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1. Introduction and Results

The Trotter or Trotter–Kato product formula or the exponential product formula
is a useful tool to approximate the semigroup for a generator being a sum of two
operators ([15], [12]). One of the typical cases is: if A and B are nonnegative
selfadjoint operators in a Hilbert space H and if the operator sum H := A + B
with domain D[H] := D[A] ∩D[B] is selfadjoint in H, it holds in strong operator
topology that

lim
n→∞

[e−
t
n Ae−

t
n B ]n = lim

n→∞
[e−

t
2n Be−

t
n Ae−

t
2n B ]n = e−tH ,

uniformly on each bounded t-interval in the closed half-line [0,∞).
It has been shown in [8], [11] that it holds even in operator norm, namely,

that for n = 1, 2, . . . ,

‖[e− t
n Ae−

t
n B ]n − e−tH‖ = O(n−1), (1.1)

‖[e− t
2n Be−

t
n Ae−

t
2n B ]n − e−tH‖ = O(n−1), (1.2)
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uniformly on each bounded t-interval in the closed half-line [0,∞). Further, if H
is strictly positive, the convergence is uniform in the whole closed half-line [0,∞).
Here the error bound O(n−1) is optimal, in the sense that there exists a pair of
unbounded selfadjoint operators A and B with their sum H being selfadjoint such
that the left-hand side of the non-symmetric/symmetric product case (1.1)/(1.2)
is bounded from below by c(t)n−1 with a nonnegative continuous function c(t) in
t ≥ 0, positive in t > 0 with c(0) = 0. Note that, for both A and B bounded
operators, the error bound in the non-symmetric product case is O(n−1), while in
the symmetric product case O(n−2).

This result applies, needless to say, to the Schrödinger operator H = A +
B in L2(Rd) with A := H0 ≡ − 1

2∆ the Laplacian and B := V (x) a poten-
tial function growing polynomially as |x| → ∞, i.e. satisfying V (x) ≥ C(1 +
|x|2)ρ/2, |∂α

x V (x)| ≤ Cα(1 + |x|2)(ρ−δ|α|)+/2 for some constants C, Cα ≥ 0 and
ρ ≥ 0, 0 < δ ≤ 1. In this case, Takanobu [14] showed the integral kernels also con-
verge pointwise uniformly with error bound O(n−ρ/2), using the Feynman–Kac
formula. Recently we proved in [9] (cf. [10]) that the symmetric product formula
(1.2) holds even with the error bound O(n−2), sharper than the general optimal
O(n−1), both pointwise for the integral kernels and in operator norm, the con-
vergence taking place uniformly on each compact t-interval in the open half-line
(0,∞). As it had been anticipated that there be also a pair of unbounded selfad-
joint operators A and B for which the error bound is O(n−2), this problem was
thus settled.

The aim of this paper is to specifically consider the one-dimensional harmonic
oscillator H := − 1

2∆ + 1
2x2 with H0 := − 1

2∆, V := 1
2x2, in L2(R) to improve

slightly these results in [9]. In fact, we show in the symmetric product case, apart
from the non-symmetric case, that the integral kernels converge pointwise uni-
formly on each bounded interval (0, T ] in the open half-line (0,∞) just with the
error bound O(n−2). As a by-product, we also show that the error bound O(n−2)
for the symmetric product formula in norm is optimal not only from above but
also from below. It is our main aim to settle this problem on optimal error bounds.
We put the symmetric product as

K(n)(t) :=
[
e−

t
2n V e−

t
n H0e−

t
2n V

]n
, (1.3)

and its integral kernel as K(n)(t, x, y). The integral kernel K(t, x, y) of the semi-
group K(t) := e−tH is known and explicitly given (e.g. [3]) by

K(t, x, y) =
1√

π(et − e−t)
exp

[4xy − (et + e−t)(x2 + y2)
2(et − e−t)

]
; (1.4)

this fact is crucial in the process of this paper. The proof is made in an elementary
way with Taylor’s theorem, first obtaining an explicit expression of K(n)(t, x, y)
and then estimating its difference from K(t, x, y).

We give two theorems. The first theorem concerns the pointwise convergence
of the integral kernels of the exponential symmetric product formula.
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Theorem 1.1. There exist uniformly bounded sequences {R(n)(t, x, y)}∞n=1 and
{Q(n)(t, x, y)}∞n=1 of continuous functions in (0,∞)×R×R satisfing the following
conditions: it holds for every fixed T > 0 and for sufficiently large n that

K(n)(t, x, y)−K(t, x, y) = R(n)(t, x, y)n−2, (1.5)

R(n)(t, x, y) = R(t, x, y) + Q(n)(t, x, y)n−1, (1.6)

in (t, x, y) ∈ (0, T ]×R×R, where R(t, x, y) is a bounded continuous function in
(0,∞)×R×R given by

R(t, x, y) = K(t, x, y)
[ t3

12

(1
4

et + e−t

et − e−t
+

(et + e−t)xy − (x2 + y2)
(et − e−t)2

)

+
t2

16

(
1 +

4xy − (et + e−t)(x2 + y2)
et − e−t

)]
. (1.7)

If t > 0, R(t, x, y) can become positive and negative. R(t, x, y), Q(n)(t, x, y) and so
R(n)(t, x, y) satisfy

lim
t→0

sup
x,y

|R(t, x, y)| = lim
t→∞

sup
x,y

|R(t, x, y)| = 0, (1.8)

lim
t→0

sup
n

sup
x,y

|Q(n)(t, x, y)| = 0, (1.9)

lim
t→0

sup
n

sup
x,y

|R(n)(t, x, y)| = 0. (1.10)

In this theorem it is interesting that R(t, x, y) appearing in the main part of
the error term can be identified as (1.7). Note that it determines Q(n)(t, x, y) as
well as R(n)(t, x, y) through the relations (1.5) and (1.6).

Remark. As t → 0+, the integral kernel K(t, x, y) converges to δ(x − y) in the
sense of distributions in R2. The approximation K(n)(t, x, y) can cancel out well
the singularity of K(t, x, y) in the limit when t approaches zero, since the right-
hand side of (1.5) is uniformly bounded in (0, T ] × R × R and for sufficiently
large n, i.e. R(t, x, y) is uniformly bounded in (0,∞) × R × R, and Q(n)(t, x, y)
uniformly bounded in (0, T ]×R×R and for sufficiently large n, and satisfy (1.8)
and (1.9), respectively, although both K(n)(t, x, y) and K(t, x, y) are unbounded as
functions in R2 and t > 0. We should like to emphasize that this point is clarified
by the theorem. In this respect, Theorem 1.1 turns out to be an improvement of
our previous result in [9].

From Theorem 1.1 we can also show the second theorem on the convergence
in L2- operator norm with sharp error bounds.

Theorem 1.2. There exist nonnegative, bounded continuous functions C(t) and c(t)
in t ≥ 0, positive except t = 0 with C(0) = c(0) = 0, independent of n, such that,
for every fixed T > 0 and for sufficiently large n,

c(t)n−2 ≤ ‖[e− t
2n V e−

t
n H0e−

t
2n V ]n − e−tH‖ ≤ C(t)n−2, (1.11)
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in t ∈ [0, T ].

Of the two bounds in (1.11), the lower one and the upper with such t-
dependent C(t) are new. In [9] the upper bound was established, for more general
potentials growing at infinity, as a sharp upper error bound Cn−2 uniformly on
each compact t-interval inside the open half line (0,∞) with C being a positive
constant possibly depending on this interval. We shall show Theorem 1.2 by ex-
ploiting the integral kernels to be obtained in the proof of Theorem 1.1.

We note that the first results on the norm convergence were obtained by
Rogava [13] for a more restricted pair of selfadjoint operators A and B with error
bound O(n−1/2 log n), and by B. Helffer [4] for the Schrödinger operator H =
H0 + V (x) as above with ρ = 2, δ = 0 with error bound O(n−1). The latter result
was extended in [7] and [2] to the general ρ and δ. For some result on the form sum
of two selfadjoint operators we refer to [6], and for further extensive references on
related subjects to [5], [8] and [16].

The present paper is a slightly enlarged version of the results obtained by
the first author [1].

Section 2 is devoted to derivation of the expression of the integral kernel of
the product K(n)(t) through an recursion relation. In Section 3 we find R(t, x, y),
and prove the results described in Section 1. Section 4 briefly remarks another
derivation of R(t, x, y) by a sophisticated method of commutators as used in [9].

2. The integral kernel of K(n)(t)

Let t > 0. Since the semigroup e−tH0 in (1.3) has the integral kernel

e−tH0(x, y) = e
t
2∆(x, y) = (2πt)−

1
2 e−(x−y)2/2t, (2.1)

the integral kernel K(n)(t, x, y) of K(n) can be written as the following integral:

K(n)(t, x, y) (2.2)

=
(2πt

n

)−n
2

(n− 1) times︷ ︸︸ ︷∫

R

· · ·
∫

R

n∏

j=1

[
e−

t
4n x2

j e−
(xj−xj−1)2

2t/n e−
t

4n x2
j−1

]
dx1 · · · dxn−1

with x0 = y，xn = x. The (n − 1)-ple integral on the right of (2.2) is calculated
in the following lemma.



Exponential product formula 5

Lemma 2.1. The integral kernel of K(n) is given by

K(n)(t, x, y)

=
1√
π

( √
1 + t2

4n2

(
1 + t

n

√
1 + t2

4n2 + t2

2n2

)n

−
(
1− t

n

√
1 + t2

4n2 + t2

2n2

)n

)1/2

× exp

[
2
√

1 + t2

4n2

(
1 + t

n

√
1 + t2

4n2 + t2

2n2

)n

−
(
1− t

n

√
1 + t2

4n2 + t2

2n2

)n xy

]
(2.3)

× exp

{[
− t

4n
− n

2t

(
1−

(
1 + t

n

√
1 + t2

4n2 + t2

2n2

)n−1

−
(
1− t

n

√
1 + t2

4n2 + t2

2n2

)n−1

(
1 + t

n

√
1 + t2

4n2 + t2

2n2

)n

−
(
1− t

n

√
1 + t2

4n2 + t2

2n2

)n

)]
(x2 + y2)

}
.

Proof. For any integer k with 2 ≤ k ≤ n, put

K
(n)
k (t, x, y) (2.4)

=
(2πt

n

)− k
2

(k − 1) times︷ ︸︸ ︷∫

R

· · ·
∫

R

k∏

j=1

[
e−

t
4n x2

j e−
(xj−xj−1)2

2t/n e−
t

4n x2
j−1

]
dx1 · · · dxk−1,

with x0 = y，xk = x.

We are going to derive an explicit expression of K
(n)
k (t, x, y) by induction on k.

Put a = t
4n , b = n

2t . Though they satisfy b = 1
8a , we shall not use this relation for a

while. We use the formula for the Gaussian integral
∫
R

e−Ax2+Bxdx =
√

π
AeB2/4A

to perform calculation.

For k = 2, we have with x0 = y and x2 = x，

K
(n)
2 (t, x, y)

=
(2πt

n

)−1
∫ (

e−
t

4n x2
2e−

(x2−x1)2

2t/n e−
t

4n x2
1

)(
e−

t
4n x2

1e−
(x1−x0)2

2t/n e−
t

4n x2
0

)
dx1

=
(2πt

n

)−1
√

π

2(a + b)
exp

[
−

(
a + b− b2

2(a + b)

)
(x2

0 + x2
2)

]
exp

[ b2

a + b
x0x2

]
.
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If k = 3, we have with x0 = y and x3 = x，　

K
(n)
3 (t, x, y) =

(2πt

n

)−3/2
∫ ∫ 3∏

j=1

[
e−

t
4n x2

j e−
(xj−xj−1)2

2t/n e−
t

4n x2
j−1

]
dx1dx2

=
(2πt

n

)−3/2
√

π

2(a + b)

√
π

2(a + b)− b2

2(a+b)

× exp
[
−

(
a + b− b2

2(a + b)− b2

2(a+b)

)
x2

3

−
(
a + b− b2

2(a + b)
− ( b2

a+b )
2

4
(
2(a + b)− b2

2(a+b)

)
)
x2

0

]

× exp
[ b3

a+b

2(a + b)− b2

2(a+b)

x0x3

]
.

We note, in the expression for k = 3 above, that the coefficient of x2
3 coincides

with that of x2
0, because

b2

2(a + b)
+

( b2

a+b )
2

4
(
2(a + b)− b2

2(a+b)

) =
b2

2(a + b)− b2

2(a+b)

.

Now define the finite continued fractions Ak by the recursion relation

Ak = A2 − b2

Ak−1
, k ≥ 3, A2 = 2(a + b). (2.5)

Note that A3 = A2 − b2

A2
= 2(a + b) − b2

2(a+b) and A4 = A2 − b2

A3
. As a result, we

turn to have

K
(n)
2 (t, x, y) =

(2πt

n

)−1( π

A2

)1/2

exp
[
− (A2

2
− b2

A2

)
(x2 + y2)

]
exp

[2b2

A2
xy

]
,

K
(n)
3 (t, x, y) =

(2πt

n

)−3/2( π2

A2A3

)1/2

exp
[
− (A2

2
− b2

A3

)
(x2 + y2)

]
exp

[2b3xy

A2A3

]
.

Then we want to prove that for general k with 2 ≤ k ≤ n with x0 = y and xk = x，

K
(n)
k (t, x, y)

=
(2πt

n

)−k/2
∫
· · ·

∫ k∏

j=1

[
e−

t
4n x2

j e−
(xj−xj−1)2

2t/n e−
t

4n x2
j−1

]
dx1 · · · dxk−1

=
(2πt

n

)−k/2( πk−1

A2A3 · · ·Ak

)1/2

× exp
[(−A2

2
+

b2

Ak

)
(x2

k + x2
0)

]
exp

[ 2bk

A2A3 · · ·Ak
x0xk

]
. (2.6)

We have seen above that this is valid for k = 2 and also for k = 3.
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Now assuming the validity for k, we shall show the case k + 1. Then we have
by induction hypothesis for k with x0 = y and xk+1 = x,

K
(n)
k+1(t, x, y)

=
(2πt

n

)− k
2

∫

R

· · ·
∫

R

k∏

j=1

[
e−

t
4n x2

j e−
(xj−xj−1)2

2t/n e−
t

4n x2
j−1

]
dx1 · · · dxk−1

=
(2πt

n

)−(k+1)/2
∫

(e−ax2
k+1e−b(xk+1−xk)2e−ax2

k)
( πk−1

A2A3 · · ·Ak

)1/2

× exp
[
− (

A2

2
− b2

Ak
)(x2

k + x2
0)

]
exp

[ 2bk

A2A3 · · ·Ak
x0xk

]
dxk

=
(2πt

n

)−(k+1)/2( πk−1

A2A3 · · ·Ak

)1/2

×
∫

exp
[
−Ak+1x

2
k + (2bxk+1 +

2bk

A1 · · ·Ak
x0)xk

]
dxk

× exp
[
− A2

2
x2

k+1 − (
A2

2
− b2

Ak
)x2

0

]

=
(2πt

n

)−(k+1)/2( πk

A2A3 · · ·Ak+1

)1/2

exp
[ 2bk+1

A2A3 · · ·Ak+1
x0xk+1

]

× exp
[
− (

A2

2
− b2

Ak+1
)x2

k+1 − (
A2

2
− b2

Ak
− b2k

(A2A3 · · ·Ak)2Ak+1
)x2

0

]
.

Here we can see that the coefficients of x2
0 and x2

k+1 coincide. In fact, it holds that

b2

Ak
+

b2k

(A2A3 · · ·Ak)2Ak+1
=

b2

Ak+1
, n ≥ 3, (2.7)

where we recall to have put Ak = A2 − b2

Ak−1
, A2 = 2(a + b) in (2.5). To show it,

since the left-hand side of (2.7) is equal to

(A2 · · ·Ak−1)2AkAk+1b
2 + b2k

(A2A3 · · ·Ak)2Ak+1
=

b2

Ak+1

(A2 · · ·Ak−1)2AkAk+1 + b2(k−1)

(A2A3 · · ·Ak)2
.

we need to confirm that

(A2 · · ·Ak−1)2AkAk+1 + b2(k−1)

(A2A3 · · ·Ak)2
= 1, (2.8)

or
(A2 · · ·Ak−1)2AkAk+1 + b2(k−1) = (A2A3 · · ·Ak)2.

In view of the recursion relation, it is equivalent to

A2(A2 · · ·Ak−1)2Ak − (A2 · · ·Ak−1)2b2 + b2(k−1)

= A2(A2 · · ·Ak−1)2Ak − (A2 · · ·Ak−2)2Ak−1Akb2.
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In the same way, it is equivalent to

A2(A2 · · ·Ak−2)2Ak−1b
2 − (A2 · · ·Ak−3)2Ak−2Ak−1b

4 + b2(k−1)

= A2(A2 · · ·Ak−2)2Ak−1b
2 − (A2 · · ·Ak−2)2b4,

and again to

(A2 · · ·Ak−3)2b6 + b2(k−1) = (A2 · · ·Ak−4)2Ak−3Ak−2b
6,

and further again to

(A2 · · ·Ak−5)2Ak−4Ak−3b
8 + b2(k−1) = (A2 · · ·Ak−4)2b8.

Thus at last we reach its equivalent

(A2)2A3A4b
2(k−2) + b2(k−1) = (A2A3)2b2(k−3),

whence
(A2)2b2(k−2) − b2(k−1) = A2A3b

2(k−2).

The last equation holds, because A3 = A2− b2

A2
. Therefore we have proved (2.8) to

yield the expression of K
(n)
k+1(t, x, y), thus establishing the desired expression (2.6)

for any k ≤ n.

Finally, we determine An from their recursion relation (2.5). Let p and q be
the two solutions of

z2 − 2(a + b)z + b2 = 0.

We have
p = (a + b) +

√
a2 + 2ab, q = (a + b)−

√
a2 + 2ab,

so that p + q = 2(a + b), pq = b2. It follows that

An+1 − p =
2(a + b)An − b2 − pAn

An
=

qAn − b2

An

=
q(An − b2/q)

An
=

q(An − p)
An

,

and similarly,

An+1 − q =
p(An − q)

An
.

Therefore
An − p

An − q
=

q

p

An − p

An − q
=

(q

p

)n−2 A2 − p

A2 − q
.

Hence we obtain

An =
pn − qn

pn−1 − qn−1

=
1
2

(
t

2n + n
t +

√
t2

4n2 + 1
)n

−
(

t
2n + n

t −
√

t2

4n2 + 1
)n

(
t

2n + n
t +

√
t2

4n2 + 1
)n−1

−
(

t
2n + n

t −
√

t2

4n2 + 1
)n−1 .
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Substituting this An into K
(n)
k (t, x, y), we have

(2πt

n

)−k/2( πk−1

A2A3 · · ·Ak

)1/2

=

[
nk

2kπktk

πk−12k
√

1 + t2

4n2

(
t

2n + n
t +

√
t2

n2 + 1
)k

−
(

t
2n + n

t −
√

t2

4n2 + 1
)k

]1/2

=

[
1
π

√
1 + t2

4n2

(
1 + t2

2n2 + t
n

√
1 + t2

4n2

)k

−
(
1 + t2

2n2 − t
n

√
1 + t2

4n2

)k

]1/2

.

We have also

2bk

A2A3 · · ·Ak
= 2

( n

2t

)k 2k
√

1 + t2

4n2

(
t

2n + n
t +

√
t2

n2 + 1
)k

−
(

t
2n + n

t −
√

t2

4n2 + 1
)k

=
2
√

1 + t2

4n2

(
1 + t2

2n2 + t
n

√
1 + t2

4n2

)k

−
(
1 + t2

2n2 − t
n

√
1 + t2

4n2

)k
,

and

−A2

2
+

b2

Ak

= −(a + b) +
b2

Ak

= − t

4n
− n

2t
+ (

n

2t
)22

(
t

2n + n
t +

√
t2

4n2 + 1
)k−1

−
(

t
2n + n

t −
√

t2

4n2 + 1
)k−1

(
t

2n + n
t +

√
t2

4n2 + 1
)k

−
(

t
2n + n

t −
√

t2

4n2 + 1
)k

= − t

4n
− n

2t
+

n

2t

(
1 + t2

2n2 + t
n

√
1 + t2

4n2

)k−1

−
(
1 + t2

2n2 − t
n

√
1 + t2

4n2

)k−1

(
1 + t2

2n2 + t
n

√
1 + t2

4n2

)k

−
(
1 + t2

2n2 − t
n

√
1 + t2

4n2

)k

= − t

4n

− n

2t

(
1−

(
1 + t2

2n2 + t
n

√
1 + t2

4n2

)k−1

−
(
1 + t2

2n2 − t
n

√
1 + t2

4n2

)k−1

(
1 + t2

2n2 + t
n

√
1 + t2

4n2

)k

−
(
1 + t2

2n2 − t
n

√
1 + t2

4n2

)k

)
.



10 Yoshiki Azuma and Takashi Ichinose

Hence

K
(n)
k (t, x, y)

=
1√
π

( √
1 + t2

4n2

(
1 + t

n

√
1 + t2

4n2 + t2

2n2

)k

−
(
1− t

n

√
1 + t2

4n2 + t2

2n2

)k

)1/2

× exp

[
2
√

1 + t2

4n2

(
1 + t

n

√
1 + t2

4n2 + t2

2n2

)k

−
(
1− t

n

√
1 + t2

4n2 + t2

2n2

)k
xy

]

× exp

{[
− t

4n
− n

2t

(
1−

(
1 + t

n

√
1 + t2

4n2 + t2

2n2

)k−1

−
(
1− t

n

√
1 + t2

4n2 + t2

2n2

)k−1

(
1 + t

n

√
1 + t2

4n2 + t2

2n2

)k

−
(
1− t

n

√
1 + t2

4n2 + t2

2n2

)k

)]
(x2 + y2)

}
.

Putting k = n，so that xk = xn = x and x0 = y, we have obtained K(n)(t, x, y)
in (2.3) in Lemma 2.1. ¤

3. Proof of the theorems

We shall prove first Theorem 1.1 and next Theorem 1.2.

3.1. Proof of Theorem 1.1

Introduce

En(t) :=
(
1 +

t

n

√
1 +

t2

4n2
+

t2

2n2

)n

−
(
1− t

n

√
1 +

t2

4n2
+

t2

2n2

)n

, (3.1)

Fn(t) :=
(
1 +

t

n

√
1 +

t2

4n2
+

t2

2n2

)n−1

−
(
1− t

n

√
1 +

t2

4n2
+

t2

2n2

)n−1

. (3.2)

Then we may write K(n)(t, x, y) in (2.3) in Lemma 2.1 as the product of the
following three factors a(t, x, y), b(t, x, y) and c(t, x, y):

a(t, x, y) =
1√
π

[(
1 + t2

4n2

)1/2

En(t)

]1/2

, (3.3)

b(t, x, y) = exp
[
2
(
1 + t2

4n2

)1/2

En(t)
xy

]
, (3.4)

c(t, x, y) = exp
[
−

( t

4n
+

n

2t

(
1− Fn(t)

En(t)
))

(x2 + y2)
]
. (3.5)
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We want to estimate the difference between K(n)(t, x, y) and K(t, x, y). To
this end, put with R(t, x, y) in (1.7)

R(n)(t, x, y) = n2
(
K(n)(t, x, y)−K(t, x, y)

)
, (3.6)

Q(n)(t, x, y) = n(R(n)
(
t, x, y)−R(t, x, y)

)
. (3.7)

First we shall study the property of R(t, x, y), accepting its explicit expression
as in (1.7) in Proposition 3.1, and next derive this expression in the proof of
Proposition 3.2. It will turn out to be given through

1
2!

R(t, x, y) =
∂2

∂ε2
Kε(t, x, y)

∣∣∣
ε=0

,

where Kε(t, x, y) is defined through

Kε(t, x, y) := K(n)(t, x, y)

first by putting ε = 1/n and then by letting ε be an arbitrary positive number. We
can also see that Kε(t, x, y) makes sense for ε < 0. Defining Kε(t, x, y) = K(t, x, y)
for ε = 0, because limε→0 Kε(t, x, y) = K(t, x, y), we see further that Kε(t, x, y)
is real-analytic in ε ∈ R. Here note that the identity

1− τ

√
1 +

τ2

4
+

τ2

2
=

(
1 + τ

√
1 +

τ2

4
+

τ2

2

)−1

(3.8)

holds for τ real, and

lim
ε→0

[(
1 + tε

√
1 +

t2ε2

4
+

t2ε2

2

)1/ε

−
(
1− tε

√
1 +

t2ε2

4
+

t2ε2

2

)1/ε]
= et − e−t,

so that limn→∞En(t) = limn→∞ Fn(t) = et− e−t. Another derivation of R(t, x, y)
through the commutator method is given in Section 4.

Proposition 3.1. If t > 0, R(t, x, y) takes positive and negative values, and satisfies
|R(t, x, y)| ≤ C1(t) in (0,∞)×R×R, where C1(t) is a bounded continuous function
in t ≥ 0 such that limt→0+ C1(t) = limt→∞ C1(t) = 0. In particular, R(t, x, y)
satisfies (1.8).

Proof. We may rewrite the expression of R(t, x, y) in (1.7) as

R(t, x, y) = K(t, x, y)s(t, x, y), (3.9)
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with

s(t, x, y) :=
t3

12

(1
4

et + e−t

et − e−t
+

(et + e−t)xy − (x2 + y2)
(et − e−t)2

)

+
t2

16

(
1 +

4xy − (et + e−t)(x2 + y2)
et − e−t

)
(3.10)

=
t2

2

(1
8

+
t

24
et + e−t

et − e−t

)

+
4xy − (et + e−t)(x2 + y2)

2(et − e−t)
t2

(1
8

+
t

24
et + e−t

et − e−t

)
+

t3

48
(x2 + y2) .

(3.11)

In this section we use the second expression (3.11). Put

r(t, x, y) := −4xy − (et + e−t)(x2 + y2)
2(et − e−t)

, (3.12)

which is nonnegative for all x, y and every t > 0, so that K(t, x, y) = e−r(t,x,y)√
π(et−e−t)

.

Put also

q(t, x, y) := −4xy − (et + e−t)(x2 + y2)
2(et − e−t)

t2
(1

8
+

t

24
et + e−t

et − e−t

)
− t3

48
(x2 + y2)

= t2
[
r(t, x, y)

(1
8

+
t

24
et + e−t

et − e−t

)
− t

48
(x2 + y2)

]
, (3.13)

so that from (3.11)

s(t, x, y) =
t2

2

(1
8

+
t

24
et + e−t

et − e−t

)
− q(t, x, y) . (3.14)

The coefficients of x2 and y2 in q(t, x, y) in (3.13) are nonnegative, because
they are equal and given by

(et + e−t)t2
(

1
8 + t

24
et+e−t

et−e−t

)
− t3

24 (et − e−t)

2(et − e−t)
=

t2
(
3(e2t − e−2t) + 4t

)

48(et − e−t)2
.

Further, q(t, x, y) is nonnegative. To see it, note that for t > 0 and (x, y) 6= (0, 0),

q(t, x, y)
t2r(t, x, y)

=
1
8

+
t

24
et + e−t

et − e−t
+

t

24
et − e−t

4xy
x2+y2 − (et + e−t)

.

Since −2 ≤ 4xy
x2+y2 ≤ 2 for (x, y) 6= (0, 0), it follows that

1
8

+
t

24
et + e−t

et − e−t
− t

24
et − e−t

(et + e−t)− 2
≤ q(t, x, y)

t2r(t, x, y)

≤ 1
8

+
t

24
et + e−t

et − e−t
− t

24
et − e−t

(et + e−t) + 2
,
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which is equivalent to that

1
8
− t

12
1

et − e−t
≤ q(t, x, y)

t2r(t, x, y)
≤ 1

8
+

t

12
1

et − e−t
.

Then, since the first member of the above inequality is equal to 1
12 + (et−e−t)−2t

24(et−e−t) ≥
1
12 , and the last member bounded by 1

6 , we obtain

1
12
≤ q(t, x, y)

t2r(t, x, y)
≤ 1

6
. (3.15)

In particular, we have shown that q(t, x, y) is nonnegative, since r(t, x, y) is non-
negative. Thus, in view of (3.14), we see that if t > 0, s(t, x, y) takes positive and
negative values, and so does R(t, x, y).

Next, to see that R(t, x, y) is bounded in (0,∞)×R×R and satisfies (1.8),
we note that for fixed m ≥ 1 > α > 0,

tm

(et − e−t)α
≤ c(α,m)[tm−α ∧ 1], t > 0, (3.16)

tm
et + e−t

et − e−t
≤ e + e−1

e− e−1
[1 ∨ t]tm−1 ≤ e + e−1

e− e−1
[1 ∨ tm], t > 0, (3.17)

with a postive constant c(α, m) depending on α and m, where we write a ∧ b :=
min{a, b} and a ∨ b := max{a, b} for positive numbers a and b. Indeed, for (3.16)
we have used the fact that τae−τ ≤ (a/e)a for all τ > 0 and a > 0.

Then we have by (3.16) and (3.17)

|R(t, x, y)| ≤ e−r(t,x,y)

√
π(et − e−t)

t2

2

(1
8

+
t

24
et + e−t

et − e−t

)

+
1√

π(et − e−t)

(
e−r(t,x,y)r(t, x, y)

) q(t, x, y)
t2r(t, x, y)

t2

≤ 1√
π(et − e−t)

( 1
16

+
1
48

e + e−1

e− e−1
[1 ∨ t] +

1
6e

)
t2

=: C1(t). (3.18)

Then C1(t) is bounded in t > 0, because by (3.16), we have C1(t) ≤ C1
t2[1∨t]

(et−e−t)1/2 ,
with a positive constant C1 independent t. It also satisfies limt→0+ C1(t) = 0,
and so we may define C1(0) = 0. Here we have used (3.15). We can also see
limt→∞ C1(t) = 0. This shows that R(t, x, y) is bounded in (0,∞) ×R ×R, also
satisfying (1.8). This proves Proposition 3.1.

¤

Now we are going to estimate R(n)(t, x, y) when 0 < t ≤ n1/2. After proving
it, we shall show it yields Theorem 1.1. We note that 0 < t ≤ n1/2 if and only it
t(t/n) ≤ 1, which also implies t(t/n)j ≤ n−(j−1)/2 ≤ 1 for j ≥ 2.
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Proposition 3.2. Let 0 < t ≤ n1/2. Then Q(n)(t, x, y) and R(n)(t, x, y) in (3.6)/(3.7)
or (1.5)/(1.6) satisfy

|Q(n)(t, x, y)| ≤ C2(t), (3.19)

|R(n)(t, x, y)| ≤ C1(t) + C2(t), (3.20)

in (x, y) ∈ R×R for large n, where C1(t) is the same bounded continuous function
in Proposition 3.1, i.e. (3.18), and C2(t) another bounded continuous function in
t ≥ 0 such that limt→0+ C2(t) = 0.

Before proving this proposition, we provide two lemmas to get expansions of
En(t), Fn(t) in (3.1), (3.2) with respect to the powers of t/n with 0 < t ≤ n1/2.

Lemma 3.3. Let τ be real. Then

(i)

√
1 +

τ2

4
= 1 +

τ2

8
+ O(|τ |4) ;

(ii) 1 + τ

√
1 +

τ2

4
+

τ2

2
= 1 + τ +

τ2

2
+

τ3

8
+ O(|τ |5),

(
1 + τ

√
1 +

τ2

4
+

τ2

2

)−1

= 1− τ +
τ2

2
− τ3

8
+ O(|τ |5).

Proof. The assertion (i) and the first of (ii) follow from Taylor’s theorem

(1 + x)1/2 = 1 +
x

2
− x2

8
(1 + θx)−3/2, x > −1,

for some 0 < θ < 1, with x = 1
4τ2, and the second from (3.8). ¤

Lemma 3.4. Let 0 < |t| ≤ n1/2. Then

(i)
(
1 +

t

n

√
1 +

t2

4n2
+

t2

2n2

)n

= et
[
1− t

24
(t/n)2 + (t + t2)O

(|t/n|4)
]
;

(ii)
(
1 +

t

n

√
1 +

t2

4n2
+

t2

2n2

)n−1

= et
[
1− (t/n) +

(1
2
− t

24

)
(t/n)2 +

(
− 1

8
+

t

24

)
(t/n)3 + (t + t2)O

(|t/n|4)
]
.

Proof. (i) First note that by Taylor’s theorem we have for x > −1

log(1 + x) = x− x2

2
+

x3

3
− x4

4
+

x5

5
(1 + θx)−5

for some 0 < θ < 1, and next that if τ ≥ −1, then τ
√

1 + τ2

4 + τ2

2 ≥ − 2
1+
√

5
> − 2

3 ,

so that
(
1 + θ

(
τ
√

1 + τ2

4 + τ2

2

))−1

≤
(
1 − 2

1+
√

5

)−1

= 3+
√

5
2 . Then, for τ ≥ −1
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or, in particular, for |τ | ≤ 1, we obtain

log
(
1 + τ

√
1 +

τ2

4
+

τ2

2

)

=
4∑

j=1

(−1)j−1

j

(
τ +

τ2

2
+

τ3

8
+ O(|τ |5)

)j

+
1
5

(
τ +

τ2

2
+

τ3

8
+ O(|τ |5)

)5(
1 + θ

(
τ

√
1 +

τ2

4
+

τ2

2
))−5

,

so that log
(
1 + τ

√
1 + τ2

4 + τ2

2

)
= τ − τ3

24 + O(|τ |5). Hence

1
τ

log
(
1 + τ

√
1 +

τ2

4
+

τ2

2

)
= 1− τ2

24
+ O(|τ |4).

Then, by taking τ = t/n, we obtain for |t| ≤ n1/2 or |t||t/n| ≤ 1
(

1 +
t

n

√
1 +

t2

4n2
+

t2

2n2

)n

=
(
1 + τ

√
1 +

τ2

4
+

τ2

2

)n

= exp
[ t

τ
log(1 + τ

√
1 +

τ2

4
+

τ2

2
)
]

= exp
[
t
(
1− τ2

24
+ O(|τ |4))

]

= et exp
[
t
(− 1

24
(t/n)2 + O((t/n)4)

)]

= et
[
1− t

24
(t/n)2 + (|t|+ |t|2)O((t/n)4)

]
.

In the last equality above we note that since |t| ≤ n1/2, we have |t|∣∣ 1
24 (t/n)2 −

O(| t
n |4)

∣∣ = n−1/2O(1), which becomes less than 1 for n large.

(ii) In the same way as in (i) above with Lemma 3.3 (ii), we have
(

1 +
t

n

√
1 +

t2

4n2
+

t2

2n2

)n−1

=
(

1 +
t

n

√
1 +

t2

4n2
+

t2

2n2

)n(
1 +

t

n

√
1 +

t2

4n2
+

t2

2n2

)−1

= et
[
1− t

24
(t/n)2 + (|t|+ |t|2)O((t/n)4)

]

×
(
1− t

n
+

1
2
(t/n)2 − 1

8
(t/n)3 + O(|t/n|5)

)

= et
[
1− (t/n) +

(1
2
− t

24

)
(t/n)2 +

(
− 1

8
+

t

24

)
(t/n)3 + (|t|+ |t|2)O((t/n)4)

]
,

because for the coefficient of O((t/n)4) we have |t|+|t|2+|t/n|+|t||t/n| ≤ 2(|t|+|t|2)
when |t| ≤ n1/2. This proves the desired expansions. ¤
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Now we start the proof of Proposition 3.2.

Proof of Proposition 3.2. We need to seek, when 0 < t ≤ n1/2, expansions of
the factors a(t, x, y), b(t, x, y)and c(t, x, y) in (3.3), (3.4) and (3.5) of K(n)(t, x, y).
Since that 0 < t ≤ n1/2 implies that t(t/n)j ≤ n−(j−1)/2 ≤ 1, j ≥ 2, we see by
use of Lemma 3.4 (i) and (ii) that En(t) and Fn(t) in (3.1) and (3.2) have the
following expansions

En(t) = et − e−t − t

24
(et + e−t)(t/n)2 + (t + t2)(et + e−t)O((t/n)4))

= (et − e−t)
[
1− t

24
et + e−t

et − e−t
(t/n)2 + [1 ∨ t2]O((t/n)4)

]
, (3.21)

Fn(t) = et − e−t − (et + e−t)(t/n) +
(et − e−t

2
− t

et + e−t

24

)
(t/n)2

−t
(et + e−t

8
− t

et − e−t

24

)
(t/n)3 + (t + t2)(et + e−t)O((t/n)4)

= (et − e−t)
[
1− et + e−t

et − e−t
(t/n) +

(1
2
− t

24
et + e−t

et − e−t

)
(t/n)2

−t
(1

8
et + e−t

et − e−t
− t

24

)
(t/n)3 + [1 ∨ t2]O((t/n)4)

]
. (3.22)

Here note by (3.17) that (t + t2) et+e−t

et−e−t ≤ [1 ∨ t] + [1 ∨ t2] ≤ 2[1 ∨ t2].

By using these new expressions (3.21) and (3.22), we find expansions for
a(t, x, y), b(t, x, y) and c(t, x, y). As to a(t, x, y), we obtain with Lemma 3.3 (i)

a(t, x, y) =
1√
π

[(
1 + t2

4n2

)1/2

En(t)

]1/2

=
1√
π

[
1 + 1

8

(
t
n

)2 + O
((

t
n

)4)

(et − e−t)
[
1− t

24
et+e−t

et−e−t

(
t
n

)2 + [1 ∨ t2]O
((

t
n

)4)
]1/2

=
1√

π(et − e−t)

[
1 +

1
2

(1
8

+
t

24
et + e−t

et − e−t

)
(t/n)2 + [1 ∨ t2]O((t/n)4)

]
,

because the function
√

1+τ
1+σ is analytic in |τ | < 1 and |σ| < 1, and has an expansion

√
1 + τ

1 + σ
=

(
1 +

τ

2
− τ2

8
+

τ3

16
− · · ·

)(
1− σ

2
+

3σ2

8
− 5σ3

13
+ · · ·

)

= 1 +
τ

2
− σ

2
− 1

8
(τ2 − σ2)− τσ

4
+ · · · .

The last equality in the equation for a(t, x, y) above is due to that one can think
of the inverse function of En(t) in t > 0 for large n, because, on the right of
En(t) in (3.21), the function inside the blacket [· · · ] is invertible for large n, since
| − t

24
et+e−t

et−e−t (t/n)2 + [1 ∨ t2]O((t/n)4)| is less than 1 by (3.16) and (3.17) for
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0 < t ≤ n1/2, if n is large. The same note will apply to equations for b(t, x, y) and
c(t, x, y) which come below.

As to b(t, x, y), we have

b(t, x, y) = exp
[
2
(
1 + t2

4n2

)1/2

En(t)
xy

]

= exp

[
2xy

et − e−t

(
1 + 1

8

(
t
n

)2 + O(
(

t
n

)4)

1− t
24

et+e−t

et−e−t

(
t
n

)2 + [1 ∨ t2]O
((

t
n

)4)
)]

= exp
( 2xy

et − e−t

)
exp

[
2xy

et − e−t

((1
8

+
t

24
et + e−t

et − e−t

)
(t/n)2

+[1 ∨ t2]O
(
t/n)4

)]
.

As to c(t, x, y), first we observe with (3.21) and (3.22)

n

2t

(
1− Fn(t)

En(t)

)

=
et + e−t

2(et − e−t)
1− 1

2
et−e−t

et+e−t
t
n +

(
1
8 − t

24
et−e−t

et+e−t

)(
t
n

)2 + [1 ∨ t2]O
((

t
n

)3)

1− t
24

et+e−t

et−e−t

(
t
n

)2 + [1 ∨ t2]O
((

t
n

)4)

=
et + e−t

2(et − e−t)

[
1− 1

2
et − e−t

et + e−t
(t/n)

+
(1

8
+

t

24
et + e−t

et − e−t
− t

24
et − e−t

et + e−t

)
(t/n)2 + [1 ∨ t2]O((t/n)3)

]
.

Hence
t

4n
+

n

2t

(
1− Fn(t)

En(t)

)

=
et + e−t

2(et − e−t)

×
[
1 +

(1
8

+
t

24
et + e−t

et − e−t
− t

24
et − e−t

et + e−t

)
(t/n)2 + [1 ∨ t2]O((t/n)3)

]
.

so that

c(t, x, y)

= exp
(
− et + e−t

2(et − e−t)
(x2 + y2)

)

× exp

[
− et + e−t

2(et − e−t)

(1
8

+
t

24
et + e−t

et − e−t

)
(t/n)2(x2 + y2)

+
t

48
(t/n)2(x2 + y2)− [1 ∨ t2]O

(
(t/n)3

)
(x2 + y2)

]
.
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Therefore, from the expansions of a(t, x, y), b(t, x, y) and c(t, x, y) obtained
above with K(t, x, y) in (1.4), we get to the following expansion for K(n)(t, x, y):

K(n)(t, x, y) = a(t, x, y)b(t, x, y)c(t, x, y)

=
e−r(t,x,y)

√
π(et − e−t)

[
1 +

1
2

(1
8

+
t

24
et + e−t

et − e−t

)
(t/n)2 + [1 ∨ t2]O((t/n)4)

]

× exp

[
4xy − (et + e−t)(x2 + y2)

2(et − e−t)

((1
8

+
t

24
et + e−t

et − e−t

)
(t/n)2

+[1 ∨ t2]O((t/n)3)
)

+
t

48
(t/n)2(x2 + y2)

]

= K(t, x, y)e−q(t,x,y)/n2
exp

[
− r(t, x, y)[1 ∨ t2]O((t/n)3)

]

×
[
1 +

1
2

(1
8

+
t

24
et + e−t

et − e−t

)
(t/n)2 + [1 ∨ t2]O((t/n)4)

]
. (3.23)

Here in the last equality we have used (3.13). Then

R(n)(t, x, y) = n2
(
K(n)(t, x, y)−K(t, x, y)

)

= n2e−q(t,x,y)/n2
K(t, x, y)

[
e−r(t,x,y)[1∨t2]O((t/n)3) − 1

]

×
[
1 +

1
2

(1
8

+
t

24
et + e−t

et − e−t

)
(t/n)2 + [1 ∨ t2]O((t/n)4)

]

+n2K(t, x, y)
(
e−q(t,x,y)/n2 − 1

)

×
[
1 +

1
2

(1
8

+
t

24
et + e−t

et − e−t

)
(t/n)2 + [1 ∨ t2]O((t/n)4)

]

+n2K(t, x, y)
[1
2

(1
8

+
t

24
et + e−t

et − e−t

)
(t/n)2 + [1 ∨ t2]O((t/n)4)

]

=: R
(n)
1 (t, x, y) + R

(n)
2 (t, x, y) + R

(n)
3 (t, x, y). (3.24)

Recall we are under the condition 0 < t ≤ n1/2. For R
(n)
1 (t, x, y) we have

R
(n)
1 (t, x, y)

=
[
1 +

1
2

(1
8

+
t

24
et + e−t

et − e−t

)
(t/n)2 + [1 ∨ t2]O((t/n)4)

]

× n2e−q(t,x,y)/n2

[π(et − e−t)]1/2

∫ 1

0

d

dθ
e−r(t,x,y)(1+θ[1∨t2]O((t/n)3)))dθ

= O(n−1)e−q(t,x,y)/n2 [1 ∨ t2]t3

[π(et − e−t)]1/2

∫ 1

0

r(t, x, y)e−r(t,x,y)(1+θ[1∨t2]O((t/n)3)))dθ .

(3.25)

Here we have used (3.16) with t(t/n)2 ≤ n−1/2 in the second equality, and note
that [1∨ t2](t/n)4 ≤ [1∨ t2](t/n)3 ≤ n−1/2, so that we have |[1∨ t2]O((t/n)3)| < 1

2
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for large n, and hence

e−r(t,x,y)(1+θ[1∨t2]O((t/n)3)) ≤ e−r(t,x,y)/2.

It follows that for large n,

|R(n)
1 (t, x, y)| ≤ O(n−1)

[1 ∨ t2]t3

[π(et − e−t)]1/2
2[

r(t, x, y)
2

e−r(t,x,y)/2]

≤ 2
e

[1 ∨ t2]t3

[π(et − e−t)]1/2
O(n−1) , (3.26)

where we have used that τe−τ ≤ 1 for τ ≥ 0, and note that the coefficient of
O(n−1) is bounded in t > 0, by (3.16).

For one of the factors in R
(n)
2 (t, x, y), we have

e−q(t,x,y)/n2 − 1 = −q(t, x, y)n−2 +
q(t, x, y)2

2
O(n−4),

by Taylor’s theorem that e−x = 1− x + x2

2 e−θx 0 < θ < 1. Then

R
(n)
2 (t, x, y) + R

(n)
3 (t, x, y)

= K(t, x, y)[−q(t, x, y) +
q(t, x, y)2

2t2
O((t/n)2)]

×
[
1 +

1
2

(1
8

+
t

24
et + e−t

et − e−t

)
(t/n)2 + [1 ∨ t2]O((t/n)4)

]

+K(t, x, y)
[1
2

(1
8

+
t

24
et + e−t

et − e−t

)
t2 + [1 ∨ t2]t2O((t/n)2)

]

= K(t, x, y)
[ t2

2

(1
8

+
t

24
et + e−t

et − e−t

)
− q(t, x, y)

]

+K(t, x, y)
[
[1 ∨ t2]t2O((t/n)2)− 1

2

(1
8

+
t

24
et + e−t

et − e−t

)
q(t, x, y)(t/n)2

+
q(t, x, y)2

2t2
O((t/n)2)− [1 ∨ t2]q(t, x, y)O((t/n)4)

+
1
2

(1
8

+
t

24
et + e−t

et − e−t

)q(t, x, y)2

2t2
O((t/n)4) + [1 ∨ t2]

q(t, x, y)2

2t2
O((t/n)6)

]

=: R
(n)
23,1(t, x, y) + R

(n)
23,2(t, x, y) . (3.27)
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First we note that R
(n)
23,1(t, x, y), in fact is independent of n, is nothing but

R(t, x, y) in (1.7) or (3.9). Next for R
(n)
23,2(t, x, y), we have

R
(n)
23,2(t, x, y) =

1
[π(et − e−t)]1/2

{
e−r(t,x,y)[1 ∨ t2]t2O((t/n)2)

−[e−r(t,x,y)r(t, x, y)]
q(t, x, y)

t2r(t, x, y)
1
2

(1
8

+
t

24
et + e−t

et − e−t

)
t2(t/n)2

+[e−r(t,x,y)r(t, x, y)2]
( q(t, x, y)

t2r(t, x, y)

)2 t2

2
O((t/n)2)

−[e−r(t,x,y)r(t, x, y)]
q(t, x, y)

t2r(t, x, y)
[1 ∨ t2]t2O((t/n)4)

+[e−r(t,x,y)r(t, x, y)2]
( q(t, x, y)

t2r(t, x, y)

)2 t2

2
1
2

(1
8

+
t

24
et + e−t

et − e−t

)
O((t/n)4)

+[e−r(t,x,y)r(t, x, y)2]
( q(t, x, y)

t2r(t, x, y)

)2 t2

2
[1 ∨ t2]O((t/n)6)

}
. (3.28)

Then, by (3.15), (3.16) and by the fact that τae−τ ≤ (a/e)a for all τ > 0 and
a > 0, we have

|R(n)
23,2(t, x, y)|

≤ 1
[π(et − e−t)]1/2

{
[1 ∨ t2]t2O((t/n)2) +

1
6e

1
2

(1
8

+
t

24
et + e−t

et − e−t

)
t2(t/n)2

+
( 2

6e

)2 t2

2
O((t/n)2) +

1
6e

[1 ∨ t2]t2O((t/n)4)

+
( 2

6e

)2 t2

2
1
2

(1
8

+
t

24
et + e−t

et − e−t

)
O((t/n)4) +

( 2
6e

)2 [1 ∨ t2]t2

2
O((t/n)6)

}

≤ 1
[π(et − et)]1/2

{[
[1 ∨ t2]t4 +

1
6e

1
2

(1
8

+
t

24
et + e−t

et − e−t

)
t4 +

( 1
3e

)2 t2

2

]
O(n−2)

+
[ [1 ∨ t2]t6

6e
+

( 1
3e

)2 t6

2
1
2

(1
8

+
t

24
et + e−t

et − e−t

)]
O(n−4)

+
( 1

3e

)2 [1 ∨ t2]t8

2
O(n−6)

}
. (3.29)

Hence, taking into account the relation R(n)(t, x, y) = R(t, x, y)+Q(n)(t, x, y)n−1,
which we get from (3.6) and (3.7), we obtain

Q(n)(t, x, y) = n
(
R

(n)
1 (t, x, y) + R

(n)
23,2(t, x, y)

)
,



Exponential product formula 21

and

|Q(n)(t, x, y)| ≤ 1
[π(et − e−t)]1/2

{2
e
[1 ∨ t2]t3O(1)

+
[
[1 ∨ t2]t4 +

1
6e

1
2

(1
8

+
t

24
et + e−t

et − e−t

)
t4 +

( 1
3e

)2 t4

2

]
O(n−1)

+
[ [1 ∨ t2]t6

6e
+

( 1
3e

)2 t6

2
1
2

(1
8

+
t

24
et + e−t

et − e−t

)]
O(n−3)

+
( 1

3e

)2 [1 ∨ t2]t8

2
O(n−5)

}
. (3.30)

The right-hand side of (3.30) is independent of x, y, and bounded in t > 0 and
n ≥ 1, by (3.16), and tends to zero as t → 0+. Therefore we see there exists a
continuous function C2(t) bounded in t ≥ 0, independent of n, such that

|Q(n)(t, x, y)| ≤ C2(t), (x, y) ∈ R×R, (3.31)

with 0 < t ≤ n1/2. We may assume with (3.16) that this C2(t) is so taken as
to satisfy limt→0+ C2(t) = 0. Hence and from (3.18) we can also get the bound
for R(n)(t, x, y), as |R(n)(t, x, y)| ≤ |R(t, x, y)|+ |Q(n)(t, x, y)|n−1 ≤ C1(t) + C2(t),
namely, (3.20). Thus we have shown the desired assertion of Proposition 3.2, ending
the proof of Proposition 3.2.

We are now in a position to prove Theorem 1.1.

Completion of Proof of Theorem 1.1. Let T > 0. Then take a sufficiently large
positive integer N such that T ≤ N1/2. Then Proposition 3.2 holds for all n ≥ N
and for all t ∈ (0, T ]. This is nothing but the assertion of Theorem 1.1, completing
the proof of Theorem 1.1.

3.2. Proof of Theorem 1.2

We use the result in Theorem 1.1. Let T > 0. Denote by R(t) and Q(n)(t)
the bounded selfadjoint operators on L2(R) with integral kernel R(t, x, y) and
Q(n)(t, x, y), respectively, so that R(n)(t) = R(t) + Q(n)(t)n−1 is a selfadjoint op-
erator with integral kernel R(n)(t, x, y). We need to find a lower and upper bound
of the norm of R(n)(t).

First, for a upper bound of the norm of R(n)(t), note from (3.18) and (3.19)

‖R(t)‖ = sup
‖f‖=1

|(f, R(t)f)| ≤ sup
x,y

|R(t, x, y)| ≤ C1(t), (3.32)

‖Q(n)(t)‖ = sup
‖f‖=1

|(f, Q(n)(t)f)| ≤ sup
x,y

|Q(n)(t, x, y)| ≤ C2(t), (3.33)

where C1(t) and C2(t) are the bounded functions in Propositions 3.1 and 3.2. It
follows that for sufficiently large n and for all t ∈ (0, T ],

‖R(n)(t)‖ ≤ ‖R(t)‖+ ‖Q(n)(t)‖n−1 ≤ C1(t) + C2(t) =: C(t).
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This C(t) is a continuous function in t ≥ 0, uniformly bounded, with C(0) = 0
and positive in t > 0. Thus we have shown the upper bound of the relation (1.11).

Next, we seek a lower bound of the norm of R(n)(t). Since the quadatic
expression q(t, x, y) in (3.13) is nonnegative, s(t, x, y) in (3.11)/(3.14) vanishes for
(t, x, y) such that t2

2

(
1
8 + t

24
et+e−t

et−e−t

)
= q(t, x, y). For t ≥ 0, let St := {(x, y) ∈

R2 ; s(t, x, y) > 0}. If t = 0, it reduces to one point: S0 = {(0, 0)}. But if t > 0,
it is a bounded open set in R2 around the origin. It contains, for given δ(t) > 0,
which is to determined later, a disc Bt := {(x, y) ∈ R2 ; x2 + y2 ≤ δ(t)2} as well
as a square Qt := {(x, y) ∈ R2 ; |x| ≤ δ(t), |y| ≤ δ(t)}, so that Bt ⊆ Qt. Let
f0(x) := 1/

√
2δ(t), |x| ≤ δ(t) ; f0(x) = 0, |x| > δ(t). Then f0 belongs to L2(R)

and has norm ‖f0‖ = (
∫ |f0(x)|2dx)1/2 = 1. Note that R(t)f0 is nonnegative.

Therefore we have

‖R(t)‖ = sup
‖f‖=1

|(f,R(t)f)| ≥ (f0, R(t)f0).

where

(f0, R(t)f0) =
∫ ∫

Qt

R(t, x, y)dxdy =
∫ ∫

Qt

s(t, x, y)K(t, x, y)dxdy.

If (x, y) ∈ Qt, then x2 + y2 ≤ 2δ(t)2, so that by (3.15) with (3.12)

q(t, x, y) ≤ t2

6
r(t, x, y) =

t2

6
(et + e−t)(x2 + y2)− 4xy

et − e−t
≤ δ(t)2

t2

3
et + e−t + 2

et − e−t
.

Therefore, for each fixed t > 0, we choose δ(t) > 0 such that

δ(t)2
t2

3
et + e−t + 2

et − e−t
=

1
2

t2

2

(1
8

+
t

24
et + e−t

et − e−t

)
,

namely,

δ(t)2 =
3
4

1
8 (et − e−t) + t

24 (et + e−t)
et + e−t + 2

. (3.34)

It follows that δ(t) is of order O(t1/2). We have then for (x, y) ∈ Qt

s(t, x, y) =
t2

2

(1
8

+
t

24
et + e−t

et − e−t

)
− q(t, x, y) ≥ 1

2
t2

2

(1
8

+
t

24
et + e−t

et − e−t

)
.
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We use the polar coordinates to bound from below

(f0, R(t)f0) ≥ 1
2

t2

2

(1
8

+
t

24
et + e−t

et − e−t

) ∫ ∫

Bt

K(t, x, y)dxdy

=
t2

4

(
1
8 + t

24
et+e−t

et−e−t

)
√

π(et − e−t)

×
∫ δ(t)

0

∫ 2π

0

exp
[
− (et + e−t − 4 sin θ cos θ)ρ2

2(et − e−t)

]
ρdρdθ

≥
t2

4

(
1
8 + t

24
et+e−t

et−e−t

)
√

π(et − e−t)

∫ δ(t)

0

∫ 2π

0

exp
[
− (et + e−t + 2)ρ2

2(et − e−t)

]
ρdρdθ.

Calculating the integral on the right, we get with (3.34)

(f0, R(t)f0)

≥
√

π(et − e−t)
2

t2
(1

8
+

t

24
et + e−t

et − e−t

)1− exp[− 3
8

1
8 (et−e−t)+ t

24 (et+e−t)

et−e−t ]
et + e−t + 2

=: c1(t). (3.35)

Then c1(t) is a positive, continous function in t > 0, which we see with (3.16) is
uniformly bounded. Since limt→0+ c1(t) = 0, we may define c1(0) = 0. So we have
obtained a lower bound ‖R(t)‖ ≥ c1(t). Next, we get from (3.30)/(3.33)

(f0, R
(n)(t)f0) = (f0, R(t)f0) + (f0, Q

(n)(t)f0)n−1 ≥ (
c1(t)− C2(t)n−1

)
.

We can see that C2(t)/c1(t) is bounded in t > 0, because all the seven functions
on the right of (3.30)

[1∨t2]t3

(et−e−t)1/2 , [1∨t2]t4

(et−e−t)1/2 ,

(
1
8+ t

24
et+e−t

et−e−t

)
t4

(et−e−t)1/2 , t4

(et−e−t)1/2 ,

[1∨t2]t6

(et−e−t)1/2 ,

(
1
8+ t

24
et+e−t

et−e−t

)
t6

(et−e−t)1/2 , [1∨t2]t8

(et−e−t)1/2

divided by c1(t) are bounded there, by (3.16) and (3.17). It follows that c1(t) −
C2(t)n−1 is positive in t > 0 for n large. In fact, there exists a positive integer
N , independent of t, such that c1(t) − C2(t)n−1 ≥ 1

2c1(t) > 0 for all t > 0
and all n ≥ N . Take c(t) := 1

2c1(t) so that (f0, R
(n)(t)f0) ≥ c(t). The function

c(t) is nonnegative, continuous and uniformly bounded in t ≥ 0 with c(0) :=
limt→0+ c(t) = 0. We can also see limt→∞ c(t) = 0. This yields that ‖R(n)(t)‖ ≥
c(t) in t > 0 for n ≥ N , and hence, as we may think, for all n ≥ 1, showing the
lower bound of the desired relation (1.11). This completes the proof of Theorem
1.2.

4. Concluding Remark

The results of the present paper can be in fact obtained in a more sophisticated
way as in [9], by the commutator method. Among others, we shall briefly mention
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only how by this method the bounded operator R(t) with integral kernel K(t, x, y)
in (1.7), Theorem 1.1, comes out.

By the Baker–Campbell–Hausdorff formula (e.g. [11]), one has, when A and
B are bounded operators,

[e−tB/2ne−tA/ne−tB/2n]n − e−t(A+B)

= exp
(− t(A + B)− n−2 t2

24
[2A + B, [A,B]]−Op(n−3)

)

= e−t(A+B) − n−2 t2

24

∫ t

0

e−(t−s)(A+B)[2A + B, [A,B]]e−s(A+B)ds + Op(n−3),

(4.1)

where [A,B] := AB−BA, and Op(n−3) stands for an operator with norm of order
O(n−3). We cannot in general take unbounded operators as A and B. However, in
our case with A := H0 = − 1

2∆ and B := V = 1
2x2, though they are unbounded

operators in L2(R), we can show that (4.1) is still valid. We omit the proof. Instead,
we content ourselves to see that the second term in the last member of (4.1) makes
sense to yield R(t)n−2. Namely, putting

R̂(t) := − t2

24

∫ t

0

e−(t−s)H [2H0 + V, [H0, V ]]e−sHds, (4.2)

we have

Proposition 4.1. For the operators H0 = − 1
2∆ and V = 1

2x2 in L2(R), R̂(t) has
the same integral kernel R(t, x, y) in (1.7) as R(t), so that both the operators R̂(t)
and R(t) coincide with each other.

In the following proof, we shall refer to (1.7) related to the first one of the
two expressions of s(t, x, y) in (3.10)/(3.11) with which R(t, x, y) is rewritten as
(3.9).

Proof. We have

[H0, V ] = −1
2
(1 + 2x∂x)

[H0, [H0, V ]] = ∂2
x = −2H0, [V, [H0, V ]] = x2 = 2V,

so that

[2H0 + V, [H0, V ]] = −4H0 + 2V = −4H + 6V.

Put C := 1
2 (p · x + x · p) with p = −i∂x. Then since H = H0 + V = (p2 + x2)/2,

we have i[H,C] = [(p2 + x2)/2, iC] = (p2 − x2), so that

1
2
x2 =

1
4
(
(p2 + x2)− (p2 − x2)

)
=

1
4
(2H − i[H, C]).
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Then
∫ t

0

e−(t−s)HV e−sHds =
∫ t

0

e−(t−s)H(x2/2)e−sHds

=
1
4

∫ t

0

e−(t−s)H(2H − i[H, C])e−sHds

=
t

2
He−tH − i

4

∫ t

0

d

ds
[e−(t−s)HCe−sH ]ds

=
t

2
He−tH − 1

4
(e−tH(iC)− (iC)e−tH).

It follows that

R̂(t) =
t2

24

∫ t

0

e−(t−s)H(4H − 6V )e−sHds

= −t2
[
(− 4

24
+

3
24

)tHe−tH +
1
16

(e−tH(iC)− (iC)e−tH)
]

= t2
[ 1
24

tHe−tH − 1
16

(e−tH(iC)− (iC)e−tH)
]
. (4.3)

Then, calculating both −He−tH = d
dte

−tH = d
dtK(t) and

e−tH(iC)− (iC)e−tH =
1
2
[−y(∂ye−tH)− ∂y(ye−tH)− x(∂xe−tH)− ∂x(xe−tH)]

= −e−tH − y(∂ye−tH)− x(∂xe−tH)

= −
[
1 +

4xy − (et + e−t)(x2 + y2)
et − e−t

]
e−tH

on the right of (4.3), we get the first and the second term on the right-hand side
of (1.7).
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