x;N δ ≤ |ψ(x)|}, K = Λ−R (3.13)

where N = N(β) and a positive constant δ < 1/2 is chosen so that if |ψ(x)| ≤ N δ for all x,

then N−1/2||G1/2ψG1/2|| << 1. Then the determinant is perturbatively expanded and the

higher order terms are negligible. Since specG ∈ [(8 +m2)−1,m−2] and m−2 ∼ (32)−1e4πβ,

these conditions are satisfied if exp[12πβ] < N for large β. The following is one of the most

typical choices satisfying these conditions (though they are not optimal ) :

δ =
1

12
, N(β) = exp[400πβ]. (3.14)

Remark 1 For matrices A and B, we define A ◦B by (A ◦B)(x, y) = A(x, y)B(x, y). This

is called the Hadamard product of A and B. It is easy to see that A ◦ B ≥ 0 if A ≥ 0 and

B ≥ 0.
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Remark 2 The kernel functions C(x), G̃(x) and G̃−1(x) decay faster than exp[−
√

2m|x|],

see Appendix. Of course, m∗ < m, m∗ = m − O(m2). However since m∗ is almost equal

to m in the present problem where m << 1, we use m for m∗ for notational simplicity in

the remaining part of the paper. If β < O(1), it is enough to choose L (the size for the

expansion) and N larger than some constants for the convergence. So it suffices to consider

the case β >> 1.

Remark 3 In this paper, we use free boundary conditions for Green’s function G and its

inverse, and we assume that the ψ field distributes only in the large square region Λ ⊂ Z2.

Other boundary conditions can be easily adopted without changing the main estimates in the

present paper.

C. Polymer Expansion in Small Field Region

We first consider the case of R = ∅. In this case, we decompose Λ ⊂ Z2 into squares

(denoted ∆ or ∆i below ) of size L× L whose centers are at Λ ∩ LZ2. Collections of these

squares are called paved sets. We also define L0 << L, where L and L0 are chosen so that

L << N << emL, G(L0) = N−2. (3.15)

For this to be satisfied, we take L slightly larger than m−1. Typically we may take L =

20m−1 logN so that emL = N20, in which case L0 = L/10. These satisfy the conditions on

L and N .

Let τ(ψ) be an even, positive and decreasing (in |ψ| ) C∞ function such that

τ(ψ) =


1 for |ψ| < N δ

0 for |ψ| > N δ + h
. (3.16)

We may take the limit h→ 0 after all calculations (limh→0 τ(ψ) = θ(N δ − |ψ|)), but we can

keep h as a non-zero constant (say 1).

We multiply

1 =
∑
K⊂Λ

τ(ψK)τ c(ψR) (3.17)
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to dµΛ, where τ c(ψ) = 1 − τ(ψ), R = Kc = Λ −K and τ(ψK) ≡ ∏
x∈K τ(ψ(x)), τ c(ψR) ≡∏

x∈R τ
c(ψ(x)). We call K the small field region and R = Kc the large field region. Then

ZΛ ≡ Z∞
∑
R

Z(R), (3.18)

Z(R) ≡
∫

det
−N/2
3 (1 +

2i√
N
Gψ)τ c(ψR)τ(ψK)dµΛ(ψ). (3.19)

We put ZΛ(R) = Z∞Z(R) and we first consider the case R = ∅:

ZΛ(R = ∅) ≡ Z∞

∫
ηΛdµΛ(ψ), (3.20)

ηΛ ≡ det
−N/2
3 (1 +

2i√
N
Gψ)

∏
x∈Λ

τ(ψ(x)), (3.21)

We introduce interpolation parameters si into dµΛ(ψ) to expand the measure [5,16]. Let

Y ⊂ Λ be a paved set consisting of p squares {∆1, · · · ,∆p}. Let {∆j1 , · · · ,∆jp} be any

permutation of them such that ∆j1 = ∆1 and let a be a map from {1, · · · , p− 1} into itself

such that a(k) ≤ k. Then we have a set of ordered links {(ja(i), ji+1); i = 1, · · · , p− 1} which

is regarded as a tree graph T ′ over {∆i} with root ∆1. Let

CY = χYCχY , (3.22)

where χY is the charcteristic function of Y . For a given permutation and a function a = aT ′ ,

we define

CY ({s}) = [
p−1∏
i=1

((1− si)Pi + si)]CY , (3.23)

MT ′ =
p−1∏
k=1

k−1∏
i=a(k)

si, (3.24)

where Pi are operators which bisect paved sets: PiCX = CX\Xi
+ CX∩Xi

, Xi ≡ ∪ik=1∆jk .

See Appendix C for the construction and for the proof of next theorem, see [5,16]:

Theorem 3 ZΛ(R = ∅) have the cluster expansion

ZΛ(R = ∅) = Z∞

∑
n

1

n!

∑
∪n

1Yi=Λ

∏
i

SYi

 ηΛ, (3.25)
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where Yi are paved sets such that ∪n1Yi = Λ and Yi ∩ Yj = ∅ for i 6= j. Let Y = ∪pk=1∆k be

one of Yi. Then SY is the differential and integral operator given by

SY =
∑
T ′

∫ 1

0
ds1 · · · dsp−1MT ′(s)

∫
dµY ({s}, ψ)

×
p−1∏
k=1

 ∑
xk∈∆ja(k)

∑
yk+1∈∆jk+1

1

2
C(xk, yk+1)

∂2

∂ψ(xk)∂ψ(yk+1)

 , (3.26)

where
∑
T ′ is the sum over all tree graphs T ′ = {(ja(k), jk)} over {j1, j2, · · · , jp} (j1 = 1) and

dµY ({s}, ψ) = det −1/2[CY (s)] exp[− < ψ,C−1
Y ({s})ψ >]

∏
x∈Y

dψ(x)√
π
. (3.27)

Here CY ({s}) is given by (3.23) and depends on permutations only.

There are many graphs T ′ which have the same links and vertices but belong to different

permutations {j1, j2, · · · , jp} of {1, · · · , p}. The following lemma is well known [5,16]:

Lemma 4 The measure MT
∏
dsi is the probability measure in the following sense:

∑
T ′:T (T ′)=T

∫ 1

0
MT ′

p−1∏
1

dsi = 1, (3.28)

where
∑
T ′:T (T ′)=T means the sum over tree graphs T ′ which have the same links with T .

Let

AΛ =
2i√
N
Gψ (3.29)

for simplicity, and let Λ = ∪pi=1Yi be one of the partitions which appear in eq.(3.25). Since

{ψYi
} are coupled in the determinant, we introduce interpolation parameters sij and set

AΛ =
∑

AYi
+
∑
i<j

(AYi,Yj
+ AYj ,Yi

) → A+B(s), (3.30)

A ≡
∑

AYi
, B(s) ≡

∑
i<j

sij(AYi,Yj
+ AYj ,Yi

), (3.31)

in the determinant, where

AYi
= χYi

AΛχYi
, AYi,Yj

= χYi
AΛχYj

. (3.32)
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We iteratively apply the identity f(1) =
∫ 1
0 ds∂sf(s) + f(0) to det3(1 +A+B(s)). If all sij

are set zero, then the determinant is factorized with respect to ψYi
. We thus have :

ZΛ(R = ∅) = Z∞

∑
n

1

n!

∑
∪n

1Xi=Λ

∏
i

ρXi

 .
Here {Xi}n1 are partitions of Λ into polymers, Xi ∩Xj = ∅, (i 6= j), ∪Xi = Λ and

ρX =
∑
p

1

p!

∑
Y1∪···∪Yp=X

∏
SYi

 ∑
γ∈T̃ ({Yi})

∫
dsγ∂γ

 ηX({Yi}), (3.33)

ηX({Yj}) = det
−N/2
3 (1 +

∑
i

AYi
+
∑
i<j

sij(AYi,Yj
+ AYj ,Yi

))τ(ψX), (3.34)

where SY is the interpolation operators on Y defined by (3.26) and

1. ∪Yi = X and Yi are mutually disjoint paved sets,

2. T̃ ({Yi}) is the set of connected graphs (not necessarily trees) over {Yi}pi=1,

3. dsγ =
∏

(ij)∈γ dsij and ∂γ =
∏

(ij)∈γ(∂/∂sij), (put sij = 0 if (i, j) /∈ γ ).

In the rest of this section, we prove the following theorem which ensures that the free energy

logZΛ(R = ∅) is the convergent series of ρX [13], if N is chosen large:

Theorem 5 Assume that R = ∅ and let n be the number of ∆ in X ⊂ Λ. If N ≥ N(β),

there exist strictly positive constants δ0 and m0 such that

|ρX | ≤ exp[−nδ0 logN −m0L(X)], n ≥ 2 (3.35)

ρ∆ = exp[−W∆], n = 1 (3.36)

where L(X) is the length of the shortest tree graph connecting all centers of squares ∆i ⊂ X,

and W∆ is the single square activity defined later.

To prove this, we first set

ηX({Yi}) ≡ exp[−N
2

2∑
i=1

Vi(A,B)]
∏
x∈X

τ(ψ(x)), (3.37)

V1(A,B) =
1

2
Tr
(
B2 − (B

1

1 + A
)2
)

+
1

3
Tr
(

1

1 + A
B
)3

, (3.38)

V2(A,B) = log det 3(1 + A) + log det 4(1 +
1

1 + A
B). (3.39)
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The derivatives of Vi with respect to sij can be done by the contour integrals:(∏ ∂

∂sij

)
ηX(s) =

∫
C

ηX(t)∏
(tij − sij)2

∏ dtij
2πi

where C is the product of the circles |tij − sij| = rij on C with their radiuses rij given by

rij = N δ̃ exp[
4

5
mdist(Yi, Yj)], where δ̃ > 0. (3.40)

Put Bij = 2itij(GYiYj
ψYi

+GYjYi
ψYj

)/
√
N . Then for |tij| < rij + 1 , we find that

|Bij(x, y)| ≤ const. log(1 +m−1)N−1/2+δ+δ̃ exp[−m
5
|x− y|],

N |TrχXB
3χX | ≤ N−1/2+3δ+3δ̃+2ε0|X|,

ε0 ≡ −2.1× logm/ logN (∼ 1/100 if N ∼ e400πβ), (3.41)

where ε0 is chosen slightly larger than −2 logm/ logN so that N ε0 > cm−2 log(1+m−1) and

some trivial constants can be absorbed by N ε0 . We choose δ̃ > 0 so that

δ̂ ≡ 1

2
− 3(δ + δ̃)− 2ε0 > 0. (3.42)

For example, we can choose as δ = 1/12, δ̃ = 1/16, δ̂ = 1/16− 2ε0. Thus we have:

Lemma 6 If N is chosen so large that (3.42) holds, then

|
∏

(ij)∈γ
∂/∂sijηX | ≤ exp[−nδ̃ logN −m2

∑
(ij)∈γ

dist(Yi, Yj)]||ηX || (3.43)

where m2 = 4m/5 and γ are connected tree graphs over {Yi ⊂ X}, and n is the number of

the bonds in the graph γ. Moreover

||ηX || ≡ sup
{|tij |≤rij+1}

|ηX(t)| ≤ exp[N−δ̂|X|]. (3.44)

Lemma 7 Let ∪ni=1∆i = Y and let xi ∈ ∆i. Then

|
∫
dµY (s, ψ)

n∏
1

∂

∂ψ(xi)
ηY (ψ)| < exp[−nδ̃ logN +N−δ̂|Y |]. (3.45)
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Proof. Each derivative acts either on det
−N/2
3 (· · ·) or on τ(ψ). If it acts on det

−N/2
3 (· · ·), it

yields the factor bounded by N−δ̃. (We can get a much smaller factor N−1/6+ε0 this case. )

On the other hand, if ∂/∂ψ(x) acts on τ(ψ(x)),

∂

∂ψ(x)
τ(ψ(x)) = 0 unless N δ < |ψ(x)| < N δ + h.

Note that

dµY (s) →
∏

exp[−z(x)2]
dz(x)√
π

by the linear transformation ψ(x) = (G̃−1
Y z)(x), where G̃−1

Y =
√
CY . Since C−1 = G◦2 and

CY (s) is a convex linear combination of {CYi
}, we see

∑
x∈Y

z2
x =< ψ, χYCY (s)−1χY ψ >≥

1

(8 +m2)2

∑
x∈Y

ψ2(x).

If |ψ(x)| > N δ, then {y : |z(y)| > N δ−ε0 , |x− y| < L0} 6= ∅ since |ψ(x)| = |∑y G̃
−1
Y (x, y)z(y)|

and |G̃−1(x)| < c(1 + m2)e−m|x|. Thus the contributions from the derivatives of τ are

exponentially smaller than those from the derivatives of det
−N/2
3 (· · ·). Q.E.D.

The single square activity ρ∆ = e−W∆ is defined by

ρ∆ =
∫

det
−N/2
3 (1 + A∆)τ(ψ∆)dµ∆(ψ). (3.46)

Since | log det
−N/2
3 (1 +A∆)| = O(N |TrA3

∆ |), we have W∆ = O(N−1/2+3δ+3ε0) which is inde-

pendent of locations of ∆ (|∆| = L2 < N ε0).

Let di be the number of lines which connect ∆i with other ∆j in the tree graph, i.e. di

the incidence number. Then
∑n
i=1 di = 2n − 2, where n is the number of squares ∆i in Y .

In this case there can appear di derivatievs ∂di/∂ψ(x)di , x ∈ ∆i in eq.(3.26). By integration

by parts, we can shift the action of ∂/∂ψ from τ to det
−N/2
3 (· · ·) or to exp[− < ψ,C−1

Y ψ >].

Lemma 8 [16] With the notation of (3.26) in Theorem 3 (with p replaced by n), let

F(x1, y2, · · · , yn) ≡ |
n−1∏
i=1

C(xi, yi+1)
∫
dµY (s, ψ)

n−1∏
1

∂2

∂ψ(xi)∂ψ(yi+1)
ηY (ψ)|

where xk ∈ ∆ja(k)
, yk+1 ∈ ∆jk+1

. Let γ is the tree graph defined by a(·). Then

∑
{xk,yk+1}

F(x1, y2, · · · , yn) ≤ exp[−n(δ̃ − 4ε0) logN − 4m

5
L0(X) +N−δ̂|X|] (3.47)

where xk ∈ ∆ja(k)
, yk+1 ∈ ∆jk+1

and L0(X) =
∑

(i,j)∈γ dist(∆i,∆j).

13



Proof. Without loss, we assume {jk = k}nk=1. Let di ≥ 1 be the incidence number of the

vertex ∆i. Since #{∆j : dist(∆i,∆j) < 2, i 6= j} = 8,
∑
i |xi − yi+1| is larger than

4

5

∑
i

|xi − yi+1|+
1

10

∑
i

∑
x∈∆i

∑
y:(x,y)∈γ

|x− y| ≥ 4

5

∑
i

|xi − yi+1|+
L

10

∑
i

[
di
9

]3/2,

where [x] = the maximal integer not larger than x. By integration by parts, we see that

|F(x1, y2, · · ·)| = |
n−1∏
i=1

C(xi, yi+1)
∫
dµY (s, ψ)ΦΨ| (3.48)

where relabelling {xi, yi+1} as {xi, xi,1, · · · , xi,di−1}n1 , xi,k ∈ ∆i,

Ψ =
n∏
i=1

∂

∂ψ(xi)
ηY (ψ), (3.49)

Φ = (−1)
∑

di−neH
n∏
i=1

di−1∏
j=1

∂

∂ψ(xi,j)
e−H , (3.50)

H = < ψY , C
−1
Y (s)ψY > . (3.51)

Rewriting {xi,j} as {ξi}n−2
1 , we put

Φ = e−H
n−2∏
i=1

∂

∂ψ(ξi)
e−H =

∑
I

(−1)|I|
∏
i∈I
Hξi(

∑
P⊂Ic

∏
(j,k)∈P

Hξj ,ξk), (3.52)

where I are subsets of {1, · · · , n− 2}, P are sets of unordered pairs of elements in Ic and

Hξ = 2
∑
ζ

C−1(ξ, ζ)ψ(ζ), Hξ1ξ2 = 2C−1(ξ1, ξ2). (3.53)

The number of partitions I ⊂ {1, · · · , n− 2} is 2n−3 (|Ic| must be even) and note that

∑
P⊂Ic

∏
(j,k)∈P

Hξj ,ξk =
∫ ∏

i∈Ic

φ(ξi)dνH(φ)

where dνH(φ) is the Gaussian measure of mean zero and covariance H = 2G◦2.

We first estimate the first term of Φ, I = {1, · · · , n− 2}:

∑
{ζi}

∏
2|C(xi, yi+1)|

∏
i

|C−1(ξi, ζi)|
[∫

dµY (s, ψ)
∏
i

|ψ(ζi)||Ψ|
]

≤M
[∫

dµY (s, ψ)Ψ2
] 1

2

where the integral of Ψ2 is bounded by Lemma 7 ( easily extended to Ψ2 ) and

M ≡
∑
ζi

∏
2|C(xi, yi+1)|

∏
|C−1(ξi, ζi)|

[∫
dµY (s, ψ)

∏
ψ(ζi)

2
] 1

2

. (3.54)
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We take the sum over {ξi}n−2
1 ⊂ {xk, yk+1}n−1

1 and put

∑
ξ∈∆a(k)

∑
ξ′∈∆k+1

2|C(ξ, ξ′)||C−1(ξ, x̃k)||C−1(ξ′, ỹk+1)| ≡ m−4δf(∆a(k),∆k+1)(x̃k, ỹk+1).

Then δf(∆a(k),∆k+1)(x̃k, ỹk+1) is bounded by

exp[−m{dist(∆a(k),∆k+1) + dist(∆a(k), x̃k) + dist(∆k+1, ỹk+1)}] (3.55)

except for a coefficient O(log4(1 + m−1)) which originates from C−1 = G◦2. Here the

constraints x̃k ∈ ∆a(k) and ỹk+1 ∈ ∆k+1 do not hold anymore. For xk or yk+1 not con-

tained in {ξ}n−1
1 , we put x̃k = xk or ỹk+1 = yk+1 and put δf(∆a(k),∆k+1)(x̃k, ỹk+1) =

2C(x̃k, ỹk+1)χ∆a(k)
(x̃k)χ∆k+1

(ỹk+1). This again satisfies the bound (3.55).

Assume that ∆̃i ⊂ Λ contains d̃i points of {ζi}. If dij points in ∆̃i couple with dij

points in ∆̃j (the same points appear twice in
∏
ψ(ζ)2),

∑
j dij = 2d̃i and we have the factor(

2d̃i

dij

)(
2d̃j

dij

)
dij! ( 2dii for (i, i).) Since

∏
j(dij)! < (2d̃i)!, we find that

∫
dµ
∏
ψ(ζi)

2 ≤
∏

[(2d̃i)!]
1
2

∏
i

 ∑
{dij}j

(2d̃i)!

di,1! · · · di,n!
∏
j

|C(dist(∆̃i, ∆̃j))|
1
2
dij



≤
∏

[(2d̃i)!]
1
2

∏
i

∑
j

|C(dist(∆̃i, ∆̃j))|
1
2

2d̃i

≤ c
2(n−2)
0

∏
[(2d̃i)!]

1
2 (3.56)

where c0 = O(1). Since (2d)! ≤ e2d log 2d and
∏
δf(∆a(k),∆k+1)(x̃k, ỹk+1) is bounded by

exp[−4m

5

∑
k

{dist(∆a(k),∆k+1) + dist(∆a(k), x̃k) + dist(∆k+1, ỹk+1)} −
mL

10

∑
i

[
d̃i
9

]
3
2 ]],

we see that (2d̃i)! are compensated and the sum over {x̃k, ỹk+1} yields m−4(n−1).

The coefficients
∫ ∏

ξ∈Ic φ(ξ)dνH of
∏
ξ∈I Hξ are again bounded by (3.56) by replacing c0

by c0 log(1+m−1) and 2d̃i by corresponding incidence numbers. Thus the total contribution

of Φ is bounded by 2n−3 times of the result of I = {1, · · · , n− 2}. Q.E.D.

We introduce mass parameters mi for later conveniences :

0 < m0 < m̃0 < m1 =
m

10
< m2 =

4m

5
< m. (3.57)

where Lm0 ∼ O(β) >> 1. The following lemmas are well-known to experts [5,8,16]:
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Lemma 9 ( [16], Lemma A.5 ) For a paved set X consisting of n squares {∆i}, let T (X)

denote the set of tree graphs γ over ∆i and L(X) denote the length of the shortest tree graph

over centers of ∆i ⊂ X. Let distc(∆i,∆j) be the distance from the center of ∆i to that of

∆j. Then there exist constants K1 = o(1) and K2 = o(1) such that

(1)
∑
X30

∑
γ∈T (X)

exp[−m̃0

∑
(ij)∈γ

distc(∆i,∆j)] < Kn
1 , (3.58)

(2)
∑
X30

exp[−m̃0L(X)] < Kn
2 . (3.59)

Proof. (1) Interchange the order of
∑
X and

∑
γ, and take the sum over positions of ∆i for

each γ. If ∆i are distinguishable, the result is bounded by Kn−1 where K = o(1) since ∆i

are squares of size L × L and e−m̃0L << 1. However the same configuration is counted n!

times. Then ∑
X30

exp[−m̃0

∑
(ij)∈γ

distc(∆i,∆j)] <
K ′n

n!
.

We finally note that the number of tree graphs is nn−2 < n!en to take the sum over γ.

(2) This is clear from exp[−m̃0L(X)] ≤ ∑
γ∈T (X) exp[−m̃0

∑
(ij)∈γ distc(∆i,∆j)]. Q.E.D.

Lemma 10 ( [5], Appendix C) Let X be a paved set consisting of nX squares ∆i ⊂ X.

Let f(Y ) be functions satisfying the bounds

|f(Y )| ≤ exp[−nY δ̃0 logN − m̃0L(Y )],

where nY is the number of squres ∆i in Y and L(Y ) is the length of shortest tree graph over

centers of ∆i ⊂ Y . Then there exist strictly positive constants δ0 (∼ δ̃0) and m0 (∼ m̃0)

such that

| 1
p!

∑
Y1∪···∪Yp=X

∏
f(Yi)| ≤ exp[−nXδ0 logN −m0L(X)], (3.60)

where {Yi : i = 1, · · · , p} are paved sets such that X cannot be devided into two disconnected

parts without bisecting some Yi.
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Proof. We first extract the tree decay factor exp[−nXδ0 logN − m0L(X)] from
∏
f(Yi)

choosing δ0 and m0 slightly less than δ̃0 and m̃0. We show that the remaining sum con-

verges. By Cayley’s theorem on the number of the tree graphs with fixed incidence numbers

d1, · · · , dp, we have

|
∑
T

(·)| = |
∑
{di}

∑
T,{di}fixed

(·)| ≤
∑

d1,···,dp

(p− 2)!∏
(di − 1)!

sup
(T,d):fixed

|(·)|,

and take the sum over the Yi’s starting from the end branches of the tree. Let Yp be one of

the end branches and let Yj be the ancestor. Fix ∆j ⊂ Yp∩Yj and take the sum over Yp. The

sum is convergent and is bounded by
∑
Yp30 |f(Yp)|. Next take the sum over ∆j ⊂ Yj, which

yields (nYj
)dj−1. Repeating this, we see that the sum is bounded by nX [

∑
Y 30 |f(Y )|enY ]p

since
∑
ndY /d ! ≤ enY . enY is compensated by a fraction of exp[−nY δ̃0 logN ] in f(Y ). See

also [5,16] for the detail. Q.E.D.

Proof of Theorem 5. We obtain f(Y ) in Lemma 10 from Lemma 8 by taking the sum

over T ′ in (3.26). This yields a constant less than 1. Thus we obtain f(Y ) in Lemma 10.

We determine the parameters δ̃0 and m̃0. In Lemma 8, X may be single squares ∆, and

they do not have tree decay factors. Moreover ∆i and ∆j may be nearest neighbour each

other and dist(∆i,∆j) = 1. Then we put δ̃0 ≡ (δ̃ − 4ε0)/2 and borrow N−δ̃0 from N−2δ̃0 in

eq.(3.47) in Lemma 8 to extract the factor exp[−m̃0L(∆i ∪∆j)] = e−m̃0L this case. Namely

m̃0 ≡ δ̃0
logN

L
(∼ δ̃

m

40
if L = 20 logN/m). (3.61)

Let T ({Yi}) be the set of tree graphs (no loops) over {Yi} such that ∪Yi = X. Thus applying

(3.43) and (3.47) to (3.33), we have from (3.33) that

|ρX | ≤
n∑
p=1

1

p!

∑
∪Yi=X

p∏
1

(
A(Yi)e

ε̃i
)∑

T

∏
(ij)∈T

bij

 ,
where A(Y ) ≤ exp[−nY δ̃0 logN − m̃0L(Y ) + c1N

−δ̂|Y ]|, (c1 = O(1)), Yi ∩ Yj = ∅ for i 6= j,

and bij ≡ exp[−δ̃0 logN − m̃0distc(Yi, Yj)] comes from ∂/∂sij and

distc(Yi, Yj) = min
∆i⊂Yi,∆j⊂Yj

distc(∆i,∆j). (3.62)
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Moreover we have put ( effects of loops in T̃ ({Yi}) )

1 +
∑
` 6=i

bi` +
∑
`<m

bi`bim + · · · < exp[
∑
j:j 6=i

bij] < eε̃i , ε̃i = O(N−δ̃0).

Then we can extract exp[−nXδ0 logN −m0L(X)] choosing δ0 and m0 slightly smaller than

δ̃0 and m̃0, respectively, to compensate N−δ̂|X| ≤ nXN
−δ̂+ε0 . Finally we use lemma 10 to

prove that the ramaining terms converge. Q.E.D.

Remark 4 We may choose δ = 1
12

and δ̃ = 1
16

so that δ̂ = 1
2
− 3(δ + δ̃) − 2ε0 = 1

16
− 2ε0.

Then δ̃0 ∼ 1
2
δ̃ = 1

32
. For large N , δ0 ∼ δ̃0 and m0 ∼ m̃0.

IV. POLYMER EXPANSION WITH LARGE FIELDS

We here show that the contributions from large field regions are small and that the

dominant contributions come from small field regions we discussed. The analysis is easy in

two extremal cases where |ψ(x)| are very small or very large. If |ψ| are small, we expand the

determinant using the N−1 expansion, and we extract small fields as exp[− < ψ,C−1ψ >],

leaving large fields untouched. Very large fields are easily estimated by the |ψ|−N/2 behaviour

of the determinant (thus the contribution is small). But it is hard to estimate contributions

from N δ < |ψ(x)| < N1/2+δ and from |ψ(x)| < N δ near R. We bound their contributions by

the stability. This makes our analysis complicated ( crude ).

For the large field region R introduced by
∏
x∈R τ

c(ψ(x)), we define another large field

region R0 = R(L0) which includes points of K = Λ−R near R:

R0 = R(L0) ≡ {x ∈ Λ; dist(x,R) ≤ L0}. (4.1)

Let D̃ be the smallest paved set containing R0. We denote D the union of D̃ and those

∆ ⊂ K nearest to D̃. We set ∂D = D − D̃, and we call it a collar [8] or a corridor [16].

Decompose D into connected components Di, and set Ri = Di∩R and R0
i = Di∩R0. Then

D = ∪Di, dist(Di, Dj) ≥ L, i 6= j. (4.2)

Ri = Di ∩R, dist(Ri, Rj) > 3L+ 2L0, i 6= j. (4.3)
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It is convenient to define two types of small field region:

K0 = Λ−D, K̃ = Λ−R0. (4.4)

In the following, we may write

Ai =
2i√
N
χiGψχi, Aij =

2i√
N
χiGψχj, (4.5)

where χ0 = χK̃ , χ1 = χR0 , i.e., A0 = AK̃ , A1 = AR0 , A01 = AK̃,R0 and so on when there is

no danger of confusion. Then we can factorize the determinant (see Remark below):

det(1 + AΛ) = det(1 + AR0) det(1 + AK̃ −WK̃), (4.6)

WK̃ ≡ AK̃,R0

1

1 + AR0

AR0,K̃ . (4.7)

Here and hereafter we regard AR, GR and so on as operators on CR, and AR1,R2 , GR1,R2 and

so on as operators CR1 → CR2 , where R,R1, R2 ⊂ Λ.

Theorem 11 Let Di be any connected paved set and let Ri be a large field region consistent

with Di. Put R0
i = {x ∈ Di; dist(x,Ri) ≤ L0}. Then the following (stability) bound holds:∫

| det −N/2(1 + AR0
i
)|
∏
x∈Ri

dψ(x) = exp[− < ψR̃i
, TiψR̃i

> −E(ψR̃i
)] (4.8)

E(ψR̃i
) ≥ β

10
|Ri|N δ2 (4.9)

where R̃i ≡ R0
i \Ri, < ψR̃i

, TiψR̃i
> is a positive bilinear form of ψR̃i

defined later and

δ2 = O(1) (= 1/24) is a strictly positive constant discussed later.

Theorem 12 The small field contribution is represented by the polymer expansion:

ZK̃ ≡
∫

exp[−
∑
i

< ψR̃i
, TiψR̃i

> +
N

2
TrAK̃ ] det −N/2(1 + AK̃ −WK̃)

∏
x∈K

dψ(x)√
π

= Z∞

det
1
2 (CK̃)

Z∞

∑ 1

n!

∑
∪n

1Xi=K

∏
ρ̃Xi

 (4.10)

where CK̃ = [χK̃G
◦2χK̃ ]−1. ρ̃X satisfies the following bound uniformly in ψR(x):

|ρ̃X | ≤ exp[−m0L(X ∧D)− δ0nX logN + πL2
0|RX |δ logN ], for nX ≥ 2. (4.11)

Here RX = R ∩ X, nX the number of unit squares ∆ ⊂ X such that ∆ ∩ R0 = ∅, and

L(X ∧D) is the length of the shortest tree graph over D` ⊂ X and centers of ∆ ⊂ X.
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The reader should note that these theorems mean that

Z∞Z(R) ∼ ZK̃ exp[−
∑
i

min
ψR̃i

E(ψR̃i
)]

and ρX ∼ ρ̃X exp[−minψR̃X
E(ψR̃X

)]. (The estimate of ψRi
in ZK̃ remains.) Since the factor

E(ψR) compensates πL2
0|RX |δ logN in ρ̃X which originates from small fields near RX , we

obtain sufficiently small ρX . We prove these theorems in the rest of this section.

Remark 5 For matrices A,B, C and D of sizes `× `, m×m, m× ` and `×m rspectively,

we have (blockwise diagonalization [11]): A D

C B

 =

 1 0

CA−1 1


 A 0

0 B − CA−1D


 1 A−1D

0 1

 . (4.12)

A. Polymer Expansion of Ai with Large Fields

1. Properties and Expansions of J(R)

We note that

WK̃ = GK̃,R0J(R0, ψR0)GR0,K̃

2i√
N
ψK̃ , (4.13)

J(R0, ψR0) =
1

GR0 − i
√
N
2
ψ−1
R0

, (4.14)

where GR0 = χR0GχR0 , GK̃,R0 = χK̃GχR0 and so on, and ψR0 is regarded as the diagonal

matrix: ψR0 = diag(ψ(x), x ∈ R0). We first study properties of the operator J(R,ψ).

Lemma 13 The following relations hold:

(1) ||J(R,ψR)|| ≤ ||G−1
R || ≤ 8 +m2 uniformly in R 6= ∅ and ψR.

(2) [GR − iψ−1
R ]−1(x, y) decays exponentially fast uniformly in R 6= ∅ and ψR :

|[GR − iψ−1
R ]−1(x, y)| ≤ const. GR(x, y). (4.15)

Proof. (1) Since m−2 > GR > (m2 + 8)−1 > 0 uniformly in R 6= ∅, G1/2
R and G

−1/2
R satisfy

inequalities of the same type. Moreover since G
−1/2
R ψ−1

R G
−1/2
R is self-adjoint, we see that
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||1− i
√
N
2
G
−1/2
R ψ−1

R G
−1/2
R || ≥ 1. Then the conclusion follows from

J(R,ψ) = G
−1/2
R

1

1− i
√
N

2
G
−1/2
R ψ−1

R G
−1/2
R

G
−1/2
R .

(2) We first note that

1

GR − iψ−1
R

= iψR
1

G−1
R + iψR

G−1
R ,

where ( [17], Theorem VIII.1, or use (4.12))

G−1
R = χR(−∆ +m2)χR −B∂R, (4.16)

B∂R = E(χRc(−∆ +m2)χRc)−1E∗, (4.17)

E = χR(−∆)χRc . (4.18)

Here B∂R is a positive operator bounded by χR(−∆ + m2)χR (by the positivity) and has

non-negative matrix elements. B∂R(x, y) 6= 0 if and only if (x, y) ∈ ∂R × ∂R where ∂R =

{x ∈ R; ∃y ∈ Rc, |x− y| = 1}. Then we have the convergent Neumann expansion

iψR
1

χR(−∆ +m2 + iψ)χR −B∂R

= iψRG
D
R(ψ)

[ ∞∑
n=0

(B∂RG
D
R(ψ))n

]

where GD
R(ψ) = [χR(−∆ +m2 + iψ)χR]−1 and

|GD
R(ψ)xy| ≤ GD

R(ψ = 0)xy

|ψxGD
R(ψ)xy| ≤ (4 +m2)GD

R(ψ = 0)xy

as is proved by the random walk representation of GD
R(ψ). Putting all ψ = 0, we find that

| 1

GR − iψ−1
R

(x, y)| ≤ (4 +m2)
∑
ζ

GR(x, ζ)|G−1
R (ζ, y)|

Then (2) follows since |G−1
R (ζ, y)| = 2(m2 + 4)δζy −G−1

R (ζ, y) by (4.16). Q.E.D.

Lemma 14 J(R,ψ) admits the following cluster (random walk) expansion:

J(R,ψ) =
∑
X⊂R

δJ(X,ψ) (4.19)
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where X are intersections of R with paved sets (X = ∪i(∆i ∩ R)). Moreover δJ(X,ψ)

depends only on ψ(x), x ∈ X. If diam(X) >
√

2(2L+ 1), then

||δJ(X,ψ)|| ≤ exp[−m1L(X)], (4.20)

|δJ(X,ψ)xy| ≤ exp[−m1L(X, x, y)], (4.21)

where δJ(X,ψ)xy is the (x, y) component of δJ(X,ψ) ( x, y ∈ X ) and L(X, x, y) is the

length of the shortest walk from x to y through all centers of ∆` ⊂ X, x /∈ ∆`, y /∈ ∆`.

Proof. We apply the expansion procedure by Federbush and Brydges to G−1
R . For any

X ⊂ R, X = ∪n1 (∆i ∩R), we choose ∆1 ∩R ⊂ X and s1 ∈ [0, 1] and define

G(X, s1) = [(1− s1)(G
−1
X\∆1

+G−1
∆1

) + s1G
−1
X ]−1,

J(X, s1) = [G(X, s1)− ihX ]−1,

where h =
√
Nψ−1/2, G−1

X ≡ χXG
−1
R χX and ∆i ∩ R is denoted as ∆i for simplicity. Then

J(X) = J(X, s1 = 1) and J(X, s1) is bounded uniformly in h and s1, and we have

J(X) = J(X, s1 = 0) +
∫ 1

0
J ′(X, s1)ds1

= J(X\∆1)⊕ J(∆1)−
∑

∆2 6=∆1

∫ 1

0
J(X, s1)G(X, s1)δG

−1
12 G(X, s1)J(X, s1)ds1

where δG−1
ij = G−1

∆i∆j
+G−1

∆j∆i
and we have used

∂

∂s1

G(X, s1) = −
∑

∆2⊂X\∆1

G(X, s1)
[
G−1

∆1,∆2
+G−1

∆2,∆1

]
G(X, s1)

and so on. We choose ∆2 6= ∆1 and s2 in the next step and continue the process inductively.

(See Appendix and the proof of Theorem 3).

Let J(R)xy be the (x, y) component of J(R). Then we have

J(R)x,y =
∑
X⊂R

δJ(X)x,y, δJ(X)xy =
∑
T

δJ(X)T (x, y)

where T are tree graphs over {∆1 ∩R, · · · ,∆n ∩R} with root ∆1 and δJ(X)T (x, y) is given

by

∑
γ:T (γ)=T

∑
π

(−1)n−1
∫
Mγ(s)

n−1∏
1

dsi
∑
ki=0,1

[J(X, sγ)G(X, sγ)]x,`π(1)
δG−1

`π(1),mπ(1)

×G(k1)
mπ(1),`π(2)

δG−1
`π(2),mπ(2)

· · ·G(kn−1)
mπ(n−2),`π(n−1)

δG−1
`π(n−1),mπ(n−1)

[G(X, sγ)J(X, sγ)]mπ(n−1),y
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with G(0) = G(X, sγ) and G(1) = G(X, sγ)J(X, sγ)G(X, sγ). Here γ are tree graphs over

{∆j1 , · · · ,∆jn} (j1 = 1) and for given tree γ = {b1, b2, · · · , bn−1}, bk = (`k,mk) (`k, mk ∈

{j1, · · · , jn}), π stands for permutations of {bk = (`k,mk)}n−1
1 . Moreover si are introduced

following the tree graph γ. (See Theorem 2 for the notation.)

G−1(X, sγ) is a convex linear combination of χY (−∆ +m2−B∂R)χY , Y ⊂ X. Then the

non-diagonal terms of G−1(X, sγ) are negative (ferromagnetic), and we have

|G(i)(X, sγ)x,y| ≤ c1m
−2 exp[−m2|x− y|],

uniformly in {si} and X, where i = 0, 1, m2 = 4m/5 and c1 is a positive constant.

If ∆i and ∆j are nearest neighbour and x ∈ ∆i and y ∈ ∆j are close to each other,

some of the matrix elements (δG−1
ij )xy may be large. Since e−mL << 1, this happens only

for blocks of form ∪pi=1∆i with diam(∪∆i) ≤
√

2(2L+ 1) (thus p ≤ 4). Then for n > 4

|G(s)p,`π(1)
δG−1

`π(1),mπ(1)
G(k1)(s)p,`π(1)

· · · δG−1
`π(n−1),mπ(n−1)

G(s)mπ(n−1),q| ≤ exp[−1

5
m2Lπ(γ)(p, q)],

Lπ(γ)(p, q) = distc(p, `π(1)) + distc(`π(1),mπ(1)) + distc(mπ(1), `π(2)) + · · ·+ distc(mπ(n−1), q),

where distc(i, j) ≡ distc(∆i,∆j). We can then extract either the tree decay factor of γ

exp[−m′

1(distc(p, `π(1)) + distc(mπ(n−1), q))]
∏

(ij)∈γ
exp[−m′′

1distc(i, j)], (4.22)

or the decay factor proportional to the length of walk, exp[−m′′
1L(∆p, {∆},∆q)] with the

remainder bounded by
∑
π exp[−m′

1Lπ(γ)(p, q)] where m
′
1 + m

′′
1 = m2/5. We complete the

proof by Lemma 9, by replacing m
′
1 by m1 ≡ m/10 < m

′
1 to compensate Kn

2 . Q.E.D.

Remark 6 In the proof of Lemma 14, we may introduce interpolation parameters si in such

a way that

GR → GR(s) ≡ (1− s)(χR\∆GRχR\∆ + χ∆GRχ∆) + sGR

in the denominator of J(R,ψ), though G−1
R (s) may not be ferromagnetic this case. See

Appendix B. Moreover if R = ∪Ri and {Ri} distribute dilutely, we can just Taylor-expand

the off-daigonal terms GRi,Rj
(i 6= j). This is the standard random walk expansion.
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2. Proof of Theorem 11 (Large Field Contribution )

Let us consider the contribution from the large field region R0 = ∪R0
i , R

0
i = R0 ∩Di:

det
−N

2
2 (1 + AR0) =

[∏
i

det
−N

2
2 (1 + AR0

i
)

]
det −

N
2

1 +
∑
i6=j

δAij

 , (4.23)

δAij = AR0
i ,R

0
j

1

1 + AR0
j

= GR0
i ,R

0
j

1

GR0
j
− i

√
N

2ψ
R0

j

. (4.24)

Since R0
i and R0

j are separated by distance more than 3L, we see that

||δAij||1 ≤ m−4 exp[−mdist(R0
i , R

0
j )]×min{|R0

i |, |R0
j |}

≤ min{|R0
i |, |R0

j |} exp[−4m

5
dist(R0

i , R
0
j )] (4.25)

uniformly in ψ(x), x ∈ R0, where ||A||pp = Tr|A|p (p ≥ 1). (Note that ||A||1 = Tr|A| ≤∑ |A(x, y)| and ||A||22 =
∑ |A(x, y)|2. ) Then it is enough to consider det(1 + AR0

i
).

Let δ1 be a positive constant such that 0 < 2δ − 3δ1, and set Ri = Li ∪Mi where

Li = {x ∈ Ri; |ψ(x)| > N
1
2
+δ1}, Mi = {x ∈ Ri; |ψ(x)| ≤ N

1
2
+δ1}. (4.26)

(L stands for Large, and M stands for Medium. Only in this subsection, L and Li stand for

regions of very large fields ψ. We apologize for the abuse of notation.) We also introduce

Li(L0) = {x ∈ R0
i ; dist(x, Li) ≤ L0}, (4.27)

Mi(L0) = {x ∈ R0
i ; dist(x,Mi) ≤ L0}, (4.28)

and set M̃i = R0
i−Li = Mi∪R̃i. For notational simplicity, we omit the subscript i for a while

and we denote R0
i by R0, Ri by R and Li by L and so on. We first extract ψL = χLψχL:

det(1 + AR0) = det(1 + AL) det

[
1 + (TM̃ − δTM̃)

2i√
N
ψM̃

]
, (4.29)

where we have used the following abbreviations:

AL = χLGχL
2i√
N
ψL, (4.30)

TM̃ = GM̃ −GM̃,LG
−1
L GL,M̃ , (4.31)

δTM̃ = GM̃,L

[
(GL −

i
√
N

2ψL
)−1 −G−1

L

]
GL,M̃ . (4.32)
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Lemma 15 If {c1 < |ψ(x)| < c2 ;x ∈ A} , 0 < ci , then

spec|G1/2
A ψAG

1/2
A | ⊂ [

c1
m2 + 8

,
c2
m2

]. (4.33)

Proof. Since (8 +m2)−1 < f, f >≤< f,GAf >≤ m−2 < f, f > for f ∈ CA, we have

||G1/2
A ψAG

1/2
A f ||2 = < ψAG

1/2
A f,GAψAG

1/2
A f >

≥ (8 +m2)−1 < ψAG
1/2
A f, ψAG

1/2
A f >

≥ (8 +m2)−2 ( inf
x∈A

|ψ(x)|2) < f, f > .

The other inequality is also immediate. Q.E.D.

Lemma 16 The matrices TM̃ and δTM̃ have the following properties:

T−1
M̃

= (G−1
R0)M̃ ≡ χM̃G

−1
R0χM̃ , (4.34)

T
1/2

M̃
= G

1/2

M̃
+ t

1/2

M̃
, (4.35)

|t1/2
M̃

(x, y)| ≤ cm−4 exp
[
−m

2
(dist(x, L) + dist(y, L) + |x− y|)

]
, (4.36)

||δTM̃ ||1 ≤ |L|N−δ1+ε0 . (4.37)

Proof. To show (4.34), we take the inverses of the both sides of the block-diagonalization of

GR0 > 0:

GR0 = U

 GL 0

0 TM̃

U∗, U =

 1 0

GM̃LG
−1
L 1

 .
To show the second, using T−1/2 = 2

∫∞
0 (T + u2)−1du/π, we have

T
−1/2

M̃
= G

−1/2

M̃
+ t̂

−1/2

M̃
,

t̂
−1/2

M̃
= 2

∫ 1

GM̃ + u2
GM̃L

1

FL(u)
GLM̃

1

GM̃ + u2

du

π
,

FL(u) = GL −GLM̃(GM̃ + u2)−1GM̃L

where |G−1
M̃

(x, y)| ≤ ce−m|x−y|, |GM̃L(x, y)| ≤ c log(1 + m−1)e−m|x−y|, (x ∈ M̃ , y ∈ L) and

FL(u)−1(x, y) ≤ ce−m|x−y|, x, y ∈ L uniformly in u ≥ 0. In fact F−1
L is essentially equal to
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(G−1
R0)L. Then t̂−1/2 has the decay property (4.36) except for the coefficient. We multiply

TM̃ to the expression of T
−1/2

M̃
to obtain (4.35).

To estimate ||δTM ||1, we expand (GL − i
√
N

2ψL
)−1 into series of G−1

L which converge abso-

lutely since |
√
N/ψL(x)| ≤ N−δ1 . Since ||G−1

L || ≤ 8 +m2 and ||GM̃L||22 =
∑
xy G

2
M̃L

(x, y) ≤

c|L| log2(1 +m−1)m−2, (4.37) follows from the definition (3.41) of ε0. Q.E.D.

Let

det(1 + AR0) = det(1 + AL) det

1− δTM̃
1

TM̃ − i
√
N

2ψM̃

 det(1 + TM̃
2i√
N
ψM̃). (4.38)

Using det(1 + A) = exp[Tr(A+O(A2))] and | det(AL)| ≤ | det(1 + AL)|, we have estimates

| det −
N
2 (1− δTM̃

1

TM̃ − i
√
N

2ψM̃

)| ≤ exp[|L|N1−δ1+ε0 ], (4.39)

| det −
N
2 (1 + AL)| ≤

[∏
x∈L

√
N

2|ψ(x)|

]N/2
det −N/2(GL)

≤ exp

[
−1

2
N
∑
x∈L

{
log

(
2|ψ(x)|√

N

)
− log(8 +m2)

}]
.(4.40)

Therefore we have (using 2/5 instead of 1/2) :

Lemma 17 If N ≥ N(β) so that δ1 > ε0, then∣∣∣∣∣∣∣
det(1 + AL) det(1− δTM̃

1

TM̃ − 2i
√
N

ψM̃

)


∣∣∣∣∣∣∣
−N

2

< exp[−2

5
N
∑

log(|ψ(x)√
N
|)]. (4.41)

It remains to estimate the final determinant in the R.H.S. of eq.(4.38) :

| det −N/2(1 +
2i√
N
T 1/2ψM̃T

1/2)| = det −N/4(1 +
4

N
[T̂0 + T̂1])

= exp[−Ψ0 −Ψ1] (4.42)

where T ≡ TM̃ and

T̂0 = T 1/2ψM̃T
1/2χM̃\R(L0/2)

T 1/2ψM̃T
1/2, (4.43)

T̂1 = T 1/2ψM̃T
1/2χR(L0/2)T

1/2ψM̃T
1/2, (4.44)

Ψ0 =
N

4
Tr log

(
1 +

4

N
T̂0

)
, (4.45)

Ψ1 =
N

4
Tr log

1 +
4

N

1

(1 + 4
N
T̂0)1/2

T̂1
1

(1 + 4
N
T̂0)1/2

 . (4.46)
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Both T̂0 and T̂1 are positive. Put

Φ0 = TrT̂0 =
∑

x,y∈M̃

ψ(x)T̂0(x, y)ψ(y) ≡< ψM̃ T̂0ψM̃ >, (4.47)

Φ1 = TrT̂1 =
∑

x,y∈M̃

ψ(x)T̂1(x, y)ψ(y) ≡< ψM̃ T̂1ψM̃ >, (4.48)

T̂1 = (T
1/2

M̃
χR(L0/2)T

1/2

M̃
) ◦ TM̃ , (4.49)

T̂0 = (T
1/2

M̃
χM̃\R(L0/2)

T
1/2

M̃
) ◦ TM̃ ≡ T + δT , (4.50)

T ≡ (G
1/2
R0 χR0\R(L0/2)G

1/2
R0 ) ◦GR0 . (4.51)

where M̃ = R0\L and note that M̃\R(L0/2) = R0\R(L0/2). Since G
1/2
R0 (x, y) ≤ ce−m|x−y|

and G
1/2

M̃
(x, y) ≤ ce−m|x−y| (Appendix B), we have

|(G1/2
R0 χR0\R(L0/2)G

1/2
R0 )(x, y)| ≤ N−1+ε0 , if x ∈ R, y ∈ R0,

|(G1/2
R0 χR0\R(L0/2)G

1/2
R0 )(x, y)| ≤ N−2+ε0 , if x ∈ R, y ∈ R.

Since ψM̃ = ψR̃ + ψM , we have

Φ0 = < ψR̃, T ψR̃ > +δΦ0, (4.52)

|δΦ0| ≤ const.|L|L2
0N

1/2+2δe−mL0/2 ≤ |L|N−1/2+2δ+2ε0 . (4.53)

The argument of the same type shows that ||T̂0/N || ≤ N−1+2δ+ε0 and ||T̂1/N || ≤ N2δ1+ε0 .

We remark the following facts: Let A and B be any positive matrices. Then

(i) Tr(xA− 1
2
x2A2) ≤ Tr log(1 + A) ≤ TrA for any x ∈ [0, 1].

(ii) A ◦B ≥ c diag(A) if B ≥ c1, where 1 is the identity.

The fact (i) is trivial and the fact (ii) follows from A ◦ B = A ◦ (c1 + (B − c1)) ≥ cA ◦ 1

where A ◦ 1 = diag(A). Then we have

Φ0 ≥ Ψ0 ≥ (1−O(N−1))Φ0 = Φ0 +O(N−1+2ε0+2δ|R|),

Φ1 ≥ Ψ1 ≥ (1−O(N−2δ1+2ε0))N−3δ1Φ1.

(we used (i) with x = N−3δ1 in the second.) To obtain the lower bound for Φ1 > 0, we apply

(ii) by setting A = T 1/2χM(L0/2)T
1/2 and B = T , where T = TM̃ . Therefore we have

Φ1 ≥
1

8 +m2

∑
x∈M̃

 ∑
ζ∈R(L0/2)

T 1/2(x, ζ)2

ψ(x)2 (4.54)
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since ||T || ≥ (8 + m2)−1, see Lemma 16. Here again by Lemma 16, we have∑
ζ∈R(L0/2) T

1/2(x, ζ)2 = GM̃(x, x) − O(N−1/2+ε0) = β − O(N−1/2+ε0) >> 1 for x ∈

R(L0/2)\L(L0/2). Thus we find that

Φ1 ≥
β

9

∑
x∈R(L0/2)\L(L0/2)

ψ(x)2 (4.55)

Therefore we choose δ1 > 0 so that

δ2 ≡ 2δ − 3δ1 > 1.2× ε0, δ1 > 1.2× ε0, (4.56)

which are satisfied by δ = 1/12 and δ1 = δ2 = 1/24. (δ2 > 1.2× ε0 is needed later.)

Proof of Theorem 11. Putting T = Ti, R = Ri, L = Li and so on, we have

| det −N/2(1 + AR0
i
)| ≤ exp[− < ψR̃i

, TiψR̃i
> +|Li|N−1/2+δ+ε0 +N−1+2δ+2ε0|Ri|

−c1N−3δ1
∑

x∈Ri(L0/2)\Li(L0/2)

ψ2(x)− 2

5

∑
x∈Li

N log |ψ(x)√
N
| ]

where c1 ≥ β/9. We fix Li ⊂ Ri and integrate over ψ(x), x ∈ Ri noticing that
∫∞
s e−x

2
dx =

e−s
2
/2s(1 +O(s−1)) and c1|Li(L0)|N δ2 ≤ (1/15)δ1|Li|N logN :∫

| det −N/2(1 + AR0
i
)|
∏
x∈Li

dψ(x)
∏

x∈Ri\Li

dψ(x)

≤ e
−<ψR̃i

,TiψR̃i
>

exp[−(c1 − o(1))|Ri|N δ2 − 1

3
δ1|Li|N logN ]

Take the sum over all Li ⊂ Ri and put c2 = c1 − o(1)−O(e−N) ≥ β/10. Q.E.D.

B. Polymer Expansion of the Gaussian Measure

1. Stability of Small Fields

For any large field region R, we integrate the following function:

ΞR(ψ) ≡
∏
i

D(AR0
i
) det −

N
2 (1 +

∑
i6=j

δAij) det
−N

2
3 (1 +AK̃ −WK̃)e−V τ(ψK)τ c(ψR),(4.57)

where

D(AR0
i
) = det

−N/2
2 (1 + AR0

i
) exp[< ψR̃i

, TiψR̃i
>], (4.58)

Ti = (G
1/2

R0
i
χR0

i \Ri(L0/2)G
1/2

R0
i
) ◦GR0

i
(4.59)
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and

V = < ψK̃ , G
◦2ψK̃ > +δVK ≡ V0 + V1, (4.60)

V0 = < ψK̃ , G
◦2ψK̃ > +2 < ψK̃ , G

◦2ψR0\R > +
∑
i

< ψR0
i \Ri

, TiψR0
i \Ri

>, (4.61)

V1 = −N
2

Tr
(
WK̃ − AK̃,R0\RAR0,K̃

)
− N

2
Tr(AK̃WK̃ −

1

2
W 2
K̃

) (4.62)

δVK =
∑
i

< ψR̃i
, TiψR̃i

> −N
2

Tr(WK̃ + AK̃WK̃ −
1

2
W 2
K̃

). (4.63)

(Remark that R̃i ≡ R0
i \Ri). V0 does not depend on ψ(x), x ∈ R, and V1 contains ψ(x),

x ∈ R only through WK̃ . WK̃ is bounded uniformly in ψ(x), x ∈ R, because of the small field

region surrounding R. We would like to stress that < ψK̃ , G
◦2ψR0\R >= −N

4
TrAK̃,R0\RAR0,K̃

is extracted from TrWK̃ .

Lemma 18 The following bounds (stability bounds) hold uniformly in |ψ(x)| > N δ, x ∈ R

and ψ(x) ∈ [−N δ, N δ], x ∈ K = Λ\R:

|V1| ≤ const. N−1/2+2δ+ε0|R|, (4.64)

V0 ≥ −O(|R|N−1/2+2δ+ε0). (4.65)

Proof. To show the first, we note that

WK̃ − AK̃,R0\RAR0,K̃ = −AK̃,R0\R
AR0

1 + AR0

AR0,K̃ + AK̃,R
1

1 + AR0

AR0,K̃ .

Then the trace of the left hand side is bounded by
∑
iO(N−3/2+δ+2ε0|Ri|).

To show the second, we introduce the positive function

P (ψ) = < ψK , [(G
1/2χΛ\R(L0/2)G

1/2) ◦G]ψK >

= < ψK̃ , [(G
1/2χΛ\R(L0/2)G

1/2) ◦G]ψK̃ > +2 < ψK̃ , [(G
1/2χΛ\R(L0/2)G

1/2) ◦G]ψR̃ >

+ < ψR̃, [(G
1/2χΛ\R(L0/2)G

1/2) ◦G]ψR̃ > (4.66)

which approximates V0 and interpolates K̃ = Λ\R0 and R̃ = R0\R. Since

G
1/2
R0 χR0\R(L0/2)G

1/2
R0 = GR0 −G

1/2
R0 χR(L0/2)G

1/2
R0 ,

G1/2χΛ\R(L0/2)G
1/2 = G−G1/2χR(L0/2)G

1/2,
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and GR0 = G on CR0
, we see that G

1/2
R0 χR0\R(L0/2)G

1/2
R0 is equal to G1/2χΛ\R(L0/2)G

1/2 on CR0

with an error of order O(m−2e−mL0/4) = O(N−1/2+ε0). To prove this, we estimate

[G
1/2
R0 χR0\R(L0/2)G

1/2
R0 ](x, y) =

∑
ζ∈R0\R(L0/2)

G
1/2
R0 (x, ζ)G

1/2
R0 (ζ, y)

for x, y ∈ R0. Since G
1/2
R0

(x, y) ≤ ce−m|x−y|, if dist(x,R) > 3L0/4, the sum over ζ is extended

to all ζ ∈ R0 with a correction bounded by O(m−2e−mL0/4). Thus this is equal to GR0(x, y) =

G(x, y). If dist(x,R) < 3L0/4, then dist(x, (R0)c) ≥ L0/4 and G
1/2
R0 (x, y) = G1/2(x, y) with

a correction bounded by O(m−2e−mL0/4). Thus we have

|
∑
i

< ψR0
i \Ri

, TiψR0
i \Ri

> − < ψR̃, [(G
1/2χΛ\R(L0/2)G

1/2) ◦G]ψR̃ > | ≤
∑
i

|Ri|N−1/2+2δ0+ε0

since dist(Ri, Rj) ≥ L. The same relation holds between the first two terms in V0 and P (ψ).

Since P (ψ) ≥ 0, this implies V0 ≥ O(|R|N−1/2+2δ0+ε0) uniformly in ψ(x) ∈ [−N δ, N δ],

x ∈ Λ\R. Q.E.D.

2. Proof of Theorem 12 (Small Field Contribution)

Let dµK̃(ψ) be the Gaussian measure of mean 0 and covariance 1
2
[χK̃G

◦2χK̃ ]−1:

dµK̃(ψ) = det 1/2(C−1
K̃

) exp[− < ψ, χK̃C
−1χK̃ψ >]

∏
x∈K̃

dψx√
π
, (4.67)

where C−1 = G◦2, C−1
K̃

= χK̃C
−1χK̃ . We define the small field contribution ZK̃ by

ZK̃ = det −1/2[C−1
K̃

]
∫
dµK̃ ηK(ψ), (4.68)

ηK(ψ) = det
−N

2
3 (1 + AK̃ −WK̃) exp[−δVK ]

∏
x∈K

τ(ψ(x)), (4.69)

where δVK is defined by eq.(4.63). We again use the cluster expansion of the Gaussian

measure. But this time, the covariance 1
2
[χK̃G

◦2χK̃ ]−1 depends on locations of R0
i .

We introduce interpolation parameters si ∈ [0, 1] into (4.67) as follows [16,5]:

C = CΛ → C(s1) ≡ (1− s1)(CΛ\X1 + CX1) + s1CΛ.
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The integral is decoupled into X1 and Λ\X1 if s1 = 0. Integration by parts yields

∂

∂s1

∫
dµ(s1)e

−V =
∫
dµ(s1)

∑
x,y

1

4
(∂s1A)xy

∂2

∂ψ(x)∂ψ(y)
e−V (4.70)

where A ≡ [χK̃HχK̃ ]−1 and H = C−1(s). Then we have ( see Appendix C)

∂s1A = A(CΛ\X1,X1 + CX1,Λ\X1)A

=
∑

X2⊂Λ\X1

[δF (X1, X2) + δF (X2, X1)]

by decomposing A ≡ [χK̃HχK̃ ]−1χK̃H into polymers, A = IK̃ +
∑
X δC(X), where IK̃ is the

identity operator on CK̃ and δC(X) is the Green’s function represented by random walks

passing all squares ∆ only in X, X ∩R0 6= ∅ and then exhibits tree decay over ∆ ⊂ X.

Next theorem is an extension of Theorem 3. We would like to remind the reader that

δF (Xi, Xj)(x, y) = O(e−mL) unless x ∈ Xi and y ∈ Xj. See Appendix C for the construction

of δF (Xi, Xj). The sum over partitions Y = ∪Xi is harmless thanks to Lemma 10.

Theorem 19 Let K̃ = ∪Yi be partitions of K̃ into paved sets {Yi}. Then

∫
ηK(ψ)dµK̃ =

∑
n

1

n!

∑
∪n

1Yi=K̃

∏
S(Yi)

 ηK(ψ), (4.71)

S(Y ) =
∑
p

∑
∪p

1Xi=Y

∑
T ′

∫ 1

0
ds1 · · · dsp−1MT ′(s)

∫
dµY ({s}, ψ)

×
p−1∏
k=1

∑
xk

∑
yk+1

1

2
δF (Xja(k)

, Xjk+1
)(xk, yk+1)

∂2

∂ψ(xk)∂ψ(yk+1)

 (4.72)

where Y = ∪p1Xi are partitions of Y by unions of ∆j ⊂ Y and Dk ⊂ Y . If i < j, then

|δF (Xi, Xj)(x, y)| ≤ min
`

exp[−m1L(∆` ∪ (Xj ∧D), x, y)], (∆` ⊂ Xi), (4.73)

where X ∧ D means that D` ⊂ X are regarded as one sets D`, and L(X, x, y) means the

shortest length of walks from x to y passing all centers of ∆i ⊂ X, x, y /∈ ∆i.

Here and hereafter, we use the following notational convention for paved sets Y :

RY = R ∩ Y, R0
Y = R0 ∩ Y, Ỹ = Y \R0

Y . (4.74)

By Lemma 14, we expand (1 + AR0)−1 and obtain polymer expansions of WK̃ and δV .
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Lemma 20 The following cluster expansion holds:

WK̃ = AK̃,R0

1

1 + AR0

AR0,K̃ =
∑
i

WYi
+
∑
X 6=Yi

δWX , (4.75)

WY = AY \R0
Y ,R

0
Y

1

1 + AR0
Y

AR0
Y ,Y \R

0
Y
, (4.76)

δW (X) =
∑

Yi∪X′∪Y`=X

Yj∪Yk⊂X′

AYi\R0
i ,R

0
Yj

1

1 + AR0
Yj

F (X ′)
1

1 + AR0
Yk

AR0
Yk
,Y`\R0

`
, (4.77)

where {Yi}p1 are paved sets in eq.(4.71), X is a paved set consisting of Yi more than or equal

to 2. (R0 must be subtracted. ) F (X) are the non-diagonal terms coming from the random

walk expansion of (1 + AR0)−1, R0 = ∪iR0
Yi

. They satisfy the bounds

||F (X)||1 ≤ (
∑

|R0
Yi
|) exp[−m2 min

γ

∑
(ij)∈γ

dist(R0
Yi
, R0

Yj
)],

||δW (X)||1 ≤ (
∑

|R0
Yi
|) exp[−m2 min

γ

∑
(ij)∈γ

dist(R0
Yi
, R0

Yj
)] (4.78)

where γ are tree graphs over Yi ⊂ X.

Lemma 21 The following expansion holds for δVK defined in (4.63):

δVK =
∑
i

δVYi
+
∑
X

δṼ (X), (4.79)

δVY =
∑

j:Dj⊂Y
< ψR̃j

, TjψR̃j
> −N

2
Tr (WY + AYWY −

1

2
W 2
Y ), (4.80)

where Yi are paved sets made by the expansion of the Gaussian measure, X is a paved set

consisting of Yi. Moreover

||δṼ (X)||1 ≤ (
∑

|R0
Yi
|) exp[−m2 min

γ

∑
(ij)∈γ

dist(R0
Yi
, R0

Yj
)], (4.81)

where γ are tree graphs over Yi ⊂ X.

For each partition ∪Yi of K̃, we introduce interpolation parameters sij connecting Yi and

Yj in the determinant :

2i√
N
χK̃GψχK̃ →

∑
i

2i√
N
χYi

GψχYi
+
∑
i<j

sij
2i√
N

(χYi
GψχYj

+ χYj
GψχYi

)

≡
∑
i

AYi
+
∑
i<j

sijBYi,Yj
, (4.82)
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where Yi should be regarded as Ỹi = Yi − R0 if RYi
6= ∅. We also introduce interpolation

parameters {tX} and {t̃X} into the decompositions (4.75) and (4.79) of WK̃ and δVK :

WK̃ →
∑
i

WYi
+

∑
X=∪Yi

tXδW (X), (4.83)

δVK →
∑
i

δVYi
+

∑
X=∪Yi

t̃XδṼ (X), (4.84)

where X = ∪Yi are paved sets consisting of more than or equal to two Yi’s. Thus we have

∑
p

1

p!

∑
∪Yi=K̃

∏
S(Yi)ηK(ψ) =

∑
p

1

p!

∑
∪Xi=K̃

∏
ρ̃Xi

, (4.85)

ρ̃X =
∑
p

1

p!

∑
∪Yi=X

∏
S(Yi)[

∑
γ∈T̃ ({Yi})

∫
dsγ∂γ]ηX(s), (4.86)

where X = ∪Yi are partitions of X into decoupled paved sets Yi, T̃ ({Yi}) is the set of

cennected graphs over {Yi} and ηX is the η function restricted to the paved set X = ∪Yi.

Proof of Theorem 12. (step 1.) We consider the action of the differential operators in

S(Y ) on ηY . By integration by parts, we start with∫
dµY ({s}, ψ)

p−1∏
k=1

δF (Xja(k)
, Xjk+1

)(xk, yk+1)
∂2

∂ψ(xk)∂ψ(yk+1)

 ηY
=

p−1∏
k=1

δF (Xja(k)
, Xjk+1

)(xk, yk+1)
∫
dµY ({s}, ψ) e−δV0(Y ) ΦΨ, (4.87)

where putting H =< ψỸ , C
−1
Y (s)ψỸ >, Ỹ = Y \R0

Y and R̃Y = R0
Y \RY , we have set

Φ = eH
∏
i

(−1)di−1
di−1∏
j=1

∂

∂ψ(xi,j)

 e−H , (4.88)

Ψ = eδV0(Y )
p−1∏
i=1

∂

∂ψ(xi,di
)
ηY (4.89)

ηY = det
−N/2
3 (1 + AY −WY ) exp[−δV0(Y )− V1(Y )]τ(ψY ), (4.90)

δV0(Y ) = 2 < ψỸ , C
−1ψR̃Y

> +
∑

i:Ri⊂Y
< ψR̃i

, TiψR̃i
>, (4.91)

V1(Y ) = −N
2

Tr
[
WY − AỸ ,R0

Y \RY
AR0

Y \RY ,Ỹ
+ AYWY −

1

2
W 2
Y

]
, (4.92)

and di is the number of {xk, yk+1}p−1
1 such that xk ∈ Xji or yk+1 ∈ Xji . If xk ∈ Xja(k)

and

yk+1 ∈ Xjk+1
, di is the incidence number of the vertex Xji . By Theorem 19

|
∏
k

δF (Xja(k)
, Xjk+1

)(x, y)| ≤ exp[−4

5

∑
k

m1L(∆ja(k)
∪Xjk+1

, xk, yk+1)−
∑
i

m1

10
L[
di
9

]
3
2 ]
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( ∧D is omitted for simplicity.) Then (See Appendix C)

(i) we can extract tree decay factors
∏

exp[−cm1L(X ′
k)], X

′
k = ∆ja(k)

∪Xjk+1
,

(ii) if Xjk+1
consists of more than or equal to two ∆k or D`, δF (Xja(k)

, Xjk+1
) contains

exp[−mdist(Xja(k)
, R0 ∩Xjk+1

)],

(iii) xk /∈ Xja(k)
takes place if and only if δF consists of walks passing through ∃R0

` ⊂

Xja(k)
∪Xjk+1

. So |δF | is bounded by e−(L+L0)m.

The fact (i) means that it is enough to show that the derivatives and the summations over

{xk, yk+1} do not yield very large terms.

(step 2.) We show the stability of e−δV0(Y )dµY . It suffices to consider a paved set Y such

that RY 6= ∅. Then V0(Y ) ≡< ψỸ , C
−1
Y (s)ψỸ > +δV0(Y ) is given by

< (ψỸ +DψR̃Y
), C−1

Y (s)(ψỸ +DψR̃Y
) > + < ψR̃Y

, EψR̃Y
> +O(|RY |e−mL0)

where D = CY (s)(C−1)Ỹ ,R̃Y
, E = TỸ − (C−1)+

R̃Y ,Ỹ
CY (s)(C−1)Ỹ ,R̃Y

and TỸ =

G
1/2
Y χY \RY (L0/2)G

1/2
Y ◦ G. Then E ≥ −const.e−mL0/2 on R0

Y by Lemma 18. (Accurately

speaking, dµY and C−1
Y should be written dµỸ and C−1

Ỹ
.) Let us define

dµ̃Y ≡ det 1/2[C−1
Y (s)] exp[−V0(Y )]τ(ψR0

Y \RY
)

∏
x∈Y \RY

dψ(x)√
π
. (4.93)

Then dµ̃Y is Gaussian with respect to ψỸ if ψR̃Y
are fixed. Since |ψ(x)| ≤ N δ for x ∈ R̃Y ,

we have
∫
dµ̃Y ≤ exp[πL2

0|R| δ logN ]. Thus we can regard dµ̃Y as the probability measure

with an additional factor bounded by exp[πL2
0|R|δ logN ].

(step 3.) The application of ∂/∂ψ(ξ) on H yields −∑ζ C
−1
Y (ξ, ζ)ψ(ζ). Then using

Schwarz’s inequality, we find it enough to estimate

∑
{ζi}

∏
i

|C−1(ξi, ζi)|
[∫

dµY e
−δV0(Y )

∏
ψ(ζi)

2
]1/2 [∫

dµY e
−δV0(Y )|Ψ|2

]1/2
.

where {ξ} are {xi,1, · · · , xi,di−1
}, see Lemma 8.

Consider Ψ. As for the derivatives of ηY , we first see that the derivatives of WY with

respect to ψ(y), y ∈ Ỹ yield the factor N−1+3δ thanks to the small fields enclosing the large

fields. Thus derivatives of det
−N/2
3 (· · ·) yield factors bounded by N−1+3δ. We estimate the
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derivatives of δVY = δV0(Y )+V1(Y ). The derivatives of V1 yield factors bounded by N−1+2δ.

The derivatives of δV0(Y ) yield 2
∑
ζ∈R0

Y \RY
C−1(y, ζ)ψ(ζ), |ψ(ζ)| < N δ. But they come with

δF (Xja(k)
, Xjk+1

)(xk, yk+1) ( y = yk+1 or y = xk ). Then L(∆ja(k)
∪Xjk+1

, xk, yk+1) + |yk+1 −

ζ| > L. Thus we can bound |Ψ| by N−nY δ0||eδV0ηY || uniformly in ψY by a fraction of
∏
δF .

Differentiations of τ can be treated as before.

Let us consider
∏
ψ(ζi)

2. We first shift ψ(x), x ∈ Ỹ by −(DψR̃Y
)(x) which is bounded

by e−mdist(x,R0). Then dµ̃Y decomposes into dµY and the integration over ψ(x), x ∈ R̃Y .

Then we can regard dµ̃Y as dµY . Therefore the proof of Lemma 8 can be applied and we

obtain the same results by replacing dist(∆i,∆j) by L(∆i∪Xj) and so on. In fact we define

∑
ξ,ξ′

δF (Xja(k)
, Xjk+1

)(ξ, ξ′)|C−1(ξ, xk)||C−1(ξ′, yk+1)| ≡ m−4δf(Xja(k)
, Xjk+1

)(xk, yk+1).

Then δf(Xja(k)
, Xjk+1

)(xk, yk+1) again has the property (4.73) except for a multiplicative

constant log4(1 + m−1) which comes from C−1 = G◦2. Then we repeat the arguments in

Lemma 8 by replacing ∆i by Xi and dist(∆, x) by L(X, x, y) and so on. We remark that

the volume |Xjk+1
| is compensated by a fraction of exp[−m1L(Xjk+1

)].

(step 4.) Finally take the sum over partitions Y = ∪Xi. Since we already have tree decay

factors of X ′
k, the proofs of Lemma 8 and Theorem 5 apply to the rest. Q.E.D.

To expand det
1
2 (CK̃)/Z∞, CK̃ = [χK̃G

◦2χK̃ ]−1, we put H = G◦2 and observe that

det

 H0 H01

H10 H1

 = det(H0) det(H1) det(1−H
−1/2
1 H10H

−1
0 H01H

−1/2
1 )

= det(H0)
∏

det(HR0
i
) det(1 +

∑
δH1

ij) det(1−H
−1/2
1 H10H

−1
0 H01H

−1/2
1 ),

where H0 = χK̃HχK̃ , H1 = χR0HχR0 and

δH1
ij = (HR0

i
)−1χR0

i
HχR0

j
, (4.94)

and we have used the notational convention HX ≡ χXHχX and HXY ≡ χXHχY . Thus

H
−1/2
1 H10H

−1
0 H01H

−1/2
1 is the matrix of size |R0| × |R0|.

Hi(x, y) and (χXHiχX)−1(x, y) decay exponentially fast (see Appendix B). We expand

H−1
0 and H

−1/2
1 by introducing interpolation parameters like [(1− s)(HX\∆ +H∆)+ sHX ]−1
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and repeating the method used in the proof of Lemma 14. (We use H−1/2 = 2
∫
(H +

u2)−1du/π to expand H
−1/2
1 ).

Lemma 22 The matrix H
−1/2
1 H10H

−1
0 H01H

−1/2
1 has the following expansion:

H
−1/2
1 H10H

−1
0 H01H

−1/2
1 =

∑
i

δH(Yi) +
∑

X=∪Yi

δH(X),

where X are paved sets consisting of more than or equal to two Yi’s and include at least one

R0
i ⊂ Di. The functions δH(Yi) and δH(X) depend on variables located on Yi and X only.

The diagonal terms δH(Y ) are given by

δH(Y ) = H
−1/2

R0
Y
HR0

Y ,Y \R
0
Y
HY \R0

Y
HY \R0

Y ,R
0
Y
H

−1/2

R0
Y
, R0

Y = R0 ∩ Y.

The non-diagonal terms δH(X) (X = ∪Yi) satisfy the bound

|δH(X)(x, y)| ≤ exp[−m1L(X, x, y)].

The proof of Lemma 16 (1) means that 0 < O(1)m4 ≤ 1−H
−1/2
1 H10H

−1
0 H01H

−1/2
1 ≤ 1.

Then the diagonal terms satisfy the bounds

exp[−const. L2
0|R| logm−1] ≤ det

1
2 (1− δH(Y )) ≤ 1. (4.95)

Since L0 ∼ 2m−1 logN ∼ βe2πβ, if the condition (4.56) is satisfied, the factors

exp[πδL2
0|R| logN ] from

∫
dµ̃Y and exp[O(1)L2

0|R| logm−1] from det1/2(HR0
i
) are all com-

pensated by exp[−(β/12)N δ2|R|] given in Theorem 11 (the large field stability). In fact for

δ = 1/12 and δ1 = 1/24, we have δ2 = 1/24. IfN ∼ e400πβ, we haveN δ2 > e16πβ > m−8 ∼ L8.

V. ANALYTICITY OF THE FREE ENERGY

A. Proof of Theorem 1 (Former Half)

To carry out the integration over {ψ(x);x ∈ Λ}, we introduce a series of interpolation

parameters {si, sij, tX , t̃X , uY , vij, ṽij} to decouple R0
i ⊂ Di, R

0
j ⊂ Dj, i 6= j, Yk ⊂ K0
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(K0 ≡ Λ\D) and Di\R0
i ⊂ D. From now on, let Yi stand for either Yi ⊂ K0 or Di\R0

i ⊂ D

or for their unions. We summarize the interpolation parameters:

(1) Given configuration of R, we decompose K̃ = Λ− R0 into squares ∆i ⊂ K0 and paved

set Di with R0
i subtracted. Introduce interpolation parameters si to the measure dµK̃(ψ) .

Z(R) =
det1/2(CK̃)

Z∞

∑
p

1

p!

∑
∪Yi=K̃

∏
i

SYi

 ηΛ.

(2) To each decomposition K̃ = ∪Yi, introduce real interpolation parameters sij ∈ [0, 1] for

BYiYj
like eq.(4.82).

(3) Introduce tX ∈ [0, 1] and t̃X ∈ [0, 1] following eq.(4.83) and eq.(4.84).

(4) Introduce uY ∈ [0, 1] in such a way that

H
−1/2
1 H10H

−1
0 H01H

−1/2
1 →

∑
i

δH(Yi) +
∑

X=∪Yi

uXδH(X). (5.1)

The diagonal terms δH(Yi) such that H0 = HYi\R0
Yi

and H1 = HR0
Yi

are untouched and

coupled with D(AR0
j
), Dj ⊂ Yi.

(5) Redefine Aij and Hij by

δAij ≡
∑

k:Rk⊂Yi

∑
`:R`⊂Yj

AR0
k
,R0

`

1

1 + AR0
`

, δHij ≡
1

HR0
Yi

HR0
Yi
,R0

Yj
. (5.2)

and introduce vij ∈ [0, 1] and ṽij ∈ [0, 1] in such a way that

∑
i,j

δAij →
∑
ij

vijδAij,
∑
i,j

δHij →
∑
ij

ṽijδHij, (5.3)

Thus both of ||δAij|| and ||δHij|| are bounded by m−2 exp[−m dist(R0
Yi
, R0

Yj
)], and both of

||δAij||1 and ||δHij||1 are bounded by

min{|R0
Yi
|, |R0

Yj
|} exp[−4m

5
dist(R0

Yi
, R0

Yj
)],

Substituting these into the integrand ΞR(ψ) defined by (4.57), we have our final expression

of ZΛ = Z∞
∑
R Z(R), where

Z(R) =
∫ ∏

ζ∈R0

dψ(ζ)√
π

∑ 1

p!

∑
∪Yi=K̃

∏
SYi

· Ξ({Yi}, R; s, · · · , ṽ)|s=···=ṽ=1

 , (5.4)
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and Ξ({Yi}, R; s, · · · , ṽ) is the Ξ−function with the interpolation parameters introduced

through Yi and explicitly given by

det
−N/2
3

1 +
∑
i

Ai −
∑

Yi∩R 6=∅
W (Yi) +

∑
i6=j

sijBij −
∑
X

tXδWK̃(X)


× det −N/2

1 +
∑
ij

vijδAij

 det
1
2

[
1−

∑
i

δH(Yi)−
∑
X

uXδH(X)

]

× det
1
2

1 +
∑
ij

ṽijδHij

 [∏
i

D(R0
Yi

)

]
exp

[
−
∑

δVYi
−
∑

t̃XδṼ (X)
]
τ(ψK)τ c(ψR).(5.5)

Here D(R0
Y ) is the contribution from R0

Y = R0 ∩ Y with the small fields subtracted :

D(R0
Y ) ≡

∏
i:Ri⊂Y

[
det

−N/2
2 (1 + AR0

i
) det

1
2 (χR0

i
HχR0

i
) exp[< ψR0

i \Ri
, TiψR0

i \Ri
>]
]

(5.6)

where by Theorem 11

sup
ψ

R0
Y
\RY

∫
|D(R0

Y )|τ c(ψRY
)
∏
x∈RY

dψ(x)√
π

≤ exp[− β

11
|RY |N δ2 ]. (5.7)

If all parameters are set 0, we have the completely decoupled result:

Z(R) →
∑ 1

p!

∑
∪Yi=Λ

∏
i

η(Yi;RYi
),

η(Y ;RY ) =
∫
SY Ξ(Y ;RY )τ(ψR0

Y \RY
)τ c(ψRY

)
∏
ζ∈R0

Y

dψ(ζ)√
π
,

Ξ(Y ;RY ) = det
−N/2
3 [1 + AY −W (Y )] exp[−δVY ]

× det 1/2 [1− δH(Y )]D(R0
Y )τ(ψY \R0

Y
).

Here and hereafter, η means integrated activities which may contain contributions from ψR.

If Y = ∆, RY = ∅ and S∆ = dµ∆(ψ) (with |ψ(x)| < N δ, x ∈ ∆), and η(∆) = ρ∆. If

Y = Di, then SY = dµY \R0
Y
(ψ) and by Theorem 11, we have

|η(Di;Ri)| ≤ exp[− β

12
|Ri|N δ2 +N−δ̂|Di|+ πL2

0|Ri|δ logN ], (5.8)

where |Di| < 9|Ri|L2 and L0 < L ∼ m−1 logN . Then

Lemma 23 Take the sum over all R ⊂ Di which are consistent with Di. Then
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|
∑
R

η(Di;R)| ≤ exp[−|Di|N δ3 ], (5.9)

δ3 = δ2 −O(N−δ2). (5.10)

Proof. Take a square ∆ ⊂ Di of size L × L such that R ∩ ∆ 6= ∅, and take the sum over

R ∩∆ (|R ∩∆| = 1, · · · , L2). Since L2 ∼ 400m−2 log2N ∼ N ε0 , we have estimates

∑
R⊂∆

exp[− β

12
|R|N δ2 ] ≤ (1 + exp[− β

12
N δ2 ])L

2 − 1

≤ exp[L2 exp[− β

12
N δ2 ]]− 1 ≤ exp[−|∆|N δ3 ].

Since Di is the connected set of {∆ ⊂ Di}, the conclusion follows [9]. Q.E.D.

We iteratively use the identity f(1) =
∫ 1
0 dw∂wf(w) + f(0) with respect to all inter-

polation parameters except for si already used to expand the Gausiian measure. We thus

obtain Z(R) =
∑

U(R)

∏
X∈U(R) η(X;R), where U(R) are partitions of Λ into paved sets which

consists of ∆i ⊂ K0 and Di ⊂ D, and η(X;R) is the quantity given by

∑
p

1

p!

∑
∪Yi=X

p∏
i=1

SYi
I({Yi})

∫
Ξ(X, {Yi}, RX)τ(ψX∩K̃)τ c(ψRX

)
∏

x∈X∩R0

dψ(x)√
π
. (5.11)

Namely if U = {X1, · · · , Xn} is a partition, Xi are unions of ∆i and Dj and ∪Xi = Λ.

Moreover Ξ(X, {Yi}, RX) is the restriction of Ξ(Λ, R) to the region X equipped with RX =

R ∩ X, together with the interpolation parameters following the decomposition X = ∪Yi.

I({Yi}) is the interpolation operator over {Yi}, R0
i and so on defined by

I =
∑

∪Xj
i =X

∏
i,j

I(Xj
i ), (5.12)

where Xj
i is a paved set consisting of Yi ⊂ X connected by the interpolation parameters (sij

for i = 1, tX for i = 2, t̃X for i = 3, uX for i = 4, vij for i = 5 and ṽij for i = 6). The paved

set X cannot be decomposed into two disconnected pieces without bisecting some Xj
i and

Ii(Xj
i ) =

∑
γ∈T̃ (Xj

i )

∫ 1

0
dwγ∂wγ , (5.13)

39



where T̃ (Xj
i ) is the set of connected graphs over the constituents Yk ⊂ Xj

i or R0
i ⊂ Xj

i made

by w (= sij, tX , t̃X , uY , vij and ṽij ). (Multi-indices are used for wγ.) Then we have

ZΛ = Z∞

∑
p

1

p!

∑
∪p

1Xi=Λ

∏
i

ρXi

 , (5.14)

ρX =
∑
R⊂X

η(X;R), (5.15)

where the sum over R ⊂ X is chosen so that the locations of R are consistent with the

polymer expansion, i.e., R0 ∩∆ = ∅ for ∆ ⊂ ∂X. We can now prove Theorem 1:

Proof of Theorem 1 ( former half ). Put X = ∪6
i=1Xi and Xi = ∪jXj

i where Xj
i is a

collection of paved sets {Yk ⊂ X} such that Xi = ∪Xj
i , and is constructed by the action of

Ii(Xj
i ) on Ξ. X cannot be divided into two disconnected sets without bisecting some Xj

i

and Xi.

SYi
yields the tree decay factor exp[−δ0nYi

logN − m0L(Yi)], nYi
≥ 2 over the squares

∆k ⊂ Yi. Moreover as is seen from Lemmas 9 and 10, the action of Ii(Xj
i ) on Ξ yields the

factor σi(X
j
i ) bounded by the tree decay factor:

|σi(Xj
i )| ≤ exp[−δ0ñXi

j
logN −m0LY (Xj

i )],

where ñX is the number of Yi contained in X (ñX ≥ 2) and LY (X) denotes the length of

the shortest tree graphs over Yi ⊂ X (from center of ∆i ⊂ Yi to center of ∆j ⊂ Yj).

The factor D(R0
Y ) is combined with det1/2(1−δH(Y )) ≤ 1. By Lemma 23, we see that it

yields the factors bounded by exp[−∑Dk⊂Y |Dk|N δ3 ]. Since σs, · · ·, and σw contain the tree

decay factors over Yi and Dj, and since SYi
contains the tree decay factors over ∆k ⊂ Yi, we

can extract a part (e.g. 7/8 ) of the tree decay factors over ∆i ⊂ X\D and Dk ⊂ D ∩X in

advance from σs,···,w(X) (we denote the remainders again by σs,···,w(X) for simplicity). Thus

we have

|ρ(X)| ≤
∑

Dk⊂X0

exp
[
−7

8
δ0nX\∪Dk

logN − c1
∑

|Dk|N δ3 − 7

8
m0L({∆i ⊂ X\ ∪Dk}, {Dk})

]

×

 ∑
∪Xi=X

∑
p1

∑
∪Xi

1=X1

1

p1!

p1∏
i=1

σs(X
i
1)

 · · ·
∑

p6

∑
∪Xi

6=X6

1

p6!

p6∏
i=1

σw(X i
6)



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where X0 = X − ∂X, c1 = O(1) > 0 (in fact c1 ∼ 1), {Dk} are the large filed regions

consistent with Xj
i and L({∆i ⊂ X\ ∪Dk}, {Dk}) is the length of the shortest tree graph

over {∆i} and {Dk}. Then we can assume that Xi cannot be bisected without bisecting

some Xj
i by adding 1/8 of the dacay factor to each of

∏
σi(X

j
i ), i = 1, · · · , 6. Thus the

sum over {Xj
i }j is convergent for i = 1, · · · , 6. Since X cannot be devided into two pieces

without bisecting some Xi, the sum over Xi is again convergent. The result is bounded by

exp[−δcnX logN −mcL(X)] if N is large, where δc > δ0/8 and mc > m0/8. Q.E.D.

Remark 7 It is obvious that mc and δc converge to m0 and δ0, respectively for large N since

the contributions from large fields are exponentially small.

B. Proof of Theorem 1 (Latter Half)

We now resum eq.(5.14) in the following form:

ZΛ = Z∞ exp[−
∑

W∆][
∑
p

1

p!

∑
∪Xi⊂Λ

∏
i

ρ̂Xi
]

= Z∞ exp[−
∑

W∆ −
∑
Y

ŴY ], (5.16)

where ρ̂X ≡ exp[
∑

∆⊂XW∆]ρX is the polymer activity with the single square contributions

subtracted. Thus ρ̂∆ = 1. Moreover nY ≥ 2 (nY =number of squares in Y ) and

ŴY = −
∑
k

1

k!

∑
{Xi;i=1,···,k};∪Xi=Y

∑
γc

∏
`∈γc

ε(`)
∏
ζ

ρ̂Xζ
. (5.17)

In this equation, k is the number of {Xi} and γc runs over connected graphs of lines {`}

joining vertices {1, 2, · · · , k}, ε(`) = −1 if X`+ ∩ X`− 6= ∅ where ` = (`+, `−) and zero

otherwise. Then it follows [5,13,16] from (3.5) that

Theorem 24 For given β > 0, if N is chosen large (N ≥ exp[400πβ]), then

α ≡ W∆

L2
+
∑
Y 30

1

|Y |
ŴY (5.18)

converges absolutely as Λ → Z2. The free energy αF = α0 + α is analytic in β, where

α0 ≡ lim
1

|Λ|

[
N

2
log(det(m2 −∆))− 1

2
log(det(CΛ))

]
. (5.19)
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VI. CONCLUSION AND SOME REMARKS

We have shown that the free energy is represented by the convergent polymer expansion,

which establishes the analyticity of the free energy. Exponential decay of the correlation

functions will be proved in the same way, but with some additional tricks. The mass pa-

rameter m ∼ e−2πβ is almost zero for large β, and our result is weak in the sense that

βc(N)/N increases just logarithmically. Note that we used blocks of single scale only. Our

longstanding problem will be solved by iterative usages of block-spin-type calculations.
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APPENDIX A: PROPERTIES OF G, C, G̃ AND THEIR INVERSES

We first consider G(x) = (2π)−2
∫
eipxg(p)

∏
dp. Since g(p) is ananlytic and periodic in

p, the integral is invariant by the shift of pk by iεk where εk = εxk(x
2
1 +x2

2)
−1/2, ε > 0. Then

ipx→ ipx− ε|x| and g(p+ iε)−1 is equal to

m2 + 2
∑
k

[1− cos(pk) cosh(εk)] + 2i
∑
k

sin(pk) sinh(εk)

= m2 + 2
∑
k

[1− cosh(εk)] + 2
∑

(1− cos(pk)) cosh(εk) + 2i
∑
k

sin(pk) sinh(εk)

Here we can set ε = m∗ by m2 + 2(1 − cosh(m∗)) = 0 since
∑

(1 − cosh εk) ≥ 1 − cosh ε.

Then ε = O(m) and it is immediate to see that
∫
|g(p+ iε)|∏ dp < const. log(1 +m−1)

In eq.(3.8), we consider the complex displacement of pi by iεi. We again shift ki by iεi/2

since g(p− k) is periodic. Then g̃2(p+ iε) is equal to

∫
g(p− k + i

ε

2
)g(k + i

ε

2
)
∏ dki

2π
=
∫ D − i(A1B2 + A2B1)

(A2
1 +B2

1)(A
2
2 +B2

2)

∏ dki
2π
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where A1 = m2 + 2
∑

[1 − cos(pi − ki) cosh(εi/2)], B1 = 2
∑

sin(pi − ki) sinh(εi/2), A2 =

A1(p ≡ 0), B2 = −B1(p ≡ 0) and D ≡ A1A2−B1B2. Note that 2D = (A1 +B1)(A2−B2)+

(A1 − B1)(A2 + B2), where A1 ± B1 = m2 + 4− 2
∑
i

√
cosh(εi) cos(pi − ki ± δi) and so on,

where tan δi = tanh(εi/2). Then D > 0 if m2 + 4− 2
∑√

cosh(εi) > 0. Since ε2 =
∑
ε2
i and∑√

cosh(εi) = 2 + 1
4
ε2 − O(ε4), D > 0 if |ε| ≤

√
2m. Then C(x, y), G̃(x, y) and G̃−1(x, y)

have uniform exponential decay faster than exp[−
√

2m|x− y|].

By Schwarz’s inequality,
∫
|g̃(p + iε)|dp < const. log(1 + m−1) if |ε| <

√
2m. Thus the

bound for G̃ follows. Maximize A2
i + B2

i and integrate D over k to obtain Re g̃(p + iε)2 ≥

c0(8 +m2)−2, c0 = O(1) > 0. Thus the bounds for C = [G◦2]−1 and G̃−1 follow.

The function g̃(p) is exactly obtained in the continuum limit, and is analytic in |Imp| <

2m. Thus our estimate will be improved.

APPENDIX B: POLYMER EXPANSIONS OF KERNEL FUNCTIONS

LetH(x) be a positive type function defined on Z2 whose Fourier transform H̃(p) satisfies

the following:

(1) 0 < c1 ≤ H̃(p) ≤ c2.

(2) H̃(p) is periodic in pi, i = 1, 2.

(3) H̃(p) is analytic in p ∈ Ωε where Ωε = {(p1, p2); |Im pi| < εi},
∑
ε2
i < m2. |H̃(p)| and

|H̃(p)|−1 are bounded on the boundary.

(4) 0 < c′1 ≤ Re H̃(p) ≤ c′2 and |ImH̃(p)| ≤ c′3 for p ∈ Ωε.

Then we have shown that both H(x) and H−1(x) decrease exponentially fast in |x|. Put

H(x, y) =
∫

exp[ip(x− y)]H̃(p)
∏ dpi

2π
.

LetX ⊂ Λ and we define the matrixHX of size |X|×|X| byHX(x, y) ≡ χX(x)H(x−y)χX(y).

Then c1 ≤ HX ≤ c2 and we have:

Theorem B 1 H−1
X (x, y), H

1/2
X (x, y) and H

−1/2
X (x, y) again decay exponentially fast :
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|H−1
X (x, y)| < const. exp[−m|x− y|],

|H±1/2
X (x, y)| < const. exp[−m|x− y|].

Proof. First suppose that X is a rectangle of side lengths X1 and X2 with the center at the

origin. The operator HX(x, y) is strictly positive. Let H̃X(p, q) be its Fourier kernel:

H̃X(p, q) =
∑
x,y∈X

∫
ei(p+k)x−i(q+k)yH̃(k)

∏ dki
2π

. (B1)

This is strictly positive and hence invertible. The properties (2) and (3) mean that H̃X can

be analytically continued by

H̃X(iε)(p, q) ≡ H̃X(p+ iε, q + iε) =
∑
x,y∈X

∫
ei(p+k)x−i(q+k)yH̃(k − iε)

∏ dki
2π

, (B2)

and we see that

(i) H̃X is strictly positive as an oprator on `2(X∗), where X∗ is the dual of X: X∗ =

{(2πn1/X1, 2πn2/X2); ni = 0, 1, · · · , Xi − 1}

(ii) The self-adjoint part of H̃X(iε) is strictly positive for |ε| < m.

Since

HX(x, y) =
1

|X|2
∑

p,q∈X∗

∫
e−ipx+iqyH̃X(0)(p, q)

=
1

|X|2
∑

p,q∈X∗

∫
e−i(p+iε)x+i(q+iε)yH̃X(iε)(p, q), (B3)

we have

H−1
X (x, y) =

1

|X|2
∑

p,q∈X∗
e−i(p+iε)x+i(q+iε)yH̃X(iε)−1(p, q) (B4)

where |X| = X1X2. Then take εk = −mζk/|ζ|, ζ = x− y.

If X is not a rectangle, choose the smallest rectangular set X̂ containing X. Define

ĤX̂ = χXHχX + 1X̂\X , where 1X̂\X is the identity operator on X̂\X. Then ĤX̂ is strictly

positive on `2(X̂) and the previous discussion applies. The proof is same for H
1/2
X (x, y) and

H
−1/2
X (x, y). Q.E.D.

For (GR)−1/2, we have an alternative : we can apply polymer expansion or random walk

expansion to the right hand side of the integral representation G
−1/2
R = 2

∫
(GR+u2)−1du/π.

(This is left to the reader.)
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Let X = X1 ∪ X2 where X1 ∩ X2 = ∅ and we assume that X1, X2 and X = X1 ∪ X2

are rectangles. Let HX(s) ≡ (1 − s)(HX1 + HX2) + sHX . Then H(s) is strictly positive

uniformly in s ∈ [0, 1]. What is important is that the Fourier transform of H(s)(x, y) is

H̃s(p, q) ≡ (1− s)(H̃X1(p, q) + H̃X2(p, q)) + sH̃X2(p, q)

which satisfies the conditions (i) and (ii) uniformly in s ∈ [0, 1]. This implies that

Theorem B 2 Let HX(s) be a convex linear combination of {HX1 ⊕ · · · ⊕ HXn ;X =

∪Xi, Xi ∩Xj = ∅, (i 6= j)} . Then the following bound holds uniformly in si ∈ [0, 1]:

|H−1
X (s)(x, y)| < const. exp[−m|x− y|].

For HX(s) with X = X1 ∪X2, we have :

H−1
X = H−1

X1
⊕H−1

X2
−
∫ 1

0
HX(s)−1(HX1X2 +HX2X1)HX(s)−1ds

This is the first step of the polymer expansion of H−1
X in the form of Lemma 14, but here

we have introduced the interpolation parameter s = s1 into the denominator (not in G−1

like in Lemma 14). All these mean that we can apply the Brydges-Federbush method to

cluster-expand some Green’s functions.

APPENDIX C: POLYMER EXPANSION OF GAUSSIAN MEASURES

We here discuss a cluster expansion of Gaussian measures with an interaction V :

ZΛ =
∫

exp[−V (ψ)]dµ (C1)

dµ = det −1/2(C) exp[− < ψ,C−1ψ >]
∏ dψ(x)√

π
. (C2)

Since C is strictly positive, we use the cluster expansion of Brydges-Federbush type which

keeps positivity of the operator. To do so, we first choose ∆1 ⊂ Λ and define

C(s1) = [(1− s1)P1 + 1]CΛ = (1− s1)(CΛ\∆1 + C∆1) + s1CΛ, (C3)

P1CX ≡ CX\∆1 + CX∩∆1 , (C4)
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where we have used the notational convention CX = χXCχX , CX,Y = χXCχY and Xc =

Λ\X as usual. Thus we have (C in [5,16] is written 1
2
C here)

ZΛ =
∫

exp[−V (ψ)]dµ(s1 = 1)

= ZΛ\∆1Z∆1 +
∑

∆2⊂Λ\∆1

∫ 1

0
ds1

∫
dµ(s1)

∑
x∈∆1

∑
y∈∆2

1

2
C(x, y)

∂2

∂ψ(x)∂ψ(y)
e−V , (C5)

where

dµ(s1) = det −1/2[C(s)] exp[− < ψ,C(s1)
−1ψ >]

∏ dψ(x)√
π
. (C6)

In fact, this follows from the observations of

∫
dµ(s1)e

iψ(f) = exp[−1

4
< f,C(s1)f >], (C7)

∂

∂s1

(r.h.s.) =
1

4

∑
x,y

[
∂

∂s1

C(s1)]xy

∫
dµ(s1)

∂2

∂ψ(x)∂ψ(y)
eiψ(f), (C8)

∂

∂s1

C(s1) =
∑

∆2⊂Λ\∆1

(C∆1,∆2 + C∆2,∆1). (C9)

This establishes the claim for the decomposition into ∆1 and Λ\∆1.

We next apply the same steps to each term of eq.(C5): we introduce an interpolation

parameter s1 to ZΛ\∆1 to decouple ∆2 from Λ\∆1 and introduce next interpolation parameter

s2 to the rest to decouple Y ≡ ∆1 ∪∆2 from ∆3 ⊂ Λ\Y . See [5,16] for the detail.

Tree graphs T ′ over {∆1, · · · ,∆p} with the root ∆1 are graphs defined by permutations

{j1, · · · , jp} of {1, 2, · · · , p} with j1 = 1 and a map aT ′ : {1, 2, · · · , p− 1} → {1, 2, · · · , p− 1}

such that aT ′(k) ≤ k. They define a set of ordered links (tree graph T ′) `k = (∆ja(k)
,∆jk+1

),

k = 1, 2, · · · , p− 1. Set

MT ′(s) =
p−1∏
i=1

i−1∏
j=aT ′ (i)

sj. (C10)

Theorem C 1 [16] ZΛ have the cluster expansion

∑
p

1

p!

∑
Y1,···,Yp

∏
i

Zc
Yi

∏
∆⊂Λ\∪Yi

Z∆, (C11)
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where Yi are paved sets which are disjoint each other and consist of more than two ∆i ⊂ Λ.

Let Y = ∪pi=1∆i be one of Yi. Then Zc
Y has the following expression:

∑
T ′

∫ 1

0
ds1 · · · dsp−1MT ′(s)

∫
dµ({s})

×
p−1∏
k=1

 ∑
xk∈∆ja(k)

∑
yk+1∈∆jk+1

1

2
C(xk, yk+1)

∂2

∂ψ(xk)∂ψ(yk+1)

 exp[−V (ψ)], (C12)

where T ′ = Ta = {(ja(k), jk+1)}k,

dµ({s}) = det −1/2[C(s)] exp[− < ψ,C−1({s})ψ >]
∏ dψ(x)√

π
, (C13)

C({s}) = [
p−1∏
i=1

((1− si)Pi + si)]CΛ, (C14)

PiCX = CX\Xi
+ CX∩Xi

, (Xi = ∪ik=1∆jk). (C15)

There are many tree graphs T ′ with root ∆1 which have the same links and vertices with

T . They differ each other by MT ′(s) and C−1(s) [5,16]:

Theorem C 2 MT
∏
dsi is a probability measure in the following sense:

∑
T ′:T (T ′)=T

∫ 1

0
MT ′

∏
dsi = 1, (C16)

where
∑
T ′:T (T ′)=T means the sum over tree graphs T ′ which have same links with T .

For the Gaussian measure dµK̃ restricted to the region K̃, we have :

dµK̃(s) = det 1/2(χK̃H(s)χK̃) exp [− < ψ, χK̃H(s)χK̃ψ >]
∏ dψ(x)√

π
, (C17)

where H(s)−1 = C(s) = (1− s)(CΛ\X1 + CX1) + sCΛ (we used X1 for ∆1) and

d

ds

∫
e−V dµK̃ =

∫
dµK̃(s)

∑
x,y

1

4
(ABA)xy

∂2

∂ψ(x)∂ψ(y)
e−V , (C18)

A = [χK̃H(s)χK̃ ]−1, (C19)

B = − ∂

∂s
A−1 = χK̃H(s)[

∂

∂s
C(s)]H(s)χK̃ . (C20)

Since (ABA)xy depends on locations of R0
i , we expand ABA into polymers. In fact using

the method of Lemma 14 to expand [χK̃H(s)χK̃ ]−1 in terms of H∆i
and HDi\R0

i
, we have

[χK̃H(s)χK̃ ]−1χK̃H(s) = IK̃ + [χK̃H(s)χK̃ ]−1χK̃H(s)χR0

= IK̃ +
∑

X∩R0 6=∅
δC(X)
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where IK̃ is the identity operator on CK̃ and δC(X) are the polymers expressed by random

walks passing all squares ∆i only in X and at least one of {R0
i , Di\R0

i } if Di ⊂ X.

We proceed inductively. After j steps, ABA is the sum over i of the following terms:

1K̃
[
CXi,Λ\∪j

1Xk
+ CΛ\∪j

1Xk,Xi

]
1K̃ +

∑
X′

1

δC(X ′
1) [( same )] 1K̃

+
∑
X′

2

1K̃ [( same )] δC+(X ′
2) +

∑
X′

1

∑
X′

2

δC(X ′
1) [( same )] δC+(X ′

2)

where X` ∩Xk = ∅ (k 6= `), 1 ≤ i ≤ j and {si}j1 are ommitted. Next step is :

(i) In 1K̃ [· · ·]1K̃ , choose any Xj+1 = ∆` ⊂ Λ\ ∪j1 Xk or Xj+1 = D` ⊂ Λ\ ∪j1 Xk. Define

δF1(Xi, Xj+1) ≡ CXi,Xj+1
, δ1(Xj+1, Xi) ≡ CXj+1,Xi

.

(ii) In δC(X ′
1)[· · ·]1K̃ , choose any Xj+1 ⊂ Λ\ ∪j1 Xk. Define

δF2(Xi, Xj+1) ≡
∑
X′

1
δC(X ′

1)CXi,Xj+1
, δF2(Xj+1, Xi) ≡

∑
X′

1
δC(X ′

1)CXj+1,Xi

where X ′
1 ⊂ ∪j+1

1 Xk, and X ′
1∩Xj+1 must contain Xj+1∩K0 and at least one of {R0

k, Dk\R0
k}

if Dk ⊂ Xj+1. This is same for 1K̃ [· · ·]δC+(X ′
2).

(iii) In δC(X ′
1)1K̃ [· · ·]δC(X ′

2), choose any Xj+1 ⊂ Λ\ ∪j1 Xk. Define

δF4(Xi, Xj+1) ≡
∑
X′

1,X
′
2
δC(X ′

1)CXi,Λ\∪j
1Xk

δC+(X ′
2),

δF4(Xj+1, Xi) ≡
∑
X′

1,X
′
2
δC(X ′

1)CΛ\∪j
1Xk,Xi

δC+(X ′
2)

where X ′
1 ∪X ′

2 ⊂ ∪j+1
1 Xk, and (X ′

1 ∪X ′
2) ∩Xj+1 must contain Xj+1 ∩K0 and at least one

of {R0
k, Dk\R0

k} if Dk ⊂ Xj+1.

Then we define δF (Xi, Xj+1) ≡
∑4
k=1 δFk(Xi, Xj+1) . ( Same for δF (Xj+1, Xi) ). The

following facts are immediate from the construction:

(1) Thanks to the random walk expansion, the sum in the right hand sides converge and

exhibits tree decay property with respect to blocks ∆k ⊂ Xj+1 and D` ⊂ Xj+1. The

factor δF (Xi, Xj+1), with i < j + 1 includes the tree decay factor exp[−mL(Xj+1 ∧D)] and

exp[−mdist(Xi, Xj+1)], where Xj+1 ∧ D implies that D` ⊂ Xj+1 must be regarded as one

sets and must not be decomposed into ∆k ⊂ D`.

(2) If Xj+1 consists of more than or equal to two ∆k or D`, then the factor δF (Xi, Xj+1)

must contain exp[−mdist(R0 ∩Xj+1, Xi)] < exp[−3mL].
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(3) The matrix element δF (Xi, Xj)(x, y) is less than min` exp[−mL(∆` ∪ (Xj ∧ D), x, y)],

where ∆` ⊂ Xi.

(4) The matrix element δF (Xi, Xj)(x, y) 6= 0 even if x /∈ Xi or y /∈ Xj. But it is less than

the value given above, and bounded by exp[−m(L+ L0)] since it contains R0.

We then introduce sj+1 to C(s1, · · · , sj) to separate ∪j+1
1 Xk from its complement. We

repeat the argument and obtain Theorem 19.
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