Different Crystal Chemistries of the 117Cd→117In and 111mCd→111Cd Probes in LiNbO3 and LiTaO3 Studied by the Time-Differential Perturbed-Angular-Correlation Technique

メタデータ	言語: eng
	出版者:
	公開日: 2017-10-03
	キーワード (Ja):
	キーワード (En):
	作成者:
	メールアドレス:
	所属:
URL	https://doi.org/10.24517/00010135
	This work is licensed under a Creative Commons

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 International License.

Different crystal chemistries of the ¹¹⁷Cd \rightarrow ¹¹⁷In and ^{111m}Cd \rightarrow ¹¹¹Cd probes in LiNbO₃ and LiTaO₃ studied by the time-differential perturbed-angular-correlation technique

Yoshitaka Ohkubo

Research Reactor Institute, Kyoto University, Kumatori-cho, Sennan-gun, Osaka 590-0494, Japan

Yukihiro Murakami and Tadashi Saito Radioisotope Research Center, Osaka University, Toyonaka-shi, Osaka 560-0043, Japan

Akihiko Yokoyama

Graduate School of Science, Osaka University, Toyonaka-shi, Osaka 560-0043, Japan

Shin-ichi Uehara, Seiichi Shibata, and Yoichi Kawase

Research Reactor Institute, Kyoto University, Kumatori-cho, Sennan-gun, Osaka 590-0494, Japan (Received 9 April 1999; revised manuscript received 12 July 1999)

The nuclear-electric-quadrupole interactions at ¹¹⁷In and ¹¹¹Cd nuclei arising from ¹¹⁷Cd and ^{111m}Cd, respectively, each chemically introduced in ferroelectric LiNbO₃ (T_C =1483 K) and LiTaO₃ (T_C =938 K) polycrystals, were studied by measuring the time-differential perturbed angular correlation of γ rays over a temperature range from 4.2 to 1243 K. Well-defined, essentially single, static electric quadrupole frequencies were observed for ¹¹⁷In and ¹¹¹Cd in the oxides. It has been established that both In and Cd occupy the Li sites of LiNbO₃ and LiTaO₃. In the case of LiTaO₃, the temperature dependences of the quadrupole frequencies ω_Q of ¹¹⁷In and ¹¹¹Cd clearly change at around T_C =938 K, reflecting the ferroelectric-to-paraelectric phase transition. In both oxides, it might be expected that the temperature dependence of ω_Q of ¹¹⁷In would agree with that of ¹¹¹Cd. However, it is so only at low temperatures, including room temperature. There is a significant difference at high temperatures: ω_Q of ¹¹⁷In is strongly dependent on temperature, whereas ω_Q of ¹¹¹Cd is weakly dependent. It is considered that the Cd ions at the Li sites are in peculiar physicochemical states. [S0163-1829(99)12841-8]

I. INTRODUCTION

Lithium niobate, LiNbO₃, is a ferroelectric with T_C = 1483(10) K,¹ known as an important nonlinear optic material. Its optical properties are influenced by doping the material with metal impurities.² It is reported, for example, that In impurities increase the resistance of LiNbO₃ to laser damage.³ Knowledge of the lattice environment and the chemical state of dopants is essential for theoretical understanding of the impurity effects.

Previously, we performed time-differential perturbedangular-correlation (TDPAC) measurements on ¹¹⁷In arising from ¹¹⁷Cd in a temperature range between 4.2 and 873 K and also on ¹¹¹Cd arising from ^{111m}Cd only at 4.2 K, both of which parent nuclides were chemically introduced in polycrystalline samples of Li_{0.995}Cd_{0.005}NbO₃, in order to obtain information about the valency of In and Cd in LiNbO₃.⁴ We observed well-defined, essentially single, static electric quadrupole interactions at ¹¹⁷In and ¹¹¹Cd in the samples. It was already reported that a trace amount of Cd and a small amount of In occupy the Li sites in LiNbO₃: Hauer et al.⁵ studied, utilizing the TDPAC technique, the electric quadrupole interactions at ${}^{111}Cd(\leftarrow {}^{111}In)$ in undoped congruent LiNbO₃ single crystals and at ${}^{111}Cd(\leftarrow {}^{111m}Cd)$ in undoped and 6-mol % Mg-doped congruent LiNbO3 single crystals after implantation of a maximum concentration of 2×10^{18} ¹¹¹In/cm³ and of 1×10^{18} ¹¹¹m^mCd/cm³, respectively. They ob-

served two quadrupole frequencies, differing from each other by only about 5%, in each of the above three systems, and each electric quadrupole frequency was the same in the three systems. Since the lattice site of 0.59 mol % In in 6 mol % Mg-doped congruent LiNbO₃ had been determined by the PIXE (proton-induced x-ray emission) channeling technique to be the Li site,⁶ it was concluded that both In (a small amount) and Cd (a trace amount) occupy the Li site in undoped and Mg-doped LiNbO₃.⁵ By comparing our result on ¹¹¹Cd with that obtained by Hauer *et al.*, we confirmed that 0.5 mol % Cd occupy the Li site in LiNbO₃. Since the ratio 2.27(2) of the quadrupole frequency ω_0 of ¹¹⁷In to that of ¹¹¹Cd, both measured at 4.2 K, coincides with the value of 2.3 estimated on the assumption of purely ionic states of In and Cd, i.e., In³⁺ and Cd²⁺, we concluded that ¹¹⁷In and ¹¹¹Cd at the Li sites in LiNbO₃ are predominantly ionic in nature. It was observed that the ω_0 of ¹¹⁷In increases gradually as the temperature increases from 4.2 K to room temperature and then increases more and more rapidly as the temperature increases to 873 K. This steep increase above room temperature was then thought not to be explained only in terms of the temperature dependence of the lattice constants and was interpreted as being due most probably to the anisotropic vibrational motions of the $^{117}In^{3+}$ ions,⁴ as has been argued for the Li ion in LiNbO₃.⁷

In this paper, we report the results of the TDPAC measurements on 117 In and 111 Cd in Li_{0.995}Cd_{0.005}NbO₃ in an

11 963

FIG. 1. Partial decay schemes of ${}^{117}Cd \rightarrow {}^{117}In$ and ${}^{111m}Cd \rightarrow {}^{111}Cd$.

extended temperature range up to 1243 K and also the polycrystalline TDPAC results on samples of Li_{0.99}Cd_{0.01}TaO₃ in the same temperature range. We have observed that in both oxides, although the temperature dependence of ω_0 of ¹¹⁷In agrees with that of ¹¹¹Cd at low temperatures including room temperature, they are very much different from each other at high temperatures. In the case of LiNbO₃, for example, the ω_0 of ¹¹⁷In continues to increase concavely with increasing temperature, whereas that of ¹¹¹Cd even decreases after it increases slowly as the temperature increases up to about 1000 K.

LiTaO₃ is isostructural to LiNbO₃ and has T_C = 938(5) K,⁸ which is included in the present temperature range. These two oxides belong to the *R*3*c* and *R*3*c* space groups below and above their T_C 's, respectively. Although this oxide system has the *ABO*₃ stoichiometry, it does not adopt the perovskite structure, but takes an ilmenite (FeTiO₃) related structure,⁹ because of the similar ionic sizes of Li⁺ (76 pm), Nb⁵⁺ (64 pm), and Ta⁵⁺ (64 pm).¹⁰

Figure 1 shows relevant parts of the decay schemes of ¹¹⁷Cd \rightarrow ¹¹⁷In and ^{111m}Cd \rightarrow ¹¹¹Cd. The 749-keV excited state of ¹¹⁷In is populated by the β^- decay of the parent ¹¹⁷Cd with a half-life of $t_{1/2}=2.49$ h and decays to the 315-keV excited state through the 660-keV intermediate state having a spin $I=\frac{3}{2}$, $t_{1/2}=53.6$ ns, and an electric quadrupole moment Q=(-)0.59(1) b.¹¹ The 396-keV excited state of ¹¹¹Cd, i.e., ^{111m}Cd with $t_{1/2}=48.54$ min, decays to the ground state through the 245-keV intermediate state having $I=\frac{5}{2}$, $t_{1/2}=85.0$ ns, and Q=+0.77(12) b.¹¹ The intermediate state is split by the interaction of the electric quadrupole moment of the nuclei with an extranuclear electric field gradient (EFG). Detection of the 90-keV (151-keV) γ rays with a detector sorts out a set of ¹¹⁷In (¹¹¹Cd) nuclei in the intermediate

state with spin alignment against the direction of the detector from the source. Then, time-differential measurements of the 344-keV (245-keV) γ rays with another detector permits determination of the spin precession frequency of ¹¹⁷In (¹¹¹Cd) nuclei in the intermediate state and then determination of the magnitude of the splitting of the state. Thus the TDPAC of the 90- and 344-keV (151- and 245-keV) γ rays emitted in the successive γ transitions reveals the electric quadrupole interaction during the stay of ¹¹⁷In (¹¹¹Cd) nuclei in the intermediate state.

II. EXPERIMENTAL PROCEDURES

A. Sample preparation

The parent nuclei ¹¹⁷Cd and ^{111m}Cd were separately obtained by irradiating enriched ¹¹⁶CdO and ¹¹⁰CdO, respectively, with thermal neutrons at Kyoto University Research Reactor. The irradiated oxide was mixed with appropriate amounts of high-purity powders of Li₂CO₃ and Nb₂O₅ (Ta₂O₅) for a chemical composition of Li_{0.995}Cd_{0.005}NbO₃ (Li_{0.99}Cd_{0.01}TaO₃). The mixture was pressed into a pellet and heated in air at 1100 °C for about 1 h, and thereby Li_{0.995}Cd_{0.005}NbO₃ (Li_{0.99}Cd_{0.01}TaO₃) was obtained. (Occasionally, the process was repeated once after the sample was repowdered. It was confirmed that the TDPAC spectra were independent of the repetition of the process.) Noticeable loss of neither the metals nor the source nuclides was observed during these heating processes. Owing to the short half-lives of ¹¹⁷Cd and ^{111m}Cd, samples were prepared for each TDPAC-measurement temperature. As previously examined, the room-temperature x-ray-diffraction pattern of an LiNbO₃ sample without cadmium prepared by an identical heating process showed a single phase of LiNbO₃. The roomtemperature x-ray-diffraction pattern of an Li_{0.99}Cd_{0.01}TaO₃ sample after the TDPAC measurement, being naturally similar to that of LiNbO₃, coincided with the standard profile of a single phase of LiTaO₃.

B. TDPAC measurements

The time dependences of the coincidence counts $N(\theta,t)$ of the 90–344-keV cascade γ rays for the samples containing ¹¹⁷Cd and of the 151–245-keV γ rays for ^{111m}Cd were taken in a temperature range between 4.2 and 1243 K using a measurement system consisting of standard fast-slow electronic modules and four BaF₂ scintillation detectors. Here θ and t denote the angle and time interval, respectively, between the cascade γ rays. The directional anisotropy $A_{22}G_{22}(t)$ was obtained according to Eq. (1):

$$A_{22}G_{22}(t) = 2 \frac{N(\pi,t) - N(\pi/2,t)}{N(\pi,t) + 2N(\pi/2,t)}.$$
 (1)

The values of A_{22} for ¹¹⁷In(\leftarrow ¹¹⁷Cd) and ¹¹¹Cd(\leftarrow ^{111m}Cd) are -0.36 and +0.18, respectively.¹²

We give the expressions of directional anisotropy, $A_{22}G_{22}(t)$, for a unique static quadrupole interaction. The coefficient A_{22} depends only on the nuclear transitions. The perturbation factor $G_{22}(t)$ for an ensemble of randomly oriented microcrystals is a function of the electric quadrupole frequency ω_0 and the asymmetry parameter η of the EFG through the interaction Hamiltonian. The quantities ω_Q and η are defined as follows: $\hbar \omega_Q = -eQV_{zz}/[4I(2I-1)]$ and $\eta = (V_{xx} - V_{yy})/V_{zz}$. The three components of the EFG in the principal-axis system are chosen such that $|V_{xx}| \leq |V_{yy}| \leq |V_{zz}|$, and thus the asymmetry parameter η takes a value between 0 and 1. The perturbation factor $G_{22}(t)$ has the form

$$G_{22}(t) = [1 + 4\cos(\omega t)]/5, \qquad (2)$$

$$\omega = 6 \omega_Q \left(1 + \frac{\eta^2}{3} \right)^{1/2} \quad \text{for the case of } ^{117} \text{In} \qquad (3)$$

and

$$G_{22}(t) = \sum_{n=0}^{3} S_n(\eta) \cos(\omega_n t),$$
 (4)

$$\omega_0 = 0, \quad \omega_n = 6 \,\omega_Q C_n(\eta) \quad (n = 1, 2, 3)$$
 (5)

for the case of ¹¹¹Cd.

The S_n and C_n in Eqs. (4) and (5) are numerically calculated for a given asymmetry parameter. It should be noted that in the case of ¹¹⁷In, $G_{22}(t)$ contains only one frequency component and the values of ω_Q and η cannot be determined independently from the spectrum, whereas in the case of ¹¹¹Cd, they can be determined because the amplitudes S_n and the frequencies ω_n in Eq. (4) are modified in a characteristic way as a function of η .

III. RESULTS

The TDPAC spectra $A_{22}G_{22}(t)$ measured at 4.2 and 1173 K of ¹¹⁷In and ¹¹¹Cd in LiNbO₃ are shown in Fig. 2 and those for $LiTaO_3$ are shown in Fig. 3. Note that the time scales for the ¹¹⁷In- and ¹¹¹Cd-TDPAC spectra are different according to the different half-lives of the two probe nuclides in their intermediate states. The anisotropy is modulated in a manner characteristic of the single electric quadrupole interaction in polycrystalline samples depending on the spin value of the intermediate nuclear state. Although Hauer et al. analyzed their TDPAC spectra with two quadrupole frequencies [ω_0 of the main component (a fraction of about 70%) is different from the minor by only about 5%,⁵ as mentioned in the Introduction], we analyzed our TDPAC spectra of ¹¹⁷In and ¹¹¹Cd with a single quadrupole frequency having a Lorentzian distribution around the central value $\bar{\omega}$. For the ¹¹⁷In time spectra, the width of the distribution $\Delta \omega$ was taken to be 2% of $\bar{\omega}$ at $T \leq T_C$ and 0 at $T \geq T_C$. In the case of ¹¹¹Cd time spectra, it was taken to be 2% at $T \le 295$ K and 0 at T \geq 573 K for LiNbO₃ and was 2% at $T \leq$ 773 K and 0 at T \geq 873 K for LiTaO₃. We assume the value of η for ¹¹⁷In is the same as that obtained for ¹¹¹Cd, as assumed in Ref. 13; i.e., ¹¹⁷In is subject to the same asymmetry of the EFG as ¹¹¹Cd in the sample. The ¹¹¹Cd time spectra are consistent with small values of η . Since the value of ω_0 is not very sensitive to the value of η in a limited range, we set $\eta=0$ for all the ¹¹¹Cd and ¹¹⁷In spectra, which conforms to the fact that the Li site has a threefold symmetry axis and the EFG at this site is therefore axially symmetric. Equations (2) and (3)were fitted using the least-squares method to the observed time spectra for ¹¹⁷In in time ranges between 7 and 157 ns

FIG. 2. (a) TDPAC spectra $A_{22}G_{22}(t)$ of ${}^{117}\text{In}(\leftarrow{}^{117}\text{Cd})$ in Li_{0.995}Cd_{0.005}NbO₃ at 4.2 and 1173 K with the solid curves representing the least-squares fits of Eqs. (2) and (3) in the text and (b) the corresponding spectra of ${}^{111}\text{Cd}(\leftarrow{}^{111m}\text{Cd})$ with the solid curves representing the fits of Eqs. (4) and (5) in the text.

and Eqs. (4) and (5) to those for ¹¹¹Cd in time ranges between 0 and 180 ns. [In the case of ¹¹⁷In, the experimental points at t < 7 ns were not used in the fit to avoid the influence of the huge prompt peak of $N(\theta,t)$ at t=0.] The solid curves in Figs. 2 and 3 are the results of the fits.

In Fig. 4 are plotted the $\omega_0(T)/\omega_0(0)$ values of ¹¹⁷In and ¹¹¹Cd in LiNbO₃ vs temperature T as open squares and solid circles, respectively. The values of $\omega_0(0)$ were determined by a linear extrapolation. Those for LiTaO₃ are shown in Fig. 5. The quadrupole frequency of ¹¹⁷In in LiNbO₃ increases concavely by about 33% as the temperature increases from 4.2 to 1243 K, whereas the ω_Q of ¹¹¹Cd in the oxide increases in step with that of ¹¹⁷In at temperatures up to about 550 K, then increases very slowly, and at temperatures above around 1000 K tends to even decrease. As for LiTaO₃, the ω_0 of ¹¹⁷In also increases concavely by about 45% with increasing temperature in the range from 4.2 to about 940 K, levels off at temperatures between about 940 and 1100 K, and then decreases gradually. The quadrupole frequency of ¹¹¹Cd in this oxide increases in step with that of ¹¹⁷In at temperatures only up to room temperature, keeps increasing slowly at temperatures up to about 940 K, and then decreases linearly and rapidly. The temperature dependences of ω_{0} of ¹¹⁷In and ¹¹¹Cd in LiTaO₃ clearly change at around T_C

FIG. 3. (a) TDPAC spectra $A_{22}G_{22}(t)$ of ¹¹⁷In(\leftarrow ¹¹⁷Cd) in Li_{0.99}Cd_{0.01}TaO₃ at 4.2 and 1173 K and (b) the corresponding spectra of ¹¹¹Cd(\leftarrow ^{111m}Cd). The solid curves represent the fits (see the caption of Fig. 2).

=938 K, reflecting the ferroelectric-to-paraelectric phase transition. In both oxides, the temperature dependence of ω_Q of ¹¹⁷In agrees with that of ¹¹¹Cd only at low temperatures, including room temperature. There is a significant difference at high temperatures. In the next section, this difference is discussed in terms of the anisotropic vibration of the probe nuclei, the chemical bonding, and also a lattice distortion owing to the large ionic radius of ¹¹¹Cd²⁺.

IV. DISCUSSION

As described in the Introduction, it has been established that a small amount of Cd occupies the Li sites in LiNbO₃ from the combined experimental results of PIXE channeling⁶ and TDPAC.^{4,5} Considering that LiTaO₃ is isostructural to LiNbO₃ and that a well-defined ω_Q of ¹¹¹Cd was also observed in LiTaO₃, the temperature dependence of which being similar to that in LiNbO₃ at temperatures below T_C of LiTaO₃, we conclude that a small amount of Cd also occupies the Li sites in LiTaO₃. Although the maximum recoil energy of ¹¹⁷In given in the β^- decay of ¹¹⁷Cd amounts to being as large as 22 eV (the recoil energies of ¹¹⁷In and ¹¹¹Cd given in the γ emissions are negligibly small), we

FIG. 4. Temperature dependences of the electric quadrupole frequencies ω_Q of ¹¹⁷In (open squares) and ¹¹¹Cd (solid circles) in Li_{0.995}Cd_{0.005}NbO₃ together with that of the quadrupole coupling constant ν_Q of ⁷Li (Ref. 7) (solid line) in LiNbO₃. The crosses represent the temperature dependence of V_{zz} at the Li site in LiNbO₃ calculated by a simple point-charge model. The ν_Q of ⁷Li and the calculated V_{zz} are scaled so as to coincide with our TDPAC data at room temperature.

consider that most of ¹¹⁷In remain at the Li sites where their parent nuclei ¹¹⁷Cd originally occupy, because if the nuclear recoil effect were significant, we should have observed several values of or extensively distributed ω_Q of ¹¹⁷In in LiNbO₃ and LiTaO₃, but as a matter of fact we observed essentially single well-defined ω_Q of ¹¹⁷In in the two oxides.

The electric quadrupole frequencies ω_Q of ¹¹⁷In and ¹¹¹Cd at the Li sites in LiNbO₃ and LiTaO₃ exhibit very interesting temperature dependences. As shown in Figs. 4 and 5, they first increase with increasing temperature, which temperature dependence is the opposite of those for *ABO*₃ ferroelectric perovskites such as BaTiO₃ and PbTiO₃ (Ref. 14); together with the spontaneous polarization, V_{zz} for these perovskites

FIG. 5. Temperature dependences of the electric quadrupole frequencies ω_Q of ¹¹⁷In (open squares) and ¹¹¹Cd (solid circles) in Li_{0.99}Cd_{0.01}TaO₃ together with that of the quadrupole coupling constant ν_Q of ⁷Li (Ref. 15) (solid line) in LiTaO₃. The crosses are due to the point-charge calculation (see the caption of Fig. 4).

decreases as the temperature increases to T_C . For LiNbO₃, the ω_0 of ¹¹⁷In continues to increase in the present temperature range, whereas that of ¹¹¹Cd starts to decrease at a temperature about 1000 K. For LiTaO₃, the ω_Q 's of ¹¹⁷In and ¹¹¹Cd reach maxima at around T_C , and then decrease, clearly indicating the ferroelectric-to-paraelectric phase transition at T_C . At temperatures above T_C , the ω_O of ¹¹¹Cd in LiTaO₃ more rapidly decreases with increasing temperature than that of ¹¹⁷In, which might be due to the same cause as that makes the ω_Q of ¹¹¹Cd in LiNbO₃ decrease. In both oxides, the temperature dependence of ω_Q of ¹¹⁷In agrees with that of ¹¹¹Cd at low temperatures, including room temperature. However, ω_Q of ¹¹⁷In is strongly temperature-dependent, whereas that of ¹¹¹Cd is weakly dependent. We first note that the nuclear recoil of ¹¹⁷In is irrelevant to the specimen temperature and thus to the diverging temperature dependences of ω_O of ¹¹⁷In and ¹¹¹Cd. In our previous paper,⁴ we interpreted the steep increase of ω_0 of ¹¹⁷In in LiNbO₃ with increasing temperature as being most probably to the anisotropic vibrational motions of the 117 In³⁺ ions. Therefore, if the anisotropic vibration is really the major reason for the temperature dependences of ω_O of both ¹¹⁷In and ¹¹¹Cd, it will be able to explain the diverging temperature dependences of ω_0 of the two probe nuclides. However, the anisotropic vibration⁷ predicts the opposite: ω_0 of ¹¹¹Cd should be more strongly temperature dependent than that of ¹¹⁷In because of the smaller charge and mass of $^{111}Cd^{2+}$ than those of ¹¹⁷In³⁺. Therefore, the anisotropic vibration cannot be the major cause of the observed diverging temperature dependences of ω_0 . It does not seem that the anisotropic vibration is also the right reason for the steep increase of ω_0 of 117 In in LiNbO₃.

In Figs. 4 and 5 are also shown as solid lines the ⁷Li-nuclear magnetic resonance (NMR) quadrupole coupling constant $\nu_{Q}(=eV_{zz}Q/h)$ for LiNbO₃ in the temperature range between 297 and 953 K (Ref. 7) and for LiTaO₃ in the range between 100 and 1160 K (Ref. 15), both normalized to our respective data at room temperature. Roughly speaking, the temperature dependences of ν_0 of ⁷Li in LiNbO3 and LiTaO3 are much more similar to the corresponding ones of ω_Q of ¹¹⁷In than to those of ¹¹¹Cd. We have observed that at low temperatures, including room temperature, the temperature dependence of ω_O of ¹¹⁷In agrees with that of ¹¹¹Cd. From these comparisons we guess that the In ions at the Li sites are more or less in similar physicochemical states to the Li ions themselves in the present temperature range, whereas the Cd ions at the Li sites are in different states at high temperatures, although they are in identical states as Li and In at low temperatures. For example, the chemical bonding of Cd with O could be different from those of Li and In with O at high temperatures or Cd could be in a different lattice environment at high temperatures, although they occupy the Li sites. Here we should note the following. By saying that the In ions at the Li sites are more or less in similar physicochemical states to the Li ions, we do not mean that heavy In ions jump from their original Li sites into other sites, as some of the Li ions are considered to jump into normally vacant metal sites, forming interstitials, or jump back to the normal Li sites (a little more detail about the jumping motion of Li is described below). We

suppose that the normal Li site is equivalent or similar to the interstitial site, so that the value of V_{zz} at ⁷Li at the normal Li site is identical to that at the interstitial site. We thus mean that the In ions at the normal Li sites or those that happen to be placed at the interstitial sites are more or less in similar physicochemical states to the Li ions at the normal Li sites or at the interstitial sites.

The electric quadrupole interactions at the Li sites in LiNbO₃ and LiTaO₃ have also been studied by Catchen et al.^{16,17} over a wide temperature range from 295 to about 1700 K, using the TDPAC method on the ${}^{181}\text{Ta}(\leftarrow {}^{181}\text{Hf})$ probe. It is interesting to compare our results on ω_{Ω} , the asymmetry parameter η of the EFG and the width $\Delta \omega$ of the Lorentzian distribution of ω_Q (our $\Delta \omega / \bar{\omega}$ corresponds to their δ) with their results. The value of ω_0 of ¹⁸¹Ta at the Li site in LiNbO₃ increases monotonically by several percent in the temperature range from 295 to about 1700 K, whereas the ω_0 of ¹¹⁷In increases by 30% in the temperature range from 295 to 1243 K, but that of ¹¹¹Cd increases by 2% in the temperature range from 295 to about 1000 K and above it decreases. The ω_O of ¹⁸¹Ta in LiTaO₃ increases concavely by about 12% as the temperature increases from 295 K to T_C (=938 K) and above T_C decreases slowly, whereas those of ¹¹⁷In and ¹¹¹Cd increase by 44% and 5%, respectively, in the temperature range from 295 K to T_C , and above T_C they decrease slowly and much rapidly, respectively. Although the rate of change is very different among ¹⁸¹Ta, ¹¹⁷In, and ¹¹¹Cd, these qualitative features for ¹⁸¹Ta look more like those for ¹¹⁷In than for ¹¹¹Cd, indicating that In and Ta may be in similar states, and indicating again that the Cd ions at the Li sites are in distinctive physicochemical states at high temperatures. The η values for ¹⁸¹Ta in LiNbO₃ and LiTaO₃ are relatively large at room temperature, each about 0.25, in spite of the fact that the Li site has a threefold symmetry axis and the EFG at this site is thus axially symmetric. Those η values for ¹⁸¹Ta decrease with increasing temperature. For LiTaO₃, it reaches values of less than 0.1, reasonably close to zero, at temperatures above T_C . On the other hand, in our case of ¹¹⁷In and ¹¹¹Cd, the η values are considerably small in the whole temperature range studied; the η value for ¹¹⁷In was actually assumed to be equal to that for ¹¹¹Cd, but the η value for ¹¹⁷In at low temperatures could be as large as that for ¹⁸¹Ta because, as considered above, In and Ta may be in similar physicochemical states. The $\Delta \omega / \bar{\omega}$ values for ¹⁸¹Ta in LiNbO3 and LiTaO3 are large at room temperature, each about 0.1, and decrease with increasing temperature, whereas the $\Delta \omega / \bar{\omega}$ values for ¹¹⁷In and ¹¹¹Cd in LiNbO₃ and LiTaO₃ are small, 0.02, even at 4.2 K, and for LiTaO₃ they are zero at temperatures above T_C .

Catchen and Spaar¹⁶ pointed out the abnormality of the increasing temperature dependence of ω_Q of ¹⁸¹Ta, comparing with the temperature dependences seen for *ABO*₃ ferroelectric perovskites, but did not give an explanation to it. However, they gave a reasonable explanation to the temperature dependences of η and $\Delta \omega/\bar{\omega}$ in terms of an order-disorder model. This model suggests that some of the Li ions occupy normally vacant metal sites, i.e., there are interstitial Li sites, and the existence of the interstitials breaks the axial symmetry associated with the Li sites in the ordered ferroelectric phase where the number of Li atoms in the normal Li sites exceeds the number of the interstitials. In the disordered

paraelectric phase those numbers are equal and the axial symmetry is recovered. [A pair of Li and Nb (Ta) forms an electric dipole. The dipoles formed by the normal-site Li ions and Nb (Ta) ions are oriented in a particular direction, whereas those formed by the interstitial Li ions and Nb (Ta) ions are oriented in the opposite direction. In the disordered phase, those two types of dipoles cancel with each other because of the equal number of the normal-site and interstitial Li ions. In the ordered phase, some of the dipoles formed with the normal-site Li ions remain and the spontaneous polarization exists.] Only with this model, however, it does not seem possible to understand the difference between the small η and $\Delta \omega/\bar{\omega}$ values for ¹¹⁷In and ¹¹¹Cd and those large values for ¹⁸¹Ta.

We now discuss the valency of In and Cd at the Li sites in LiNbO₃ and LiTaO₃. One of the results of a first-principles calculation on LiNbO₃ by Ching *et al.*¹⁸ is that the derived valence state of the oxide is $Li^{0.98}Nb^{3.67}(O^{-1.55})_3$, showing that Li is essentially pure ionic, although there is a significant covalent bonding character between Nb and O. From the conjecture that the In ions are in similar physicochemical states to the Li ions and so are the Cd ions at low temperatures, we expect that In is also highly ionic, and so is Cd at least at low temperatures, although there might be a significant covalent bonding character between Cd and O at high temperatures.

In order to examine this expectation about the valency of In and Cd, we evaluate the ratio of ω_Q of ¹¹⁷In to that of ¹¹¹Cd, $\omega_Q(^{117}\text{In})/\omega_Q(^{111}\text{Cd})$, employing the phenomenological model of Sternheimer.¹⁹ In his model, V_{zz} is expressed as $V_{zz} = (1-R)V_{zz}^{\text{valence}} + (1-\gamma_{\infty})V_{zz}^{\text{lattice}}$, where V_{zz}^{valence} is due to the noncubic electron distribution in partially filled valence orbitals of the probe ion and V_{zz}^{lattice} to the charges on the lattice ions surrounding the probe ion noncubic symmetrically. The quantities R and γ_{∞} are the Sternheimer shielding and antishielding factors, respectively, both representing the effect of the distortion of the closed-shell electron distributions in the probe ion. In a situation where In and Cd exist as being purely ionic, i.e., In³⁺ and Cd²⁺, both having the (same) closed-shell electron configuration, and furthermore where In and Cd are in the same lattice environment, the ratio $\omega_Q(^{117}\text{In})/\omega_Q(^{111}\text{Cd})$ is expressed simply as

$$\frac{\omega_{Q}(^{117}\text{In})}{\omega_{Q}(^{111}\text{Cd})} = \frac{10}{3} \frac{Q(^{117}\text{In})}{Q(^{111}\text{Cd})} \frac{1 - \gamma_{\infty}(^{117}\text{In})}{1 - \gamma_{\infty}(^{111}\text{Cd})}.$$
 (6)

Using the calculated values of $\gamma_{\infty}(\text{In}) = -25.8$ and $\gamma_{\infty}(\text{Cd}) = -29.3$,^{4,20} the absolute value of the ratio is evaluated to be 2.3. The values of the experimental ratio for LiNbO₃ and LiTaO₃ in the temperature ranges from 4.2 to about 550 K and from 4.2 K to room temperature, respectively, are within ± 0.03 of 2.27, and thus at low temperatures, including room temperature, agree very well with this calculated value. These agreements support the indicated highly ionic nature of In and Cd at low temperatures and moreover indicate that In and Cd are in the same lattice environment at low temperatures. Corresponding to the diverging temperature dependences of ω_Q of ¹¹⁷In and ¹¹¹Cd, their ratio $\omega_Q(^{117}\text{In})/\omega_Q(^{111}\text{Cd})$ for LiNbO₃ and LiTaO₃ at high tem-

peratures deviates from the calculated value of 2.3; for example, the experimental ratio for $LiTaO_3$ at 1243 K is 3.43(1).

We can ascribe the characteristic temperature dependence of ω_0 of ¹¹¹Cd to an appearance of covalency in the Cd-O at high temperatures or to a lattice relaxation around Cd at high temperatures. At present, however, we are not certain which is the right reason, provided that there is no other cause. As for the former possibility, covalent bonding effects on the EFG at ¹¹¹Cd were in fact proposed²¹ in order to explain significant differences found in the values of V_{zz} and η , and their temperature dependences for the two TDPAC-probe nuclei, ${}^{111}Cd(\leftarrow {}^{111}In)$ and ${}^{181}Ta(\leftarrow {}^{181}Hf)$, both at the Ti sites in TiO₂. Accordingly, covalency in the Cd-O bonding may play an important role in changing the temperature dependence of ω_0 of ¹¹¹Cd in LiNbO₃ and LiTaO₃. However, there are two indirect objections to this interpretation. One is that the diffraction-derived structural data on LiNbO3 and LiTaO₃ (Refs. 22–25) show that, roughly speaking, the distance between a Li ion and each oxygen in the octahedron surrounding it becomes larger with increasing temperature, indicating the covalency between Cd at the Li site and O, if it exists at all, may become less important at high temperatures. Another is that in the TDPAC studies of hyperfine magnetic interactions at 117 In($\leftarrow {}^{117}$ Cd) (Ref. 26) and ¹¹¹Cd(\leftarrow ¹¹¹In) (Ref. 27), both at the tetrahedral sites in a spinel Fe₃O₄, a slightly larger value of the hyperfine magnetic field at ¹¹⁷In than at ¹¹¹Cd has been observed and qualitatively explained as due to the covalency of In³⁺ being larger than that of Cd^{2+} .²⁶

We next consider the temperature dependence of ω_O of ¹¹¹Cd in terms of a structural relaxation around the Cd ion. We note the large ionic radius of Cd²⁺, 95 pm, compared to those of Li⁺, 76 pm, and of In³⁺, 80 pm (the ionic radii are effective ones).¹⁰ The sum of the two ionic radii of Cd²⁺ and O^{2-} (140 pm) (Ref. 10) is 235 pm, which is quite larger than the shortest Li-O distances in LiNbO3 and LiTaO3 at room temperature, 206.8 pm (Ref. 22) and 204.1 pm (Ref. 25), respectively, though the sum of the ionic radii of Li⁺ and O^{2-} , 216 pm, is already larger than either of them. We thus imagine that Cd is compelled to be situated in a narrow space formed by the surrounding oxygens: Owing to the tight close-packed arrangement of oxygen ions, Cd seems not to be able to push the surrounding oxygens away at low temperatures. However, as the temperature increases, the crystal is softened and a structural relaxation around Cd would take place. If each oxygen surrounding Cd is pushed away maintaining the axial symmetry around Cd, the value of V_{zz} at ¹¹¹Cd and thus ω_0 of ¹¹¹Cd reduce.

Finally, we comment on the unusual temperature dependence of ω_Q of ¹¹⁷In and ¹¹¹Cd in LiNbO₃ and LiTaO₃, i.e., the increasing nature of the temperature dependence of ω_Q . We estimate the temperature dependences of V_{zz} at the Li sites in LiNbO₃ and LiTaO₃ by means of their diffractionderived structural data^{22–25} and a point-charge model, which takes into account the charges on only the first nearestneighbor ions surrounding the probe nucleus.²⁸ This model was quite successful in reproducing the variation of V_{zz} at the Nb site in the LiNbO₃-LiTaO₃ solid-solution system with composition and the temperature dependence of V_{zz} at the Nb site in LiNbO₃, both measured with the ⁹³Nb-NMR.²⁹ By a consideration of Catchen and Spaar¹⁶ that V_{zz} may not be strongly coupled to the order parameter for the phase transition in LiNbO3 and LiTaO3, use of the point-charge model with the diffraction-derived structural data that do not reflect the existence of the interstitial Li ions might be justified for the calculation of V_{zz} . The present calculation reproduces the order of magnitude of V_{zz} and an important feature that the value of V_{zz} at the Li site in LiNbO₃ is smaller than that for LiTaO₃. In Figs. 4 and 5 are shown as crosses the calculated V_{zz} at the Li sites in LiNbO₃ and LiTaO₃, respectively, normalized to our corresponding TDPAC data at room temperature. The point-charge calculation roughly reproduces the temperature dependences of the ⁷Li-NMR ν_0 for LiNbO₃ and LiTaO₃. Although the present calculation is too simple and its results should not be taken seriously, it suggests that the temperature dependence of the lattice constants is very much related to the increasing nature of the temperature dependence of ω_0 . However, for the clear understanding of the generally increasing temperature dependence of ω_0 and also of the distinctive temperature dependence of ω_O of ¹¹¹Cd, accurate theoretical calculations are certainly desired.

V. CONCLUSIONS

The nuclear-electric-quadrupole interactions at ¹¹⁷In and ¹¹¹Cd nuclei arising from ¹¹⁷Cd and ^{111m}Cd, respectively, each chemically introduced in ferroelectric LiNbO₃ (T_c = 1483 K) and LiTaO₃ (T_c = 938 K) polycrystals, were studied by measuring the time-differential perturbed angular correlation of γ rays over the temperature range from 4.2 to 1243 K. Well-defined, essentially single, static electric quadrupole frequencies were observed for ¹¹⁷In and ¹¹¹Cd in the oxides. It has been established that both In and Cd occupy the Li sites of LiNbO₃ and LiTaO₃. In the case of LiTaO₃,

the temperature dependences of the quadrupole frequencies ω_Q of ¹¹⁷In and ¹¹¹Cd clearly change at around T_C = 938 K, reflecting the ferroelectric-to-paraelectric phase transition.

In both oxides, the temperature dependence of ω_Q of ¹¹⁷In agrees with that of ¹¹¹Cd only at low temperatures including room temperature. At high temperatures there is a significant difference: ω_Q of ¹¹⁷In is strongly dependent on temperature, whereas ω_Q of ¹¹¹Cd is weakly dependent. From the highly ionic nature of the Li ion, suggested by a first-principles calculation¹⁸ on LiNbO₃, it is considered that In and Cd are also highly ionic. However, the comparison among the temperature dependences of ν_Q of ⁷Li (Refs. 7 and 15), ω_Q 's of ¹¹⁷In(\leftarrow ¹¹⁷Cd) and ¹¹¹Cd(\leftarrow ^{111m}Cd), and ω_Q of ¹⁸¹Ta(\leftarrow ¹⁸¹Hf) (Refs. 16 and 17), all probes at the Li sites in LiNbO₃ and LiTaO₃, indicates that there may be a significant covalent bonding character between Cd and O at high temperatures and/or there may be a structural relaxation around Cd starting to take place at a temperature above room temperature, because of the large ionic radius of ¹¹¹Cd²⁺.

A simple point-charge model calculation with the diffraction-derived structural data^{22–25} suggests that the temperature dependence of the lattice constants is very much related to the increasing nature of the temperature dependence of ω_Q . However, for the clear understanding of the generally increasing temperature dependence of ω_Q and also of the characteristic temperature dependence of ω_Q of ¹¹¹Cd, accurate theoretical calculations are needed.

ACKNOWLEDGMENT

One of the authors (Y.O.) wishes to express his thanks to Dr. Fumitoshi Ambe of the Institute of Physical and Chemical Research (RIKEN) for much encouragement, helpful comments, and technical support.

- ¹K. Nassau and H. J. Levinstein, Appl. Phys. Lett. 7, 69 (1965).
- ²R. C. Alferness, Science **234**, 825 (1986).
- ³T. R. Volk and N. M. Rubinina, Ferroelectr. Lett. Sect. **14**, 37 (1992).
- ⁴Y. Ohkubo, S. Uehara, Y. Kawase, J. Nakamura, T. Okada, S. Ambe, F. Ambe, and K. Asai, Phys. Rev. B 56, 10730 (1997).
- ⁵B. Hauer, R. Vianden, J. G. Marques, N. P. Barradas, J. G. Correia, A. A. Melo, J. C. Soares, F. Agulló-López, and E. Diéguez, Phys. Rev. B **51**, 6208 (1995).
- ⁶L. Kovács, L. Rebouta, J. C. Soares, M. F. da Silva, M. Hage-Ali, J. P. Stoquert, P. Siffert, C. Zaldo, Zs. Szaller, and K. Polgár, Mater. Sci. Eng., B 9, 505 (1991).
- ⁷T. K. Halstead, J. Chem. Phys. **53**, 3427 (1970).
- ⁸B. S. Razbirin, Sov. Phys. Solid State 6, 254 (1964).
- ⁹S. C. Abrahams and P. Marsh, Acta Crystallogr., Sect. B: Struct. Sci. 42, 61 (1986).
- ¹⁰R. D. Shannon, Acta Crystallogr., Sect. A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr. **32**, 751 (1976).
- ¹¹R. B. Firestone, in *Table of Isotopes*, 8th ed., edited by V. S. Shirley (Wiley, New York, 1996), Vol. I.
- ¹²H. H. Rinneberg, At. Energy Rev. 17, 477 (1979).
- ¹³R. S. Raghavan, P. Raghavan, and J. M. Friedt, Phys. Rev. Lett. **30**, 10 (1973).

- ¹⁴G. L. Catchen, S. J. Wukitch, D. M. Spaar, and M. Blaskiewicz, Ferroelectrics **117**, 175 (1991).
- ¹⁵D. Slotfeldt-Ellingsen and B. Pedersen, Phys. Status Solidi A 24, 191 (1974).
- ¹⁶G. L. Catchen and D. M. Spaar, Phys. Rev. B 44, 12137 (1991).
- ¹⁷G. L. Catchen, J. M. Adams, and T. M. Rearick, Phys. Rev. B 46, 2743 (1992).
- ¹⁸W. Y. Ching, Z.-Q. Gu, and Y.-N. Xu, Phys. Rev. B 50, 1992 (1994).
- ¹⁹R. M. Sternheimer, Phys. Rev. **130**, 1423 (1963).
- ²⁰F. D. Feiock and W. R. Johnson, Phys. Rev. **187**, 39 (1969).
- ²¹J. M. Adams and G. L. Catchen, Phys. Rev. B 50, 1264 (1994).
- ²²S. C. Abrahams, J. M. Reddy, and J. L. Bernstein, J. Phys. Chem. Solids **27**, 997 (1966).
- ²³S. C. Abrahams, H. J. Levinstein, and J. M. Reddy, J. Phys. Chem. Solids **27**, 1019 (1966).
- ²⁴R. T. Smith and F. S. Welsh, J. Appl. Phys. 42, 2219 (1971); Y. S. Kim and R. T. Smith, *ibid.* 40, 4637 (1969).
- ²⁵S. C. Abrahams, E. Buehler, W. C. Hamilton, and S. J. Laplaca, J. Phys. Chem. Solids **34**, 521 (1973).
- ²⁶K. Asai, Y. Ohkubo, T. Okada, Y. Yanagida, Y. Kawase, S. Uehara, S. Ambe, and F. Ambe, J. Phys. Soc. Jpn. **63**, 1677 (1994).

- ²⁷K. Asai, T. Okada, and H. Sekizawa, J. Phys. Soc. Jpn. 54, 4325 (1985).
- 28 During the examination of the position parameters obtained by x-ray diffraction in Ref. 23, we noticed that the 873-K value of the *z* coordinate of Li, 0.2899, used in Ref. 7 can be incorrect.

The value in Ref. 23 would change the results of point-charge calculations in Ref. 7 very much.

²⁹G. E. Peterson, J. R. Carruthers, and A. Carnevale, J. Chem. Phys. 53, 2436 (1970).