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Intrinsic localized modes �ILMs� in a quasi-1D antiferromagnetic material �C2H5NH3�2CuCl4 are counted
by using a novel nonlinear energy magnetometer. The ILMs are produced by driving the uniform spin wave
mode unstable with an intense microwave pulse. Subsequently a subset of these ILMs become captured by and
locked to a cw driver so that their properties can be examined at a later time with a tunable cw low power
probe source. Four-wave mixing is used to enhance the emission signal from the few large amplitude ILMs
over that associated with the many small amplitude plane wave modes. A discrete step structure observed in the
emission signal is identified with individual ILMs becoming unlocked from the driver. At most driver power
and frequency settings the resulting emission step structure appears uniformly distributed; however, sometimes,
nearby in parameter space, families of emission steps are evident as the driver frequency or power is varied.
Two different experimental methods give consistent results for counting individual ILMs. Because of the
discreteness in the emission both the size of an ILM and its energy can be estimated from these experiments.
For the uniformly distributed case each ILM extends over �42 antiferromagnetic unit cells and has an energy
value of 1.3�10−12 J while for the case with families the ILM length becomes �54 antiferromagnetic unit
cells with an energy of 1.5�10−12 J. An unresolved puzzle is that the emission step height does not depend on
experimental parameters the way classical numerical simulations suggest.

DOI: 10.1103/PhysRevB.71.214306 PACS number�s�: 05.45.�a, 05.45.Yv, 42.65.Sf

I. INTRODUCTION

Although nonlinear nanoscale localization of energy in
atomic lattices was proposed over a decade ago1,2 and ideas
have been put forward for the realization of quantum elec-
tromechanical nanosystems3,4 most work in this area of non-
linear dynamics remains either numerical or theoretical.5–9

The few experimental demonstrations of this intrinsic non-
linear localization effect have relied on macroscopic lattices
to make visual inspection of intrinsic localized modes
�ILMs� possible.10–13 The four exceptions are for �1� a charge
transfer solid PtCl,14,15 where analysis of resonance Raman
spectra was interpreted in terms of ILMs, �2� a quasi-one-
dimensional �1D� antiferromagnetic chain,16,17 where a high
power microwave source was used to produce spin ILMs out
of equilibrium, �3� a long lived amide I band in myoglobin,
which was studied by infrared pump-probe measurements,18

and �4� bcc 4He,19 where inelastic neutron scattering was
found to show an anomalous opticlike mode for this mon-
atomic crystal. In all four kinds of experiments direct obser-
vation of energy localization has not been possible and ob-
served frequency shifts or time dependences of spectral
elements are connected with energy localization by theoreti-
cal and/or numerical analysis. Direct measurement of spatial
energy localization in such atomic systems is still beyond the
frontier, yet these indirect experiments are important for the
exploration of nonclassical energy localization behavior. Re-
cently we have identified a new ILM signature, namely, the
discreteness associated with a small number of these excita-
tions in an atomic lattice.20 As individual ILMs become un-
locked from a cw driver they are counted by means of a
experimental approach. The discreteness appears in the time-

dependent emission spectra of a quasi-1D antiferromagnet
when the system first is driven far from equilibrium and then
is subjected to a four-wave mixing experiment at an ILM
frequency, locked to a cw oscillator set below the lowest
antiferromagnetic resonance �AFMR�.

In the experimental study reported here we explore these
localized excitation signatures in more detail. With the ILMs
synchronized to a cw driver and for times greater than the
spin lattice relaxation time T1 of the AFMR, the stepwise
decrease of the emission strength is measured as a function
of different experimental parameters. It is important to have
the sample shape such that the AFMR is at the bottom of the
spin-wave manifold so that when the uniform mode is driven
unstable ILMs can appear in the frequency gap. For a fixed
cw locking driver input �power and frequency� the integral
relation between these emission steps is counted. Interrupt-
ing the cw driver with specific time delays is observed to
produce multiple step cascades. We confirm the findings in
Ref. 20 that the measured emission step height is only
weakly dependent on the cw power or on the driver fre-
quency used in the four wave mixing experiment. The ex-
periments reported here suggest that the observed uniform
emission steps are outside the expected behavior of a simple
locked classical anharmonic oscillator model.

In the next section the properties of the quasi-1D antifer-
romagnet are reviewed in order to characterize the spin wave
dispersion curves. Next the measurement technique is de-
scribed in some detail. Section III presents �1� the experi-
mental results for the absorption and nonlinear emission
spectra, �2� the time-dependent emission from ILMs, and �3�
the dependence of the emission strength on the interruption
time for the locking driver. The four-wave emission results
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are discussed in Sec. IV where possible causes of the ob-
served steps in the emission signal are presented. Next the
four-wave mixing power expected from the uniform AFMR
mode is related to the experimental quantities. A detailed
description of the nonlinear mixing magnetization for the
AFMR is presented in Appendix A. Then the same type of
derivation is carried out for ILMs to show that the number of
ILMs in the sample varies as the square root of the emission
signal. After an expression for the stored energy in a driven
mode is obtained in Appendix B the energy of an ILM is
estimated from the data. Finally the step height dependence
on driver frequency is calculated for this classical biaxial
spin model and it is shown to vary more rapidly than ob-
served for the measured step data. The summary and conclu-
sions follow.

II. EXPERIMENTAL DETAILS

A. Antiferromagnetic resonance sample geometry

It has been shown that the localization strength of an ILM
in an antiferromagnet is determined by the ratio of the aniso-
tropy field to the exchange field with strong localization oc-
curring for a ratio of order �1.7 Below a Néel temperature
TN=10.2 K for �C2H5NH3�2CuCl4 the spin 1/2 Cu2+ ions are
oriented along the a-crystal axis, in alternating sheets of
strong ferromagnetically coupled spins with a weak antifer-
romagnetic coupling between adjacent sheets21,22 as illus-
trated in Fig. 1. At 1.4 K the interlayer antiferromagnetic
exchange field is H�E=829 Oe and the intralayer ferromag-
netic exchange field exchange field HE=5.5�105 Oe so that
H�E /HE=1.51�10−3. In this low-temperature region the
spins in a given layer are strongly aligned in the same direc-
tion so to a good approximation the low-frequency spin dy-
namics can be modeled by a 1D two sublattice antiferromag-
net with each layer represented by a single classical spin.
Due to the resulting biaxial anisotropy and the weak antifer-
romagnetic interaction between these spins the upper and
lower frequency uniform modes are polarized along b- and

c-crystal axes, respectively. The resulting small amplitude
spin-wave dispersion curves are presented in Fig. 2. Figure
2�a� shows that both the uniform mode frequencies and the
bandwidths of the excitation branches along c-crystal axis
spin wave directions are in the GHz range. The figure insert
identifies the two sublattice lowest frequency AFMR mode
with a linearly polarized transverse ac moment generated in
the 1-3 direction but not in the 2-4 direction.23

There are two important features that need to be added to
the picture to characterize the actual spin dynamics. As with
all 3D systems near the zone center the spin-wave frequency
depends on the angle between the ac polarization direction
and the spin-wave propagation direction. Spin waves that
propagate perpendicular to the polarization direction have
the lowest frequency. This angular dependence can be seen
in Fig. 2�b�. In addition, the 3D long-range magnetic dipole-
dipole interaction creates magnetostatic modes near the zone
center so that, unlike the finite wave vector spin waves, the
resulting uniform mode and nearby magnetostatic mode fre-
quencies depends on the actual sample shape. The range of
possibilities is shown in Fig. 2�b�. The frequency can be
varied from the bottom of the k �a or k �b spin wave band, up
to the bottom of the k �c spin-wave band. Since the lower
branch has the ac polarization along the c axis, a plate ori-
ented perpendicular to the c axis has the highest AFMR fre-
quency while a rod or plate directed along the c axis has the

FIG. 1. Lattice and spin structure of �C2H5NH3�2CuCl4. Circles
denote Cu2+ ions and arrows indicate spin configuration in the an-
tiferromagnetic state. Only Cu2+ ions are shown in this layered, face
centered, orthorhombic compound. The easy, second easy, and hard
spin axes are labeled the a, b, and c crystal directions, respectively.

FIG. 2. Spin-wave dispersion curve of the antiferromagnet
�C2H5NH3�2CuCl4. �a� Upper and lower branches along the c axis.
The inset shows the uniform mode spin motion for the lower AFMR
mode, which has a net ac magnetization only along the c axis. The
stored energy density for this excitation is described in Appendix B.
The axes are identified in Fig. 1. �b� Expanded view of the lower
branch, near the zone center with dispersion curves now along all
crystal axes. The AFMR frequencies for different sample shapes are
indicated by the solid dots.
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lowest resonant frequency. Spin-spin relaxation of the uni-
form mode occurs via the spin states that are degenerate in
frequency so only the rodlike sample has a true energy gap
below the uniform mode frequency. In order to start with a
uniform mode at the bottom of the spin wave manifold
mainly samples with rodlike demagnetizing factors are stud-
ied here. The linear excitation properties of this system have
been investigated earlier by others.24

The samples, for our nonlinear experiments, are grown
from aqueous solution and then cut into rodlike shapes di-
rected along the c axis, parallel to the polarization of the
low-frequency uniform mode. For microwave nonresonant
ac coupling to the uniform mode two single-turn coils sur-
rounded the sample, which is immersed in superfluid helium
and maintained at 1.2 K.

B. Nonlinear measurement techniques

Our earlier method to generate ILMs in antiferromagnets
employed a short, high intensity, microwave pulse to produce
a large amplitude instability in the uniform mode �AFMR�.
An absorption method was then used to examine the time-
dependent products generated and the eventual recovery of
the uniform mode.16,17,25,26 Our more recent experimental
studies of ILMs have explored the uniform mode instability
of classical nonlinear micromechanical arrays and demon-
strated that, after ILMs are produced, a modest amplitude cw
driver can be locked to some modes, resulting in coherent
ILMs with fixed amplitudes as long as the driver remains
on.12,27 In Ref. 20 and the experiments described here we
apply the same locking idea to an antiferromagnet. First the
AFMR mode is driven into the unstable amplitude range
with a high power pump, next a lower power, cw driver is
applied to lock a subset of the ILMs and finally the product
spectrum is then probed with a third oscillator of variable
frequency.

Since the third order nonlinearity ��3� of the antiferromag-
net makes possible a four-wave mixing experiment28–30 this
method has been used to observe in emission the small num-
ber of ILMs that remain locked to the driver. The transverse
magnetization components oscillating at the different fre-
quencies in the four-wave mixing process are illustrated in
Fig. 3 where both the input and output are identified by the
arrow directions.

Figure 4 shows the experimental setup for generation,
locking, absorption and four-wave mixing experiments in the
antiferromagnet. Inside the dotted box is approximately the
same setup used in previous absorption measurements.17 The
high power pulse source f1 is fed into a two-turn coil sur-
rounding the sample via a hybrid coupler to generate the
ILMs. The absorption spectrum is measured with the low
power f3 signal, which is reflected from the sample and sent
to the spectrum analyzer and digital recorder. To measure the
four-wave mixing emission signal, again both f3 and the
spectrum analyzer filter frequency fsp are coupled in but now
the condition for the spectrum analyzer is 2f2− f3= fsp.

The three sources f1, f2, and f3 are combined by −10 and
−20 dB couplers, then fed into the coil via a hybrid coupler.
In Fig. 4 the middle power source f2, a switch labeled SW,

and an amplifier are used to lock the ILMs. Since the reflec-
tion of the f2 signal from the sample may exceed the maxi-
mum linear input level of the spectrum analyzer and produce
a second-order nonlinear mixing signal inside of the spec-
trum analyzer which in turn generates a very weak spurious
signal at the third-order mixing frequency by another
second-order mixing process, part of the f2 driver is summed
before the signal goes into the spectrum analyzer and used to
cancel the f2 component. This canceling loop works only for
the signal starting from the f2 driver and does not affect the
emission signal from the sample, owing to the 28dB of iso-
lation introduced by the hybrid coupler. A diode switch �SW�

FIG. 3. Frequency diagram for the four-wave mixing experi-
ment. Vertical arrows represent transverse ac magnetizations. The f2

driver and f3 probe produce transverse magnetizations M2 and M3

inside the sample. The sample then generates the new magnetiza-
tion at frequency �2f2− f3� by the third-order nonlinearity, as indi-
cated by the downward arrow. The microwave signal from this
magnetization is observed in emission.

FIG. 4. Experimental setup for the ILM locked state measure-
ment. Three microwave sources are used: a high power pulse pump
source for the initial excitation �f1�, a source for locking �f2�, which
is followed by a switch �SW� and a middle power amplifier �AMP�,
and a low power probe source �f3�. The high power pulse micro-
wave driver f1 excites the sample, which is immersed in 1.2 K
liquid helium. The middle power f2 cw driver is employed to lock
ILMs. Here one branch of the microwave signal goes to the sample
via the directional coupler. Since the reflected f2 signal is often
larger than the maximum linear input of the spectrum analyzer, the
other branch of the f2 driver is fed into the spectrum analyzer to
cancel it, thus avoiding a spurious mixing signal inside the spec-
trum analyzer. The f3 probe is used both in absorption and in emis-
sion measurements.

COUNTING DISCRETE EMISSION STEPS FROM… PHYSICAL REVIEW B 71, 214306 �2005�

214306-3



at the front of the spectrum analyzer is used to block the
high-power f1 signal. Since no sharply peaked emission sig-
nal is expected if there are no locked ILMs, the entire detec-
tivity range of the spectrum analyzer
�−90 to 0 dBm� is available.

III. EXPERIMENTAL RESULTS

A. Absorption and emission spectra

Figure 5 shows the dynamic time-dependent absorption
spectrum for the uniform mode driven to large amplitude
with the important microwave frequencies for the experiment
identified. The strong microwave pulse f1 drives the uniform
mode �AFMR� into an unstable amplitude region where it
breaks up into ILMs that initially extend over a large, low-
frequency interval. The cw locking oscillator f2 picks out a
subset of ILMs from this spectrum since its frequency is set
at the lower edge of the broad absorption band initially pro-
duced by the f1 pulse. The time-dependent absorption spec-
trum shown here is measured by using a weak probe signal
f3, which can be tuned over the entire frequency region of
interest. To measure an absorption spectrum, both f3 and fsp
are scanned in tandem keeping the condition f3= fsp. In Fig. 5
the uniform mode reforms at times somewhat shorter than
T1, the spin lattice relaxation time, and approaches its equi-
librium configuration at longer times. Note that the number
of ILMs that remain locked to the frequency f2 at these long
times is, in general, too small to be seen with this absorption
technique.

The time-dependent emission signal, over the same Fig. 5
time scale, is presented in Fig. 6. The time sequence for the
f2 driver is represented by the solid line at the bottom of Fig.
6�a�. To reduce the large f2 signal in this low-resolution
study two spectra are obtained, one with f1 applied and an-
other without. These are then subtracted to clearly see the
emission. Initially, there is no emission signal until the f1
pump pulse is initiated at 20 �s. This demonstrates that the
f2 driver, by itself, cannot strongly excite the AFMR mode.
The emission signal only occurs after the f1 pulse creates

ILMs. When the f2 driver is turned off, the emission signal
decreases immediately and does not completely reappear
when the driver is turned on again. Figure 6�b� shows similar
time-dependent emission results when the f2 driver is inter-
rupted sequentially, demonstrating that unlocking and relock-
ing of ILMs are well controlled by the switching of the
driver.

All of these emission results can be understood in terms
of the locking effect. As time progresses the AFMR ap-
proaches the equilibrium frequency as illustrated in Fig. 5. At
the same time the f2 driver frequency is kept fixed. Turning
off the f2 driver releases locked ILMs and allows their phase
and frequency to vary. Restarting the f2 driver captures only
some of the ILMs, those nearby in phase and frequency. It is
important to remember that the f1 pump is absent so turning
off the f2 driver significantly disturbs ILM locking. These
experiments show that the locked ILM state can be main-
tained as long as the driver is on so that experimental mea-
surements can now be carried out over a greatly expanded
time scale. The result is that the locked ILM state permits a
measurement of the emission spectra at high frequency reso-
lution.

Figure 7 shows both absorption and emission spectra ob-
tained at 2 ms after the f1 pulse. �This time interval corre-
sponds to about 3 million periods.� Figure 7�a� has the f2
driver closer to the AFMR at lower power while Fig. 7�b�
has the f2 driver farther from the AFMR at a higher power to
maintain the locked ILMs. The absorption spectra �dashed�
are relatively simple while the more sensitive emission spec-
tra are complex. The strong peak in the absorption spectra

FIG. 5. Time-dependent absorption spectrum showing the break
up of the uniform mode induced by a strong microwave pulse at
frequency f1. Here f1=1.29 GHz, the input power at the cryostat is
52 W, and the pulse length is 3 �s. The power of the cw driver f2

�dotted line� is typically 1000 times smaller than f1.

FIG. 6. Time-dependent emission signal showing both locking
and releasing of ILMs. �a� Single on-off-on driver sequence. �b�
Double on-off-on sequence. The square waves on the lower part of
panels show the on-off pattern of the f2 driver. The horizontal dot-
ted line indicates the frequency position of the f2 driver. Shortly
after the f1 pump is pulsed at t=20 �s, the emission signal appears.
The locked ILMs can be maintained as long as f2 is on. Once turned
off, most of ILMs are unlocked and no longer emit coherently.
When f2 is again turned on, only some ILMs are relocked.
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�linear scale� is associated with the AFMR mode. Its fre-
quency is pulled down slightly by the presence of the f2
driver. In Fig. 7�a�, a weak peak can be seen below the f2
frequency, probably associated with a large number of
locked ILMs.

The emission spectra in Figs. 7�a� and 7�b� �solid line� are
displayed using a log scale. The strongest emission peak ob-
served slightly lower than the f2 driver is from the ILMs as
previously identified in Fig. 6. The richness of these emis-
sion spectra, which will be discussed in Sec. IV A, demon-
strates that this nonlinear emission method is much more
suitable for the detection of a nonlinear species, such as
ILMs, than is the linear absorption technique.

B. Time-dependent emission from locked ILMs

For time dependent emission experiments the detector fre-
quency is now fixed and set at the frequency of the ILM
emission maximum. Figure 8 shows the long time decay of
the emission signal for a cube-shaped sample where the
AFMR is within the spin-wave band. There are two contri-
butions to the observed time-dependent emission signal as
the power is varied in increments. �1� As expected the signal
from the ILMs decreases with time because of the increasing
frequency difference between the f2 driver and the AFMR,
which tends to unlock ILMs for each trace with constant f2
power. But unexpected is the incipient steplike structure seen

in some traces. �2� The background signal from the AFMR
also decreases since the frequency gap to the f2 driver is
increasing as illustrated in Fig. 5. The resulting time-
dependent emission spectra are quite complex although they
are repeatable from shot to shot. Only averaged traces are
shown here. The use of the square root of the emission on the
ordinate is justified in Sec. IV C.

For the next set of experiments the sample is a c-axis
directed thin plate, which has the same demagnetizing factor
as a rod, so that the linearly polarized uniform mode is now
at the bottom of the spin wave spectrum. The traces in Fig.
9�a� correspond to a fixed driver frequency with its power
settings varied in increments. In Fig. 9�b� the power is kept
fixed and the frequency of the driver is varied in increments.
Surprisingly, a distinctive and reproducible step structure is
observed, with steps of similar height, when the square root
of the emission power is plotted. Apparently individual ILMs
are being counted. At most other power and frequency set-
tings the data traces are similar to those displayed in Figs.
9�a� and 9�b�; however, sometimes, nearby in parameter
space, a clearly different structure appears in the data as the
driver frequency or power is varied. Figures 9�c� and 9�d�
show the emission results for such cases. The actual traces
are similar to but not identical with those shown in Figs. 9�a�
and 9�b� but gaps now appear between some traces breaking
them up into families while that clear distinction is not evi-
dent in Figs. 9�a� and 9�b�. Similar results are obtained for
the c-axis directed rod sample.

Compared to the observed complex behavior of the time-
dependent signal for the cube shape the c-axis directed thin
plate and rod samples both show smooth, well-determined
emission step decays as a function of f2 frequency and
power. This clear difference between the results in Figs. 8
and 9 convince us that it is necessary to have the AFMR near
the bottom of the spin wave manifold to observe locked

FIG. 7. At 2 ms after the f1 pulse a snapshot of the simultaneous
emission �solid curve� and absorption �dotted curve� spectra. For
this time scale, the frequency resolution is �100 kHz, and the raw
emission spectra are shown. �a� f2=1.34 GHz at a power of
51 mW. �b� f2=1.32 GHz at a power of 240 mW. Note the AFMR
frequency is pulled slightly to lower frequencies by f2 at this power
level. In case �b� the small number of locked ILMs is not apparent
in absorption. A number of features are seen in emission. The stron-
gest and the second strongest peaks on either side of the driver are
associated with the locked ILMs, resulting in a sideband pair in
both figures. The third strongest peak at the AFMR frequency is
emission from the uniform mode. The other half of the sideband
pair appears as a small shoulder in �a� and as a small peak in �b�.

FIG. 8. Complex time-dependent emission output for a near
cubic shaped sample. Square root of the time dependent emission
output as a function of time for different values of the cw f2 power
level. The 2.3% increments between curves vary the f2 power from
32.4 to 81.3 mW. The driver frequency f2 is fixed at 1.35 GHz. The
AFMR frequency of this sample is 1.395 GHz somewhat higher
than that of rod shaped samples �1.375 GHz�. Although some emis-
sion plateaus can be identified, the overall structures are very
complex.
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ILMs. Apparently the interaction between the ILMs and the
manifold states in a cube or c-axis directed perpendicular to
a flat plate shaped sample similar to those used in Ref. 16
does not permit stable locked ILMs.

Figure 10 demonstrates how individual emission decay
curves can be decomposed into a sum of steps of equal
height plus an exponential decay when the square root of the
emission power is plotted on the ordinate. The dotted curves
in Figs. 10�a� and 10�b� are the same dotted curves in Figs.
9�a� and 9�b�, respectively. The solid smooth curves in each
frame represent an exponential curve displaced by multiples
of a specific offset. Each of the decay curves matches one of
the solid curves between increments. The emission step
height ��P�3� in Fig. 10 is evaluated from the constant off-
set. The measured values for both the uniformly distributed
case and the case with families are given in Table I.

C. Dependence of the emission on the f2 locking time delay

The time delay locking results shown in Fig. 6 suggest
another kind of unlocking experiment with which to examine
the step structure. Due to the eternal behavior of locked
ILMs, the emission signal can be recorded at very long times
when the uniform mode back ground emission signal has
nearly vanished. The dependence of the emission decay
curve on the locking time delay of the f2 driver is shown in
Fig. 11. In these experiments the driver is turned off at 2 ms
for a short interval and the emission is recorded as this delay
interval is varied. The dotted and dash-dotted curves are for
delay times of 10 and 50 �s. For the dot-dashed curve the
off and on time of the driver is shown. The emission at times
beyond 2 ms depends on this delay time hence the longer the
delay the smaller the emission and thus the smaller the num-
ber of locked ILMs. The experiment then is to measure the

FIG. 9. Square root of the time-dependent emission output versus time for a c-axis directed thin plate sample. �a� For fixed driving
frequency f2=1.33 GHz as a function of the cw f2 power level from 52.5 to 105 mW. �b� For fixed f2 power level 77.6 mW, as a function
of its frequency from 1.325 to 1.335 GHz. �c� For fixed frequency f2=1.335 GHz as a function of the cw power level from
34.7 to 87.1 mW. �d� For fixed f2 power level of 55 mW as a function of its frequency from 1.33 to 1.34 GHz. The power increment
between curves is 2.3%. The frequency interval between curves is 250 KHz.

FIG. 10. Characterizing the time dependence of the four-wave
emission signals. The dotted traces in Figs. 9�a� and 9�b� are singled
out for analysis. �a� Dotted curve in Fig. 9�a� for conditions f2

=1.33 GHz at 83.2 mW; time constant of the dotted curve
=1.18 ms, step height=0.26 nW1/2. �b� Dotted curve in Fig. 9�b� for
conditions f2=1.33123 GHz at 77.6 mW, time constant of the dot-
ted curve=1.18 ms, step height=0.26 nW1/2. In both frames the
steps are superimposed on an exponential time-dependent
background.
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emission at 4 ms as a function of the locking delay time at
2 ms.

A summary of the experimental results is presented in Fig.
12. The square root of the emission power at t=4 ms is
shown in Figs. 12�a� and 12�b� for a vertical plate sample.
Panel �a� has the higher f2 frequency. The solid trace is for
one driver power and the dot dashed trace for a higher driver
power. The horizontal dashed markers are guides to the eye,
with the distance between them adjusted to fit the solid ex-
perimental data steps. This distance is the same in frames �a�
and �b�. The results presented in Fig. 12�c� show two power
values at one driver frequency for a rod shaped sample. The
step scale is now different. The data mostly show vertical

steps between horizontal regions associated with different
ILM numbers indicating that the ILM emission appears on a
constant background. The higher power cases show almost
the same step height, although the overall traces are shifted
upwards. This shift in emission is due to an unknown source.
An interesting observation is that often simultaneous double
steps are observed at lower signal levels. A fractional step is
seen in panel �b�, second step from the top, where the height
is half of the usual step size. This height is probably also
included in the large, fourth step from the top of the higher
power case �dotted curve�, since the second level from the
top and the lowest level are almost the same.

IV. DISCUSSION

A. Four-wave emission spectrum

The emission signal is observed only when the probe fre-
quency and the spectrum analyzer frequency are chosen to
satisfy the relation fsp=2f2− f3. The resulting emission spec-

TABLE I. Analysis of the emission step height results. The data
in the AFMR column is used to determine � in Eq. �6�. ILM, case
1, is for analyzing the data in Fig. 9�b� and ILM, case 2 is for
analyzing the data in Fig. 9�d� using Eqs. �10�, �11�, and �13�.

AFMR
ILM
case 1a

ILM
case 2b

H��2� �A/m� 35 19 20

H��3� �A/m� 2.5 2.5 2.5

�2 /2� �GHz� 1.32 1.335 1.330

�3 /2� �GHz� 1.36 1.330 1.325

�2�2−�3� /2�
�GHz�

1.28 1.340 1.335

P�3� �nW� 0.29

��P�3� ��nW�1/2� 0.30 0.26

	l /	 4.1�10−5 3.2�10−5

�L �AFM cell� 54 42

Nspin 7.1�1014 5.5�1014


��Ec� �J� 1.5�10−12 1.3�10−12


��Ec� /Nspin �J� 2.1�10−27 2.4�10−27

aFrom Fig. 9�b�.
bFrom Fig. 9�d�.

FIG. 11. Emission decay curve dependence on the f2 driver
delay time. After �3�106 f2 periods the driver is turned off and
after a brief delay again turned on. Solid curve, driver unchanged.
The dotted, and dot-dashed curves are for 10 and 50 �s delay times.
Unlocked ILMs lose phase coherence, shift in frequency so their
emission signal quickly disappears. When the driver is turned on
again, a subset of the ILMs oscillating around the driver frequency
are relocked. Different ILM states can be produced without chang-
ing the f2 driver frequency or its power.

FIG. 12. �a�, �b� Square root of the emission power observed at
t=4 ms as a function of the driver delay time at 2 ms for the c-axis
directed plate sample. The f2 driver frequency and power for the
solid curves are �a� 1.335 GHz, 93.3 mW; �b� 1.32 GHz, 191 mW.
The distance between the horizontal dotted lines is 0.26 nW1/2. The
dot-dash curves in �a� and �b� are for slightly higher power: �a�
102 mW and �b� 200 mW. �c� Results for a c-axis directed rod
sample measured at 1.31 GHz, 97.7 mW. The distance between
these horizontal dotted lines is 0.18 nW1/2. The dot-dash curve is
for the higher power, 110 mW.
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trum is as sharp as the probe oscillator line width if the probe
frequency is fixed and only the spectrum analyzer frequency
is scanned. Thus, the emission signal is due to the third-order
mixing of signals, which are time-coherently induced in the
sample by the monochromatic driver. No emission signals
are observed from incoherent spin fluctuation, which may
exist around the locking driver frequency f2. Such signals
would be below the noise level. Since the spectra shown in
Figs. 7�a� and 7�b� are obtained by scanning the probe fre-
quency f3, the structured spectra are caused by the response
to f3 stimulation, and not induced by f2. In other words, the
emission structure is the result of resonances of f3 or the
2f2− f3 mixing signal with some resonator. Simply stated, the
sample contains one third-order mixer and two kinds of reso-
nators, namely, the ILM and the uniform mode �AFMR�.

The broad emission peak at the AFMR frequency in Figs.
7�a� and 7�b� is the four-wave mixing emission from the
uniform mode. The probe resonates at f3= fAFMR and the re-
sulting magnetization oscillates at the frequency fsp=2f2

− fAFMR. As described in Appendix A, another peak is ex-
pected at f3=2f2− fAFMR and such structure is observed. In
this case, the f3 probe is converted to a magnetization at
fsp= fAFMR, which then resonates with the AFMR. The shoul-
der observed at 1.32 GHz in Fig. 7�a�, the weak broad peak
at 1.28 GHz in Fig. 7�b� and a shoulder in Fig. 7�a� are all
associated with this process. In general, for each resonator,
two sideband peaks are observed on both sides of the locking
frequency. The two peaks are due to the probe resonance or
to the converted frequency resonance. If the nonlinear re-
sponse function with fixed f2 is proportional to the product
of two linear response functions as given by Eq. �A13� in
Appendix A then the two sidebands will have equal height.28

However, in our experiments the process is more complex
since the probe resonating case has the stronger response.

The strongest emission peak in the spectrum shown in
both Figs. 7�a� and 7�b� is just to the lower sides of f2 fre-
quency. It is emission from the locked ILMs. A somewhat
weaker emission response appears on the other side of the
driver so these two peaks are the side band pair for the ILMs.
The existence of such side band structure in the response
spectrum has been identified in simulations with ILMs in the
antiferromagnet26 and also for micromechanical oscillator
systems.31 In our experimental case, the ILM resonant fre-
quency should be lower than the driver frequency; hence the
emission frequency is pulled down. The strong low fre-
quency peak is the probe resonating signal and it has larger
amplitude than the converted signal resonance. The much
weaker background emission seen over the entire frequency
interval in Fig. 7 has not been characterized. It should also be
mentioned that in nonlinear optics, cross phase modulation is
larger than self-phase modulation, i.e., the frequency shift of
the small amplitude mode due to the nonlinear excitation
�cross frequency shift� is much larger than the frequency
shift of the nonlinear �large amplitude� mode due to its large
amplitude �self frequency shift�32 thus two sidebands can be
expected for resonance locking for a variety of nonlinear
systems.

B. Steps in emission

1. As a function of the AFMR recovery

For a qualitative discussion of these experimental emis-
sion step results it is helpful to focus on what might be
expected to occur for a simple classical ILM oscillator sys-
tem. The emission peaks in Fig. 7 demonstrate that ILMs are
locked to the f2 driver. The frequency difference between the
AFMR and the f2 driver �f = fAFMR− f2 increases with time
in the emission step observations. The nonlinear resonance
response versus frequency curve for a classical anharmonic
oscillator, shown in Fig. 13�a�, can be used to illustrate how
steps could appear. Experimentally an emission step is ob-
served after the experimental parameters are adjusted so that
at a particular time after the f1 pulse the set of locked ILMs
are at a �f amplitude value just below the peak represented
by the open circle in Fig. 13�a�. As time progresses �f in-
creases, the open circle moves to the right, and finally
reaches the point where the amplitude switches from the
large value to the small one, the ILM excitation becomes
unlocked from the driver, and the emission decreases sud-
denly. This description would account for one step but does
not explain a series of emission steps of equal height like
those observed experimentally. Below we consider four pos-
sible explanations for such an emission ladder.

�i� Steps produced by sample inhomogeneity: The indi-
vidual ILMs would now have different amplitudes at f2 so
that the unlocking times would occur at different �f values
giving multiple steps; however, both the observed step
heights and the time intervals between steps are regular, not
a distribution as one would expect for this sort of process.

FIG. 13. �a� Illustration of the classical anharmonic oscillator
resonance response curve for soft anharmonicity. The frequency
axis is measured with respect to the higher AFMR frequency so that
as �f = fAFMR− f l increases a single step can occur. �b� The proposed
step emission pattern can occur when the locked ILM frequency
depends weakly on the number of ILMs in the 1D lattice.
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�ii� Steps produced by antiferromagnetic domains: No dif-
ference in the emission step structure was observed in ex-
periments shown in Figs. 9�a� and 9�b� between the initial
state when the sample was cooled in zero magnetic field and
the final zero-magnetic field state obtained by cycling a mag-
netic field directed along the easy crystal �a� axis through the
spin flop field value and back to zero.

�iii� Steps produced by magnetostatic modes: These
modes are not predicted to occur below the AFMR frequency
for a rod shaped sample, but even if such resonances could
participate in the emission signal formation, the resulting
steps would not be of equal height.

�iv� ILMs coupled by spin waves: Our final classical ex-
planation of the equal step height observation is based on the
premise that each ILM is identical �locked� and that these
few localized 1D excitations are coupled to each other via
spin waves acting as intermediate states. The form of the
resulting ferromagnetic coupling between ILMs is assumed
similar to that proposed by Suhl33 and Nakamura34 for the
coupling between nuclear spins via spin waves in antiferro-
magnets. The resultant interaction resembles a screened 1/r
potential. Two differences are expected for this case under
discussion: �1� the ILM excitation frequency is very close to
the spin wave band frequencies so the resulting screening
length is larger than the sample size and �2� since these ILMs
are made up of 2D sheets of aligned Cu2+ spins, a divergence
theorem argument suggests that the interaction between the
1D ILMs would be independent of the distance between
them. The ILM frequency f l should now depend on the small
number n of ILMs in the lattice so that the shifted ILM
frequency

f l,n = f l�1 + bn� , �1�

where b is the dimensionless ILM-ILM coupling constant.
Now the experimental parameters are adjusted so that at a
particular time after the f1 pulse the set of locked ILMs are at
a �f amplitude value �open circle� just below the peak in
Fig. 13�b�. Again for this experiment since �f , the interval
between the set of ILMs locked to the driver and the relaxing
AFMR frequency increases with time, the open circle moves
to the right. When it reaches the point where the amplitude
switches from one value to the next smaller one, one ILM
excitation becomes unlocked from the driver, the emission
decreases suddenly, the remaining ILMs continue to remain
locked but now with a smaller total amplitude and, by Eq.
�1�, with a shifted switching frequency. The resulting stepped
emission signature would now appear as individual ILMs
become unlocked, one by one as shown in Fig. 13�b�. There
is one remaining difficulty with this explanation. Classically
the ILM amplitude, i.e., emission step height, should depend
on �f as we show below in Sec. IV E; however, the observed
emission steps display a remarkably constant step height,
almost independent of this frequency gap, as determined in
Figs. 9�b� and 9�d�.

2. As a function of locking driver time delay

The data for the second kind of step experiment giving the
results shown in Fig. 12 permits one to examine the emission
step production in a different way. First the experimental

parameters are adjusted so that the ILM emission is obtained
as represented by the open circle on the amplitude plot in
Fig. 13�b� then since �f is now fixed, the earlier time delay
simply changes the number of ILMs that are locked so the
open circle now moves in the vertical direction. If the emis-
sion varied continuously with time delay then the data would
appear as a straight line on this semilog plot; however, the
observed emission value decreases in units for a time delay
that increases continuously. The fact that steps and multiple
steps appear in Fig. 12 is not too surprising since the driver
time delay for fixed �f does not have the selectivity of the
time dependent �f variation experiments shown in Fig. 9.

Another interesting feature is the fractional step height
shown in Fig. 12�b�. This signature may come from an ILM
captured by a trapping site such as an impurity in the sample.
If the captured state were energetically favored for the ILM,
the step height would be smaller than for a free ILM, since a
trapped state has a smaller transverse moment.

C. Form of the four-wave mixing equation
for an antiferromagnet

The change in four wave mixing magnetization associated
with a step and its relation to the change in magnetization of
an ILM is now estimated. First we consider the AFMR four-
wave emission. The voltage V at the coupling coil is directly
related to the changing four-wave mixing transverse magne-
tization by

V̂ = −
d�̂

dt
= ��0vkM̂c

�3�, �2�

where � is the flux through the coil, changing at frequency

�, �0 is the permeability of free space, and M̂c
�3� is the third-

order, total nonlinear magnetization in the c direction. In our
experiments only a c-axis directed plate sample �rod demag-
netization factor for the low frequency mode� is analyzed in
detail here. Its volume v=2.25�2.8�0.8 mm3 and the
field-current constant for the two single loop coil, k
=180 m−1. The resulting power at the detector is

P�3� =
1

2

�V̂�2

R
=

1

2

�2�2 − �3�2

R
�0

2v2k2�Mc
�3��2, �3�

where the detector impedance R=50�.
Following Refs. 29 and 30 an approximate scalar expres-

sion for the nonlinear transverse third-order magnetization
for the uniaxial case associated with the four-wave mixing
process is outlined in Appendix A. In analogy with Eq.
�A14�, which gives the third-order nonlinear transverse mag-
netization in terms of the linear transverse magnetizations at
the driver and probe frequencies for a uniaxial antiferromag-
net, the frequency-dependent nonlinear transverse magneti-
zation of the lowest uniform mode along the c direction is

M̂c
�3��2�2 − �3� =

3

64

1

M0
2

�̂c�2�2 − �3�
���0�

�M̂c��2��2M̂*
c��3� ,

�4�

where the sublattice magnetization is M0, ���0� is the low-
temperature dc susceptibility35 contributed by the
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c-axis-polarized uniform mode. Here the transverse magne-
tization at frequency �i is

M̂c��i� = �̂c��i�Ĥc��i� . �5�

The emitted power P�3� is proportional to the square of the

third-order nonlinear ac magnetization M̂c
�3��2�2−�3� so

�P�3� = 	 �

2R

1/2

�M̂c
�3���2�2 − �3��0vk

=
3

64
	 �

2R

1/2 �2�2 − �3��0vk

M0
2

��̂c�2�2 − �3��
���0�

��M̂c��2��2�M̂c��3�� , �6�

where a calibration factor � has been introduced to account
for differences between the uniaxial and biaxial cases. This
factor is then evaluated by measuring the emission signal
obtained for the AFMR value. The observed emission feature
at 1.28 GHz shown in Fig. 7�b� is associated with the bulk
four wave mixing signal when f3 crosses the uniform AFMR
value.

To determine the value of � the measured parameters in
Eq. �6� have been determined and are given in Table I, col-
umn 2. An additional necessary quantity is the sublattice
magnetization M0=1.78�104 A/m at 1.4 K. A standard
Lorentz oscillator form is assumed for the dynamic suscep-
tibility so

�̂c��� =
��0���0�

�0
2 − �2 + i�

, �7�

where �0 is the AFMR resonance frequency,  /2� is the
measured linewidth, and ���0�=0.14. Comparing the calcu-

lated value for �M̂c
�3�� with the experimental value gives �

=31.

D. Step emission from four-wave mixing

When the nonlinear excitations are ILMs, M̂c
�3��2�2−�3�

is calculated by summing the individual ac magnetic mo-
ments and dividing by the sample volume so that

M̂c
�3��2�2 − �3� =

nvlM̂lc
�3��2�2 − �3�

	
, �8�

where n is the number of ILMs, 	 is the volume of the
sample,	l is the volume of one ILM, and Mlc

�3� is the nonlin-
ear transverse magnetization along the c axis for an ILM.
Since each locked ILM responds the same way to the f2
driver and the f3 probe, it contributes the same amount to the
net nonlinear transverse magnetization.

To calculate the step emission power the first assumption
is that Eq. �4� remains valid for an individual ILM so that

M̂lc
�3��2�2 − �3� =

3

64

1

M0
2

�̂lc�2�2 − �3�
���0�

�M̂lc��2��2M̂*
lc��3� .

�9�

Substituting Eq. �9� into Eq. �8� and taking the modulus
gives the desired power expression, namely,

�P�3� =
3

64
	 �

2R

1/2 �2�2 − �3��0	k

M0
2

��̂lc�2�2 − �3��
���0�

n		l

	



��M̂lc��2��2�M̂lc��3�� , �10�

where the calibration factor � is assumed to have the same
value �=31� measured for the four-wave mixing for the
AFMR described above and presented in Table I. Thus an
emission step observed in the square root of the emission
power is associated with the disappearance of one ILM.

The measured emission values for a single step ��P�3�

given in Table I can be used in Eq. �10� to estimate the
volume fill fraction of an ILM with the added condition that
now the ILM transverse magnetization is fully resonant with
the driver. Since the sum rule strength of an oscillator is
independent of its nonlinearity36 we approximate the ILM
susceptibility peak by the Lorentz oscillator value
���0��l /. For the linear response function �̂lc�2�2−�3�
and the linear magnetization M̂lc��3�= �̂lc��3�Ĥ��3� in Eq.
�10�, we use Eq. �7� with the resonance frequency �0 now set
at the peak emission frequency. The other parameters in
Table I can then be used to estimate the volume fill fraction
per ILM

	l

	
=

�L

L
. �11�

For the sheet geometry of aligned spins in the 1D antiferro-
magnet where �L is the spatial length of an ILM, and L is
the sample length, the estimated ILM lengths for the two
different cases are given in Table I in terms of antiferromag-
netic unit cells. For comparison classical MD simulations
with a model 1D antiferromagnetic system give a somewhat
smaller ILM length of 7 antiferromagnetic unit cells. Finally
the number of spins in an ILM, Nspin, is also presented in
Table I. �This number is required for calculating the energy
per spin in the next section.�

E. Energy estimate for an ILM

Since the steps are well defined there is some value in
estimating the ILM energy. The height of one step ��P�3��1/2

can be directly related to �M̂lc��2��2 of a single ILM and
hence to the ILM energy. The stored energy density expres-
sion for a driven uniform mode is developed in Appendix B
and given by Eq. �B6�. Integrating this expression over the
sample volume gives

�E�Mc� =� �0�M̂c�2

4M0
Hc-effd	, �12�

where Hc-eff is the effective internal field for resonance and

�M̂c� is the modulus of the driven magnetization.
Next we assume that Eq. �12� remains valid for driven

ILMs. From our experimental results only a few locked lo-
calized modes need to be added to the uniform mode. Inte-
grating over the sample volume gives the factor n	l since
only the ILMs are driven and the AFMR contribution on
each side of the step cancels. The energy change associated
with a single step ��n=1� is
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��Ec� =
�0Hc-eff	l�M̂lc��2��2

4M0
. �13�

Substituting the experimental values into Eq. �13� gives the
desired energy 
��Ec� or the energy per Cu2+ spin

��Ec� /Nspin. The values for the two types of data described
in Figs. 9�b� and 9�d� are given in Table I.

F. Calculated step height dependence on frequency and power

From classical numerical simulations for the biaxial ma-
terial as �� increases the height of an ILM increases and its
width decreases. Since each ILM spin contributes to the mix-
ing signal, the step height is proportional to the sum of the
square of the transverse component �SSTC� of each spin

��P�3� � �
n

�ŝlc,n�2 = SSTC, �14�

where ŝlc,n is the complex amplitude of the nth spin of the
ILM. The eigenvector of an ILM is calculated as in Refs. 37
and 38 and the dependence of the SSTC versus normalized
gap frequency is presented in Fig. 14. This calculated depen-
dence should be contrasted with the experimentally mea-
sured emission step heights shown in Fig. 9�b�. Expanding
these data we find the values are nearly the same when �f is
scanned at a fixed power level. For the large number of steps
in the central region of this figure the observed change is less
than 4% for the frequency range 1.325–1.333 GHz ��� /�
=0.0257↔0.0199�, while the simulation results �Fig. 14� in-
dicate a 12% increase with �� /� covering the same range.
For Fig. 9�d� the same kind of analysis gives less than 3% for
the frequency range 1.330–1.338 GHz ��� /�
=0.0221↔0.0162�, while now the simulation results indi-
cate an 15% increase. This behavior cannot be explained
with our classical eigenvector calculation.

V. SUMMARY AND CONCLUSIONS

Countable ILMs have been observed in an atomic lattice
with a nonlinear energy magnetometer. The instrument first
produces frequency locked ILMs in a quasi-1D antiferro-
magnet and then measures the four-wave mixing signal emit-
ted by the sample versus time or versus locking driver delay
time. This technique makes observable in nonlinear emission
the small number of ILMs that remain in steady state. The
stabilization of these locked ILMs makes possible their spec-
troscopic study at high resolution. Because these excitations
are strongly nonlinear, four-wave mixing emission spectros-
copy is an ideal way to enhance the ILM signal over that
obtained from the more numerous plane-wave spin excita-
tions. This magnetometer technique is much more sensitive
than the absorption technique previously used.

An emission step structure has been found as a function of
the AFMR recovery time and as a function of the locking
driver delay time for both c-axis directed rod and plate
samples, while such sharp steps are not found for cube
shaped samples. These results demonstrate that the linear
AFMR must be near the bottom of the spin-wave manifold
states before it is driven unstable so that ILMs appear in a
true 3D spin wave gap. The emission ladders observed for
the c-axis directed rod and plate samples are interpreted as
successive unlocking of the individual ILMs from the driver.
In one kind of experiment where �f is varied as a function of
the AFMR recovery, not only are steps observed but also an
intriguing pattern of missing emission data appears in certain
regions of parameter space. The traces have now coalesced
into families. The measured values for the uniformly distrib-
uted case and the case with families are different. Similarly
there are other regions where the emission signal is evident
but steps are not found even though the locking frequency or
the power has been varied. There is both simplicity and com-
plexity to these observed time-dependent emission spectra.

The locking time delay experiments provide a different
way to examine these emission steps. Now at a long time
��6 million ILM periods� �f is essentially fixed and the
number of locked ILMs is varied by interrupting the locking
driver at a very early time. As a function of this delay the
emission steps are well defined and the steps of individual
scans appear at the same delay time with only a very small
amount of time jitter. Since the step heights do not change
significantly as the power of the locking driver is changed, a
remaining puzzle is that the experimentally observed step
height does not show the expected large frequency depen-
dence obtained from numerical simulations. This robustness
of the emission steps against external perturbations leads us
to propose that these excitations are displaying a discrete
character. Because the step heights for a particular experi-
ment are well defined and uniform we can estimate both the
size of an ILM and its energy. The estimated size is almost
an order of magnitude larger than the size obtained from
numerical simulations. These experiments identify a new di-
rection in nonlinear nanoscience with the next experimental
goal to launch and receive these localized energy “hot spots”
across a measurable distance.
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APPENDIX A: THE THIRD ORDER NONLINEAR
MAGNETIZATION OF AN EASY AXIS

ANTIFERROMAGNET

The sample is a biaxial antiferromagnet. Here, we review
the four wave mixing for the simpler case of an easy z-axis
antiferromagnet.29,30 Writing the torque equation for the uni-
form mode in circularly polarized modes in the usual way
and then taking the next time derivation one obtains the non-
linear equation of motion

d2ŝA,B
± �t�
dt2 + �0

2ŝA,B
± �t� = �0

2ŝA,B
± �t�ŝA,B

� �t�ŝA,B
± �t� , �A1�

where the ��� sign identifies one circularly polarized mode
and the ��� sign the other for each of the sublattices A and B.
Here

ŝA,B
± �t� =

1

2
�ŝA,B

± ei�t + �ŝA,B
± �*e−i�t� �A2�

with ŝA,B
± the time-independent complex amplitude for each

circularly polarized mode and �0 is the uniform mode fre-
quency. Equation �A1� has the same form as the nonlinear
anharmonic oscillator equation in Ref. 28.

Considering the right-hand side of Eq. �A1� as the gen-
erator of the third-order signals, the nonlinear response of the
left-hand side �LHS� can be calculated. For oscillating com-
ponents ŝA,B

± at frequencies �2 and �3 in the spin motion, the
right-hand side �RHS� of the nonlinear equation �A1� will
have the components

�RHS�A,B
± = �0

21

8
�ŝA,B

± ��2�ei�t + ŝA,B
±* ��2�e−i�t + ŝA,B

± ��3�ei�t

+ ŝA,B
±* ��3�e−i�t��ŝA,B

� ��2�ei�t + ŝA,B
�* ��2�e−i�t

+ ŝA,B
� ��3�ei�t + ŝA,B

�* ��3�e−i�t��ŝA,B
± ��2�ei�t

+ ŝA,B
±* ��2�e−i�t + ŝA,B

± ��3�ei�t + ŝA,B
±* ��3�e−i�t� .

�A3�

Picking only terms proportional to exp�i�2�2−�3�t� gives

�RHS�A,B
± �t� = �0

21

8
�2ŝA,B

± ��2�ŝA,B
� ��2�ŝA,B

±* ��3�

+ ŝA,B
± ��2�ŝA,B

�* ��3�ŝA,B
± ��2��

� exp�i�2�2 − �3�t� + c.c. �A4�

The left-hand side of Eq. �A1� at the same frequency is

�LHS�A,B
�3�±�t� = D�2�2 − �3�

1

2
ŝA,B

�3�±exp�i�2�2 − �3�t� + c.c.,

�A5�

where D���= �−�2+�0
2�. From Eqs. �A4� and �A5�, the non-

linearly generated transverse spin amplitude becomes

ŝA,B
�3�± =

1

D�2�2 − �3�
�0

21

4
�2ŝA,B

± ��2�ŝA,B
� ��2�ŝA,B

±* ��3�

+ ŝA,B
± ��2�ŝA,B

�* ��3�ŝA,B
± ��2�� . �A6�

Next we consider the nonlinear response function along the x
direction for an ac magnetic field applied along the x direc-
tion. The net transverse magnetization along the x axis is

M̂x = M̂A
x + M̂B

x = �̂xĤx, �A7�

where �̂x is the susceptibility and Ĥx is the magnetic field
along the x direction. The transverse magnetization contribu-
tion from each sublattices is

M̂A,B
x = ŝA,B

x Sg�BN/2 = ŝA,B
x M0, �A8�

where g is the g factor, �B is the Bohr magneton and N is the

spin volume density. For the linear polarized field Ĥx, the
circularly polarized modes of equal amplitude are excited so

ŝA
+ = ŝB

+ = ŝA
− = ŝB

− =
1

4M0
x̂xĤx. �A9�

Replacing spin amplitudes in Eq. �A6� with the fields in Eq.
�A9� gives

ŝA,B
�3�± =

1

D�2�2 − �3�
�0

2 3

256M0
3

���̂x��2�Ĥx��2��2�̂x*
��3�Ĥx*

��3� . �A10�

Converting this to magnetization, and summing over both
polarizations and both sublattices, gives the third order non-
linear transverse magnetization

M̂�3��2�2 − �3� =
1

D�2�2 − �3�
�0

2 3

64M0
2

���̂x��2�Ĥx��2��2�̂x*
��3�Ĥx*

��3� .

�A11�

We now want to recast the linear response function in terms
of the static and dynamic susceptibility of the system so

1

D���
=

�̂x���
�x���0��0

=
�̂x���

���0��0
2 . �A12�

Inserting Eq. �A12� into Eq. �A11� gives

M̂�3��2�2 − �3� =
3

64M0
2

�̂x�2�2 − �3�
���0�

��̂x��2�Ĥx��2��2

��ˆ x*
��3�Ĥx*

��3� . �A13�

The final expression in terms of the linear transverse magne-
tization at that frequency is

M̂�3��2�2 − �3� =
3

64M0
2

�̂x�2�2 − �3�
���0�

�M̂x��2��2M̂x*
��3� .

�A14�
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APPENDIX B: STORED ENERGY DENSITY EXPRESSION
FOR A DRIVEN UNIFORM MODE

The eigenvector for the driven uniform mode is shown in
the inset in Fig. 2�a�. The numbers “1” or “3” identify the
spin configuration at one instant of time when both spins are
canted in the polarization direction giving the net transverse
magnetization Mc. Starting with the biaxial Hamiltonian
based on Ref. 24, the excitation state energy can be obtained.
Here, the axes are the same as in the classical spin section of
Ref. 24, that is, �a ,b ,c�= �x ,y ,z�= �easy,second easy,hard�
axes.

From Eqs. �2� and �3� in Ref. 24, the Hamiltonian density
at zero external field is

H = −
1

2
�0���M� A�2 + �M� B�2� + �0��M� A · M� B −

1

2
�0M� A

��AJ + DJ�M� A −
1

2
�0M� B�AJ + DJ�M� B − �0M� AEJM� B

+
1

2
�0�M� A + M� B�NJ�M� A + M� B� −

1

2
�0

1

3
�M� A + M� B�2,

�B1�

where M� A and M� B are the magnetization of each sublatttice,
� and �� are ferromagnetic and antiferromagnetic molecular

field parameters, NJ simplifies for the rodlike sample to Nx

=Ny =1/2 and Nz=0. The anisotropy field components of AJ

are �Ax=0,Ay =−HA1 /M0 ,Az=−HA2 /M0�, similarly both DJ

and EJ produce dipole-dipole interaction fields on the diago-
nal from the lattice sums for one and the other sublattice,
respectively. Setting the ground-state spin configurations to

M� A = �M0,0,0�, M� B = �− M0,0,0� �B2�

in Eq. �B1� gives the ground-state energy density

Uground = − �0AxM0
2 − �0DxM0

2 + �0ExM0
2 − �0�M0

2

− �0��M0
2. �B3�

The lower branch AFMR excitation pattern shown in the
inset of Fig. 2�a� generates a net linearly polarized magneti-

zation along the c axis at the moment indicated by the num-
ber “3.” This state is expressed as

M� A = ��M0
2 − �M̂c�2/4,0, �M̂c�/2�,

M� B = �− �M0
2 − �M̂c�2/4,0, �M̂c�/2� , �B4�

where the ac magnetization amplitude along the hard axis is

�M̂c�. Replacing M� A and M� B in Eq. �B1� by the large ampli-
tude expressions in Eq. �B4�, gives an energy density

U = − �0�M0
2 − �0��M0

2 + �0��
1

2
�M̂c�2 − �0�Ax + Dx�M0

2

+ �0�Ax − Az + Dx − Dz�
1

4
�M̂c�2 + �0ExM0

2

− �0�Ex + Ez�
1

4
�M̂c�2 +

1

2
�0	Nz −

1

3

�M̂c�2. �B5�

Subtracting Eq. �B3� from Eq. �B5� gives the driven energy
density with respect to the ground-state energy, namely,

�U�Mc� = �0
�M̂c�2

4
�Ax − Az + Dx − Dz − Ex − Ez

+ 2�Nz − 1/3� + 2���

= �0
�M̂c�2

4M0
�HA2 + 2�Nz − 1/3�M0 + 2HE�

+ �Dx − Dz − Ex − Ez�M0� = �0
�M̂c�2

4M0
Hc-eff.

�B6�

Here the antiferromagnetic exchange field HE�=��M0 and
the effective field along the c direction �z axis� for this set of
precessing spins Hc-eff is defined by Eq. �B6�. The value of
Hc-eff evaluated from Ref. 24 is

Hc-eff = 3160�Oe� = 4.0 � 104 A/m. �B7�
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