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Minimal S3 invariant Higgs potential with real softS3 breaking masses is investigated. It is required that
without having a problem with triviality, all physical Higgs bosons, except one neutral one, become heavy
*10 TeV in order to sufficiently suppress flavor-changing neutral currents. There exist three nonequivalent
soft mass terms that can be characterized according to their discrete symmetries, and the one that breaksS3

completely. TheS28 invariant vacuum expectation values~VEVs! of the Higgs fields are the most economic
VEVs in the sense that the freedom of VEVs can be completely absorbed into the Yukawa couplings so that it
is possible to derive, without referring to the details of the VEVs, the most general form for the fermion mass
matrices in minimalS3 extension of the standard model. We find that except for the completely broken case of
the soft terms, theS28 invariant VEVs are unique VEVs that satisfy the requirement of heavy Higgs bosons. It
is found that they also correspond to a local minimum in the completely broken case.
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I. INTRODUCTION

A non-Abelian flavor symmetry is certainly a powerf
tool to understand flavor physics. In the case of the stand
model ~SM!, where only one HiggsSU(2)L doublet is
present, any non-Abelian flavor symmetry has to be exp
itly broken to describe experimental data. However, if t
Higgs sector is extended, and Higgs fields belong to a n
trivial representation of a flavor group@1,2#, phenomenologi-
cally viable possibilities may arise. The smallest non-Abel
discrete group isS3.1 It is a permutation group of three ob
jects, and offers a possible explanation why there are th
generations of the quarks and leptons@8,9#. An S3 invariant
Yukawa sector of the SM has exactly five independent c
plings @8,9#:

1: LaRaHa1LbRbHb1LcRcHc ,

2: La~Rb1Rc!Ha1Lb~Ra1Rc!Hb1Lc~Ra1Rb!Hc ,

3: ~Lb1Lc!RaHa1~La1Lc!RbHb1~La1Lb!RcHc ,

4: ~LbRb1LcRc!Ha1~LaRa1LcRc!Hb

1~LaRa1LbRb!Hc ,

5: ~LbRc1LcRb!Ha1~LaRc1LcRa!Hb

1~LaRb1LbRa!Hc , ~1!

1Flavor symmetries based on a permutation symmetry have b
considered by many authors in the past. One of the first paper
permutation symmetries are@1–3,5,6#. See@7# for a review. Phe-
nomenologically viable models based on non-Abelian discrete
vor symmetriesS3 ,D4 and A4 and also on a product of Abelia
discrete symmetries have been recently constructed in@8–12,14–
18# and @19,20#, respectively.~See also@21–25#.! However, it is
difficult to understand bilarge mixing of neutrinos in terms of Ab
lian discrete symmetries alone@13#.
1550-7998/2004/70~3!/036007~10!/$22.50 70 0360
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whereLa , Ra , andHa correspond to three left-handed le
tons, right-handed leptons and Higgs bosons, which are
ject to permutations. The three dimensional representatio3
of S3 is not an irreducible representation;3 can be decom-
posed into1 and2 as

1: HS5
1

A3
~Ha1Hb1Hc!, ~2!

2: ~H1 ,H2!5S 1

A2
~Ha2Hb!,

1

A6
~Ha1Hb22Hc!D ,

~3!

and similarly forL ’s and R’s. In terms of the fields in the
irreducible basis, the five independent Yukawa couplings
@8,9#:

LiRiHS , f i jkLiRjHk , LSRSHS , LSRiHi , LiRSHi ,
~4!

wherei , j ,k run from 1 to 2, and

f 1125 f 1215 f 21152 f 22251. ~5!

It has been found in@8,9# that these Yukawa couplings ar
sufficient to reproduce the masses of the quarks and t
mixing, and that they are not only consistent with the kno
observations in the leptonic sector, but also can make t
able predictions in the neutrino sector if one assumes
additional discrete symmetry in this sector. In deriving t
fermion mass matrices, it has been assumed in@8,9# that the
vacuum expectation values~VEVs! of the Higgs fields areS28
invariant, i.e.,

^HS&Þ0, ^H1&5^H2&Þ0. ~6!
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By theS28 invariance we mean an invariance under the int
change ofH1 andH2, i.e.

H1↔H2 . ~7!

Note that this permutation symmetry is not a subgroup of
original S3. Although the Yukawa couplings~4! do not re-
spect this symmetry, each term in theS3 invariant Higgs
potential @given in ~9!#, except for one term, respects th
discrete symmetry. Moreover, as we can see from~4!, theS28
invariant VEVs~6! are the most economic VEVs in the sen
that the freedom of VEVs can be completely absorbed i
the Yukawa couplings so that we can derive the most gen
form for the fermion mass matrices

M5S m11m2 m2 m5

m2 m12m2 m5

m4 m4 m3

D ~8!

without referring to the details of VEVs. In other words,
^H1&Þ^H2&, the mass matrices would have one more in
pendent parameter that should be determined in the H
sector.

In the present paper we investigate how different theS28
invariant vacuum is under the requirement that except
one neutral physical Higgs boson, all the physical Hig
bosons can become heavy*10 TeV without having a prob-
lem with triviality @26#. This bound results in order to sup
press three-level flavor-changing neutral currents~FCNCs!
that contribute, for instance, to the mass differenceDmK of
K0 andK̄0 in S3 invariant extension of the SM@27,28#. ~See
also Refs.@3# and @4#.! The investigations are presented
Secs. III and IV, and the conclusions are summarized in
last section. In Sec. V we discuss the Pakvasa-Sugaw
vacuum@1#, and a supersymmetric case is treated in Sec.

II. S3 INVARIANT HIGGS POTENTIAL AND SOFT S3

BREAKING

A. S3 invariant Higgs potential and its problem

The most general,S3 invariant, renormalizable potential i
given by @1#

VH5V2H1V4H , ~9!

V2H52m1
2~H1

†H11H2
†H2!2m3

2HS
†HS ,

V4H51l1~H1
†H11H2

†H2!21l2~H1
†H22H2

†H1!2

1l3@~H1
†H21H2

†H1!21~H1
†H12H2

†H2!2#

1@l4f i jk~HS
†Hi !~H j

†Hk!1H.c.#1l5~HS
†HS!~H1

†H1

1H2
†H2!1l6$~HS

†H1!~H1
†HS!1~HS

†H2!~H2
†HS!%

1$l7@~HS
†H1!~HS

†H1!1~HS
†H2!~HS

†H2!#1H.c.%

1l8~HS
†HS!2, ~10!
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wherel4 andl7 can be complex.2 We first redefineHi as

H65
1

A2
~H16H2!, ~11!

and write theSU(2)L Higgs doublets in components:

H65S h61 ix6

1

A2
~h6

0 1 ix6
0 !D , HS5S hS1 ixS

1

A2
~hS

01 ixS
0!D .

~12!

The down components of the Higgs doublets have zero e
tric charge, and therefore, we assume that only the do
components can acquire a VEV. Further, because ofU(1)Y
gauge invariance, it is always possible to make a phase
tation for HS so that only the real parthS

0 can get VEV. We
denote the VEVs as follows:

^h6
0 &5v6 , ^hS

0&5vS , ^x6&5c6 , ~13!

which should satisfy the constraint

~v1
2 1v2

2 1vS
21c1

2 1c2
2 !1/25v.246 GeV. ~14!

In order to reproduce realistic fermion masses and their m
ings @8#, we also require that

vSÞ0, and at least one ofv6 and c6Þ0 ~15!

is satisfied, and do not allow a large hierarchy among
nonvanishing VEVs, unless it is noticed.~In Secs. II and III,
however, we allow such hierarchy.!

There are five minimization conditions:

052vSm3
21]V4H /]hS

0 , ~16!

052v1m1
21]V4H /]h1

0 , ~17!

052v2m1
21]V4H /]h2

0 , ~18!

052c1m1
21]V4H /]x1

0 , ~19!

052c2m1
21]V4H /]x2

0 . ~20!

We regard VEVs as independent parameters and expres
parameters of the potential~9!, especially the mass param
etersm1

2 and m3
2, in terms of the VEVs. To make all the

physical Higgs bosons except one neutral Higgs boson w
out having large values of the Higgs quartic couplingsl ’s,
we have to have either2m3

2 ,2m1
2@v2 or 2m1

2@v2, where
v is defined in~14!. For the first case, none of the VEVs ca
be O(v) because the derivative terms, i.e.,]V4H /]h1

0 etc.,
are ofO(VEV3). Therefore, this case cannot satisfy the co

2The S3 invariant potential has been studied in@1,21#, for in-
stance. Similar potentials with non-Abelian discrete symmetr
have been also studied in@2,3,14,29#.
7-2
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straint~14!. For the second case,m3 andvS can beO(v), but
none ofv1 ,v2 ,c1 ,c2 can beO(v). That is, the hierarchy
uv1 /vSu,uv2 /vSu,uc1 /vSu,uc2 /vSu!1 has to be satisfied
This hierarchy is consistent with the minimization conditio
~17!–~20!, only if at least one of the derivative terms, i.e
]V4H /]h1

0 etc., contains at least a term proportional tovS
3 .

However, this is not the case, as we can see from the po
tial V4H ~10!. Moreover,~15! does not allowv15v25c1

5c250.
It is thus clear, if the two conditions~14! and ~15! are

satisfied, thatm1
2 ,m3

2;O(VEV2), which means that all the
masses of the physical Higgs bosons are ofO(VEV). That
is, to have a large Higgs mass, the value of certain Hi
couplingsl ’s have to be large. Then we run into the proble
with triviality; the Higgs mass cannot be larger than the c
off. As we see from~9!, the model has many Higgs cou
plings, so that the known triviality bound on the Higgs ma
;700 GeV @26#, cannot be directly applied. But we ma
assume that the bound for the present case does not d
very much from that of the SM. However, this upper bou
is too low to suppress three-level flavor changing neu
currents~FCNCs! that contribute, for instance, to the ma
differenceDmK of K0 and K̄0; certain Higgs masses inS3
invariant extension of the SM have to be larger th
;O(10) TeV @3,27,28#. Therefore, in a phenomenological
viable S3 extension of the SM,S3 symmetry should be bro
ken, unless there is some cancellation mechanism of FCN

B. Soft S3 breaking terms and their characterization

As we have seen above, we have to modify the Hig
potential ~9! to make it possible that the Higgs masses c
become lager than 10 TeV. How should we breakS3? We
would like to maintain the consistency and predictions ofS3
in the Yukawa sector, while simultaneously satisfying t
experimental constraints from the FCNC phenomena. Th
fore, we breakS3 as softly as possible. The softest operat
in the case at hand are those of dimension two; that is, m
terms. There are four soft-breaking mass terms

VSB52m2
2~H1

† H12H2
† H2!2A2~m4

2HS
†H11H.c.!

2~m5
2H1

† H21H.c.!2A2~m6
2HS

†H21H.c.!. ~21!

m4
2 ,m5

2, andm6
2 can be complex parameters.3 However, we

assume that they are real parameters in following discuss
except in Sec. V. We would like to characterize these f
mass terms according to discrete symmetries:

R:HS→2HS , ~22!

S28 :H2→2H2 , ~23!

S29 :H1→2H1 , ~24!

3The soft mass terms~21! may be generated from aS3 invariant
Higgs potential by introducing certainS3 singlet Higgs fields@4#.
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R3S28 :HS→2HS and H2→2H2 , ~25!

R3S29 :HS→2HS and H1→2H1 , ~26!

S283S29 :H2→2H2 and H1→2H1 , ~27!

whereS28 andS29 are not a subgroup of the originalS3. Ac-
cordingly, we characterize the soft mass terms~21! as

R:m45m650, ~28!

S28 :m55m650, ~29!

S29 :m45m550, ~30!

R3S28 :m45m55m650, ~31!

R3S29 :m45m55m650, ~32!

S283S29:m45m55m650. ~33!

Actually, there are only four nonequivalent soft-breaki
mass terms, including one without any discrete symme
This is becauseS28 and S29 are not independent: The Higg
potential~9! and the soft terms~21! are invariant under the
interchange ofH1 andH2 if one appropriately redefines th
coupling constants and mass parameters. In the next se
we will discuss the three cases, i.e.,R,S28 andR3S28 invari-
ant cases, and in Sec. IV we will treat the completely brok
case, in which all the soft mass terms~21! are present. Each
possibility is renormalizable because all the other inter
tions areS3 invariant and cannot induce infiniteS3 violating
breaking terms~21!. In principle, m4

2 ,m5
2, and m6 can be

complex. As announced, however, we assume that they
real, except for Sec. V. This is consistent with renormal
ability from the same reason above.

Before we go to the next sections, it may be worthwhile
write down explicitly thel4 and l7 terms of the potential
V4H ~10!:

2A2Vl4H5@Re~l4!xS
02Im~l4!hS

0#@~x1
0 !313~x1

0 !2x2
0

23x1
0 ~x2

0 !22~x2
0 !31x1

0 ~h1
0 !21x2

0 ~h1
0 !2

12x1
0 h1

0 h2
0 22x2

0 h1
0 h2

0 2x1
0 ~h2

0 !2

2x2
0 ~h2

0 !2#1@Re~l4!hS
01Im~l4!xS

0#

3@~x1
0 !2h1

0 2~x2
0 !2h1

0 12x1
0 x2

0 h1
0

22x1
0 x2

0 h2
0 1~h1

0 !32~h2
0 !31~x1

0 !2h2
0

2~x2
0 !2h2

0 13~h1
0 !2h2

0 23h1
0 ~h2

0 !2#, ~34!
7-3
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Vl7H5
Re~l7!

2
$@~x1

0 !21~x2
0 !22~h1

0 !22~h2
0 !2#

3@~xS
0!22~hS

0!2#14@x1
0 h1

0 1x2
0 h2

0 #xS
0hS

0%

1Im~l7!$~x1
0 h1

0 1x2
0 h2

0 !@~xS
0!22~hS

0!2#

2@~x1
0 !21~x2

0 !22~h1
0 !22~h2

0 !2#xS
0hS

0%, ~35!

where only those terms containing the neutral compone
are written above. The rest of the terms inV4H have the form

~hS
0!2n1~h1

0 !2n2~h2
0 !2n3~xS

0!2n4~x1
0 !2n5~x2

0 !2n6

with

(
i 51

6

ni52 and ni50,1,2. ~36!

III. MINIMIZATION CONDITIONS AND HIGGS MASSES

Below we will analyze the total potentialVT5VH1VSB
for the three nonequivalent cases~28!, ~29!, and ~31!. We
consider only phenomenologically viable cases~15!. But we
do allow, if necessary, a large hierarchy among the nonv
ishing VEVs. In all the cases,l450 follows from the dis-
crete symmetry in question.

R3S28 (m45m55m650;l450): The five minimization
conditions in this case are given by

052vSm3
21]V4H /]hS

0 , ~37!

052v1~m1
21m2

2!1]V4H /]h1
0 , ~38!

052v2~m1
22m2

2!1]V4H /]h2
0 , ~39!

052c1~m1
21m2

2!1]V4H /]x1
0 , ~40!

052c2~m1
22m2

2!1]V4H /]x2
0 , ~41!

where the second derivative terms, i.e.,]V4H /]h0 and
]V4H /]x0, are;O(VEV3). We first observe that, becaus
of the absence ofl4, the condition ~37! requires m3

;O(VEV). If um1
26m2

2u@v2 should be satisfied, then non
of v1 ,v2 ,c1 ,c2 can beO(v). But this is not consisten
with ~38!–~41! because of the absence ofvS

3 terms in the
derivative terms of~38!–~41!. Therefore, taking into accoun
the condition~15!, at least one ofv1 ,v2 ,c1 ,c2 has to be
O(v). Assume thatv1;O(v), which means thatm1

25

2m2
21O(VEV2). Consequently, the total Higgs potential

this case can be written as

VT522m1
2H2

† H21•••, ~42!

where the terms indicated by•••are those that are propo
tional to VEVn (n51, . . . ,4). Therefore, onlyH2 can ob-
tain a large mass, if22m1

2 is positive and large. So, this cas
does not satisfy the phenomenological requirement tha
the physical Higgs bosons, except one, can be made h
without running into the problem with triviality.
03600
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One can perform similar analyses for other cases suc
c2;0(v). @vSÞ0 is always assumed.# As before, one finds
that only oneSU(2)L doublet can become heavy. So, the s
masses with the discrete symmetryR3S28 cannot be used for
a phenomenologically viable model.

R (m45m650;l450): The five minimization conditions
in this case are given by

052vSm3
21]V4H /]hS

0 ~43!

052v1~m1
21m2

2!2v2m5
21]V4H /]h1

0 , ~44!

052v1m5
22v2~m1

22m2
2!1]V4H /]h2

0 , ~45!

052c1~m1
21m2

2!2c2m5
21]V4H /]x1

0 , ~46!

052c1m5
22c2~m1

22m2
2!1]V4H /]x2

0 . ~47!

Again, because of~43!, m3;O(VEV). um5u has to be large,
otherwise the situation is the same as in the previous c
Equations~44! and ~45! have a nontrivial solution

m1
252

m5
2~v1

2 1v2
2 !1O~VEV4!

2v1v2
,

m2
25

m5
2~v1

2 2v2
2 !1O~VEV4!

2v1v2
, ~48!

if v1Þ0,v2Þ0. Then the total potential becomes

VT5mH
2 HH

† HH1•••, ~49!

where, as before, the terms indicated by••• are those that
are proportional to VEVn (n51, . . . ,4), and

HH5
v2H12v1H2

~v1
2 1v2

2 !1/2
, mH

2 5
v1

2 1v2
2

v1v2
m5

2 . ~50!

Therefore, onlyHH can become heavy.
If v250, Eq. ~45! requiresuv1 /vu!1 becauseum5u@v

has to be satisfied. To satisfy Eq.~45!, on one hand, at leas
one ofc1 , andc2 has to beO(v) because of the absence
vS

3 terms in the derivative term. On the other hand, we obt
Eq. ~48! with v6→c6 . @c1;O(VEV),c250 and c1

50,c25O(VEV) cannot satisfy~46! and ~47!.#
The casev150 is equivalent to the casev250. If v1

5v250, the situation does not change. From these con
erations, we conclude that the case at hand does not sa
the phenomenological requirement.

S28 (m55m650;l450): The five minimization condi-
tions in this case are given by

052vSm3
22A2v1m4

21]V4H /]hS
0 , ~51!

052v1~m1
21m2

2!2A2vSm4
21]V4H /]h1

0 , ~52!

052v2~m1
22m2

2!1]V4H /]h2
0 , ~53!
7-4
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052c1~m1
21m2

2!1]V4H /]x1
0 , ~54!

052c2~m1
22m2

2!1]V4H /]x2
0 . ~55!

Note that the derivative terms in~53!–~55! contain at least of
one ofv2 ,c1 , andc2 . Therefore, large values form1 and
m2 can be consistent with~53!–~55!, only if ~i! v25c1

5c250 and ~ii ! m1
25m2

21O(VEV2) or ~iii ! m1
252m2

2

1O(VEV2). Keeping this in mind, we next solve~51! and
~52! to obtain

m3
25

v1
2 ~m1

21m2
2!1O~VEV4!

vS
2

,

m4
252

v1~m1
21m2

2!1O~VEV3!

A2vS

. ~56!

Inserting~56! into the total Higgs potentialVT , we obtain

VT52~m1
22m2

2!H2
† H22

m1
21m2

2

2vS
2 @~vSH1

† 2v1HS
†!

3~vSH12v1HS!1H.c.#1•••. ~57!

We see from~57! that case~ii ! can be ruled out, because
this caseH2 cannot obtain a large mass. We can also
from ~57! that case~iii ! allows large values of the Higg
masses ifuv1 /vSu*40. However,~53! and ~55! require that
uv2 /vu,uc2 /vu!1. Note that the derivative terms of~53!
and ~55! contain at least one ofv2 ,c2 , which implies that
v25c250 to satisfy~53! and ~55!. c1 is nonvanishing in
case~iii !. For case~i! we obtain the same form of the leadin
potentialVT , but no restriction on the ratiov1 /vS . In terms
of VEVs, we havev25c15c250 for case~i!, and v2

5c250 for case~iii !. These two types of VEVs areS28
invariant VEVs ~6!. Both types of VEVs give rise to the
general form of the fermion mass matrix~8!.

Below we would like to consider only the case~i! (v2

5c15c250), and give the mass matrixmh
2 of the neutral

scalar Higgs bosons

h2
0 ,hL

05singh1
0 1cosghS

0 ,hH
0 5cosgh1

0 2singhS
0 ,

~58!

and the mass matrixmx
2 the neutral pseudoscalar Higg

bosons

x2
0 , xL

05singx1
0 1cosgxS

0 ,xH
0 5cosgx1

0 2singxS
0 ,
~59!

are, respectively, given by

mh
25S mh

2
0

2
0 0

0 mh22
2 mh23

2

0 mh23
2 mh33

2
D , mx

25S mx
2
0

2
0 0

0 0 0

0 0 mx
H
0

2
D ,

~60!
03600
e

where

mh
2
0

2
52m2

21A2 cotgm4
2.2~m1

22m2
2!, ~61!

mh22
2 5v2F2~l11l3!sin4g

1
1

2
~l51l612l7!sin22g12l8cos4gG , ~62!

mh23
2 5

v2

2
sin 2g@~l11l3!~12cos 2g!

1~l51l612l7!cos 2g22l8cos2g#, ~63!

mh33
2 52A2m4

2/sin 2g

1
v2

2
~l11l32l52l622l71l8!sin22g, ~64!

mx
2
0

2
52m2

2A21m4
2cotg22~l21l3!v1

2 22l7vS
2 ,

~65!

mx
H
0

2
52A2m4

2/sin 2g22l7v2, ~66!

and we have introduced@v5(v1
2 1vS

2)1/2#

tang5
v1

vS
. ~67!

In ~61!–~65!, we have taken into account the higher ord
terms of~57! with l45Im(l7)50. (l450 follows from the
S28 symmetry!: If l4 and Im(l7) do not vanish, there is no
local minimum for case~i!. As we can see from the mas
matrices~60! with ~61!–~65!, the pseudoscalar boson~60!,
xL , is the would-be Goldstone boson, and that except forhL

0

all the physical Higgs bosons can become heavy with
large Higgs couplingsl ’s. We also find from~58! and ~67!
that onlyhL

0 acquires VEV. Since onlyhL
0 acquires VEV, its

coupling to the fermions is flavor diagonal, while the oth
physical neutral Higgs bosons have FCNC couplings. Ho
ever, hL

0 still mixes with hH
0 because of the nonvanishin

entry mh23
2 . Therefore, we have to fine tune so thatmh23

2

vanishes.~Of course, the mixing is suppressed byv2/m4
2

;631024 for m4;10 TeV.! In this limit, mh33 andmh22 are
the masses ofhH

0 and the lightest HiggshL
0 , respectively.

IV. SOFT BREAKING WITHOUT SYMMETRY

Here we would like to investigate the full potentialVT
5VH1VSB without any assumption on Abelian discre
symmetries. The reason is thatS28 is not a symmetry of the
theory; it can be a symmetry only in the Higgs potential. S
radiative corrections can induce finite non-S28-invariant terms
in the Higgs potential, for instance. Here we assume tha
the soft masses~21! are present, and that they are still re
We, however, do not allow an unnatural large hierarchy
the VEVs, in contrast to the previous sections. There
7-5



he

o
nt
a

-

h
s

if

t

t

in

chy

.

KUBO, OKADA, AND SAKAMAKI PHYSICAL REVIEW D 70, 036007 ~2004!
exactly nine nonequivalent possibilities that satisfy the p
nomenological requirement~15!:

A1: v25c15c250; A2 :v15v25c250; ~68!

B1:c 15c250; B2 :v25c250; B3 :v25c150;

B4 : v15v250; ~69!

C1: c250; C2 :v250; ~70!

D: none of them50. ~71!

It will turn out that among these nine possibilities only tw
cases,A1 and B1, satisfy the phenomenological constrai
that all the Higgs bosons except one can be made he
without running into the problem with triviality. Note thatA1

and alsoB2 exhibit theS28 invariant VEVs~6!.
A1 (v25c15c250): We start with the caseA1. The

first caseA1 corresponds to theS28 invariant VEVs~6!. The
nontrivial minimization conditions atv25c15c250 are
given by

052vSm3
22A2v1m4

21]V4H /]hS
0 , ~72!

052v1~m1
21m2

2!2A2vSm4
21]V4H /]h1

0 , ~73!

052A2vSm6
22v1m5

21]V4H /]h2
0 , ~74!

05]V4H /]x1
0 5v1vS@v1Im~l4!/2A21vSIm~l7!#,

~75!

05]V4H /]x2
0 52v1

2 vSIm~l4!/2A2. ~76!

Equation ~75! requires 05Im(l7)1(v1/2A2vS)Im(l4),
and~76! requires Im(l4)50. So, we assume thatl7 andl4

are real.~In the case of theS28 invariant soft term~29!, l4 has
to vanish for theS28 VEVs ~6! to correspond to a local mini
mum.! We then use~72!–~74! to expressm1

2 ,m3
2, andm5

2 in
terms of VEVs:

m1
252m2

22A2m4
2cotg1O~VEV2!,

m3
252A2m4

2tang1O~VEV2!,

m5
252A2m6

2cotg1O~VEV2!, ~77!

whereg is defined in~67!. Insertingm ’s of ~77! into the total
potential, we can compute the mass matrices and find

mh
2.S 2m2

21A2m4
2cotg 0 A2m6

2/sing

0 0 0

A2m6
2/sing 0 2A2m4

2/sin 2g
D

1O~VEV2!.mx
2 ~78!

for the basis~58! and ~59!. Comparing these results wit
~60!, we find that apart from theO(VEV2) terms, the masse
~78! reduce to those of theS28 invariant case~60! asm6

2 @and
03600
-

vy

hencem5
2 because of~77!# goes to zero. Therefore, theS28

invariant local minimum exists in the full Higgs potential,
all the mass parameters are real.

A2 (v15v250): The five minimization conditions a
v15v25c250 @which is of theS28 invariant type~6!# are
given by

052vSm3
21]V4H /]hS

0 , ~79!

052A2vSm4
21]V4H /]h1

0 , ~80!

052A2vSm6
21]V4H /]h2

0 , ~81!

052c1~m1
21m2

2!1]V4H /]x1
0 , ~82!

052c1m5
21]V4H /]x2

0 . ~83!

Equations~79!–~83! imply4 that m3
2 ,(m1

21m2
2),m4

2 ,m5
2 ,m6

2

;O(VEV2). Insertingm ’s above into the total potential, we
find

VT52m2
2H2

† H21O~VEV4!. ~84!

So, onlyH2 can become heavy.
B1 (c15c250): The five minimization conditions a

c15c250 are given by

052vSm3
22A2v1m4

22A2v2m6
21]V4H /]hS

0 , ~85!

052v1~m1
21m2

2!2A2vSm4
22v2m5

21]V4H /]h1
0 ,

~86!

052v1m5
22A2vSm6

22v2~m1
22m2

2!1]V4H /]h2
0 ,

~87!

052~v1
2 12v1v22v2

2 !vSIm~l4!/2A22v1vS
2Im~l7!,

~88!

052~v1
2 22v1v22v2

2 !vSIm~l4!/2A22v2vS
2Im~l7!.

~89!

Equations~88! and ~89! require Im(l7)5Im(l4)50. Solv-
ing ~85!–~87! to expressm1

2 ,m3
2 andm6

2 in terms ofvS ,v1 ,
andv2 , and inserting them into the total potential, we obta

4As announced, we do not allow an unnatural large hierar
among the VEVs. If, for instance,uvS /vu!1, thenm3

2 can be large
thanks to the nonvanishingl4. In this case,HS can become heavy
7-6
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VT5$@2m2
2v2

2 1m5
2~v2

3 /v12v1v2!#/vS
2!

1A2m4
2~v11v2

2 /v1!/vS%HS
†HS

1@2m4
2~vS /v1!1m5

2~v2 /v1!#H1
† H1

1@2m2
21m5

2~v2 /v1!1A2m4
2~vS /v1!#H2

† H2

1$2A2m4
2~v2 /v1!22m2

2~v2 /vS!1m5
2@~v1 /vS!

2~v2
2 /v2vS!#%~HS

†H21H.c.!2m5
2~H1

† H21H.c.!

2A2m4
2~HS

†H11H.c.!1O~VEV4!. ~90!

One can show that except forhL5(vShS
01v1h1

0

1v2h2
0 )/(v1

2 1v2
2 1vS

2)1/2 all the physical Higgs boson
can become heavy. So, this case satisfies the phenomeno
cal requirements.

B2,3,4,C1,2,D: We have performed similar analyses f
the rest of the cases and found that none ofB2,3,4, C1,2, and
D cases satisfy our requirement~if we do not allow a large
hierarchy among the VEVs!.

V. THE PAKVASA-SUGAWARA VACUUM

The Pakvasa-Sugawara~PS! VEVs @1# are given by

v25c150, ~91!

which is nothing but the caseB3 given in ~69!. As we men-
tioned, theS3 invariant potential~9! does meet the require
ment that except for one neutral physical Higgs boson, all
physical bosons can become heavy. On the other hand
PS VEVs~91! are the most economic VEVs in the case o
spontaneousCP violation; only one phase, which should b
determined in the Higgs sector, enters into the Yukawa s
tor. Here we would like to analyze the most general c
with complex soft masses in contrast to the previous s
tions. The minimization conditions are

052vSm3
22A2v1Re~m4

2!1A2c2Im~m6
2!1]V4H /]hS

0 ,

~92!

052v1~m1
21m2

2!2A2vSRe~m4
2!1c2Im~m5

2!

1]V4H /]h1
0 , ~93!

052A2vSRe~m6
2!2v1Re~m5

2!1]V4H /]h2
0 , ~94!

05A2vSIm~m4
2!2c2Re~m5

2!1]V4H /]x1
0 , ~95!

05A2vSIm~m6
2!1v1Im~m5

2!2c2~m1
22m2

2!

1]V4H /]x2
0 . ~96!

We solve ~92!–~96! to expressm1
2 ,m3

2 ,Im(m4
2),Rem5

2, and
Im(m5

2) in terms of VEVs. We find that in the leading orde
they are given by
03600
gi-

e
he

c-
e
c-

m1
25@m2

2v1
2 1A2 Re~m4

2!v1vS1A2 Im~m6
2!vSc2

1m2
2c2

2 #/~c2
2 2v1

2 !1O~VEV2!,

m3
25A2~2Re~m4

2!~v1 /vS!1Im~m6
2!~c2 /vS!!1O~VEV2!,

Im~m4
2!52Re~m6

2!~c2 /v1!1O~VEV2!,

Re~m5
2!52A2 Re~m6

2!~vS /v1!1O~VEV2!,

Im~m5
2!5@A2 Re~m4

2!vSc21A2 Im~m6
2!v1vS

12m2
2v1c2#/~c2

2 2v1
2 !1O~VEV2!. ~97!

Inserting these mass parameters into the full potential,
have verified numerically that, except for one neutral phy
cal Higgs boson, all the physical bosons can become he
In the limit, in which the imaginary parts ofm4

2 ,m5
2 ,m6

2 ,l4,
andl7 vanish, the Pakvasa-Sugawara VEVs reduce to theS28
invariant VEVs~6!, as we can see also from

c2→@24 Im~m4
2!1Im~l4!v1

2 12A2 Im~l7!v1vS#

3@v1/4 Re~m6
2!#1•••, ~98!

where••• stands for higher orders in the limit.

VI. SUPERSYMMETRIC EXTENSION

As in the case of the minimal supersymmetric stand
model ~MSSM!, we introduce twoS3 doublet Higgs super-
fields, Hi

U ,Hi
D( i 51,2), and twoS3 singlet Higgs super-

fields, HS
U ,HS

D @10,11#. The sameR-parity is assigned to
these fields as in the MSSM. Then the most general re
malizableS3 invariant superpotential is given by

WH5m1Hi
UHi

D1m3HS
UHS

D . ~99!

The S3 invariant soft scalar mass terms are@10,11#,

LS52mH
1
U

2
~ uĤ1

Uu21uĤ2
Uu2!2mH

1
D

2
~ uĤ1

Du21uĤ2
Du2!

2mH
S
U

2
~ uĤS

Uu2!2mH
S
D

2
~ uĤS

Du2!, ~100!

and theS3 invariant B terms are,

LB5B1~Ĥ1
UĤ1

D1Ĥ2
UĤ2

D!1B3~ĤS
UĤS

D!1H.c., ~101!

where hatted fields are scalar components. Given the su
potential~99! along with theS3 invariant soft supersymmetry
breaking~SSB! sector~100! and ~101!, we can now write
down the scalar potential. For simplicity we assume that o
the neutral scalar components of the Higgs supermultip
acquire VEVs. The relevant part of the scalar potential
then given by
7-7
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V5~ um1u21mH
1
U

2
!~ uĤ1

0Uu21uĤ2
0Uu2!1~ um1u2

1mH
1
D

2
!~ uĤ1

0Du21uĤ2
0Du2!1~ um3u21mH

S
U

2
!~ uĤS

0Uu2!

1~ um3u21mH
S
D

2
!~ uĤS

0Du2!1
1

8 S 3

5
g1

21g2
2D ~ uĤ1

0Uu2

1uĤ2
0Uu21uĤS

0Uu22uĤ1
0Du22uĤ2

0Du22uĤS
0Du2!2

2@B1~Ĥ1
0UĤ1

0D1Ĥ2
0UĤ2

0D!1B3~ĤS
0UĤS

0D!1H.c.#,

~102!

whereg1,2 are the gauge-coupling constants for theU(1)Y
andSU(2)L gauge groups. As one can easily see, the sc
potential V ~102! has a continues global symmetrySU(2)
3U(1) in addition to the localSU(2)L3U(1)Y . As a re-
sult, there will be a number of pseudo-Goldstone bosons
are phenomenologically unacceptable. This is a consequ
of S3 symmetry. Therefore, we would like to breakS3 sym-
metry explicitly. As in the nonsupersymmetric case,
would like to break it as softly as possible to preserve p
dictions from S3 symmetry, while breaking the globa
SU(2)3U(1) symmetry completely. There is a uniqu
choice for that: Since the softest terms have the canon
dimension two, the softS3 breaking should be in the SS
sector. As for the soft scalar masses, we have an impo
consequence~100! from S3 symmetry that they are diagona
in generations. Since we would like to preserve this, the o
choice is to introduce the softS3 breaking terms in theB
sector@11#. Moreover, looking at theS3 invariant scalar po-
tential V ~102!, we observe that it has again an Abelian d
crete symmetry

S28 :H1
U,D↔H2

U,D , ~103!

which is the same as~7!. We assume that the softS3 breaking
terms respect this discrete symmetry~103!, and add the fol-
lowing soft S3 breaking Lagrangian:
03600
ar
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LS3B5B4~Ĥ1
UĤ2

D1Ĥ2
UĤ1

D!1B5ĤS
U~Ĥ1

D1Ĥ2
D!

1B6ĤS
D~Ĥ1

U1Ĥ2
U!1H.c. ~104!

In the following discussions, we assume that all the B p
rameters are real. The resulting scalar potential can be
lyzed, and one finds that a local minimum respectingS28
symmetry, i.e.,

^Ĥ1
0U&5^Ĥ2

0U&5vU/2Þ0, ^Ĥ1
0D&5^Ĥ2

0D&5vD/2Þ0,

^ĤS
0U&5vSU /A2Þ0, ^ĤS

0D&5vSD /A2Þ0, ~105!

can occur. To see this, we write down the minimization co
ditions in this case, which can be uniquely solved:

~ um1
2u21mH

1
U

2
!5~B1vSD1B4vSD1A2B6vSD!/vU

1O~VEV2!, ~106!

~ um3
2u21mH

S
U

2
!5~B3vSD1A2B5vD!/vSU1O~VEV2!,

~107!

~ um1
2u21mH

1
D

2
!5~B1vU1B4vU1A2B5vSU!/vD

1O~VEV2!, ~108!

~ um3
2u21mH

S
D

2
!5~B3vSU1A2B6vU!/vSD1O~VEV2!.

~109!

Inserting these solutions into the scalar potential~102! with
~104!, we obtain the mass matrices for the Higgs fields. As
the nonsupersymmetric case, we redefine the Higgs field

Ĥ6
D,U5

1

A2
~Ĥ1

D,U6Ĥ2
D,U!. ~110!

Then the mass matrices can be written as
M2
2 5S @~B11B4!vD1A2B6vSD#/vU 2B11B4

2B11B4 @~B11B4!vU1A2B5vSU#/vD
D ~111!
an
for the @Ĥ2
U ,(Ĥ2

D )†# basis, and

M25S MUS 0 2B3 2A2B5

0 MU1 2A2B6 2B12B4

2B3 2A2B6 MDS 0

2A2B5 2B12B4 0 MD1

D
1O~VEV2! ~112!

for the @ĤS
U ,Ĥ1

U ,(ĤS
D)†,(Ĥ1

D )†# basis, where
MUS5~B3vSD1A2B5vD!/vSU ,

MU15@~B11B4!vD1A2B6vSD#/vU , ~113!

MDS5@B3vSU1A2B6vU#/vSD ,

MD15@~B11B4!vU1A2B5vSU#/vD . ~114!

From the mass matrices~111! and ~112!, we find that the
lightest physical Higgs boson, the MSSM Higgs boson, c
be written as a linear combination
7-8
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hMSSM5~vDĤ1
0D1vSDĤS

0D1vUĤ1
0U1vSUĤS

0U!/v,
~115!

wherev5(vU
2 1vSU

2 1vD
2 1vSD

2 )1/2.246 GeV, and its mass
is approximately given by

mh
2. 1

2 @~3/5!g1
21g2

2#~vU
2 1vSU

2 2vD
2 2vSD

2 !2/v2 ~116!

for m28s,B8s@v2. It can be shown that the masses of t
other physical Higgs bosons can be made arbitrarily he
From ~116!, we see that the tree-level upper bound formh is
exactly the same as in the MSSM.

Because of the very nature of the SSB terms, the exp
breaking ofS3 in the B sector~104! does not propagate to th
other sector. Moreover, although the superpotential~99! and
the corresponding trilinear couplings do not respectS28 sym-
metry ~103!, they cannot generateS28 violating infinite B
terms because they can generate onlyS3 invariant terms,
which are, however, automaticallyS28 invariant.

VII. CONCLUSIONS

We recall that our investigations have been carried
under the two phenomenological conditions~14! and ~15!.
Below we would like to summarize our conclusions:

~i! The S3 invariant Higgs potential~9! does not satisfy
the phenomenological requirement that except one neu
physical Higgs boson all the physical Higgs bosons can
come heavy*10 TeV without having a problem with trivi-
ality. That is, for a phenomenological viable model we ha
to breakS3 explicitly if we do not introduce further Higgs
fields.

~ii ! Among the real nonequivalent softS3 breaking masses
~28!, ~29!, and ~31! that can be characterized according
discrete symmetries, only theS28 invariant case~29! with the
h

,

03600
y.

it

t

al
e-

e

S28 invariant VEVs~6! can satisfy the phenomenological r
quirement of~i!.

~iii ! Even for the most general quartic Higgs potent
with the most general realS3 breaking masses~21!, the S28
invariant VEVs~6! can correspond to a local minimum an
satisfy the phenomenological requirement of~i!.

~iv! The Pakvasa-Sugawara VEVs~91! can be a local
minimum in the case of the most general quartic Higgs
tential with the most general complexS3 breaking masses
and can satisfy the phenomenological requirement of~i!.

~v! In a minimal supersymmetric extension with theS28
invariant, real softS3 breaking masses in theB sector, the
phenomenological requirement of~i! can be satisfied with
the S28 invariant VEVs~105!, where the otherB parameters
are also assumed to be real. TheseB terms violate supersym
metry as well asS3 softly. This possibility to introduceS2
violating soft terms in theB sector only is consistent with
renormalizability. The lower bound of the lightest Higgs b
son is the same as in the MSSM.

It is a very difficult task to test the Higgs sector expe
mentally. However, as we see from~57! and~60!, in the case
of theS28 invariant soft breaking with theS28 invariant VEVs
~6!, there are basically only two massesmhH

and mh2
for

four neutral and two charged heavy Higgs bosons. This m
be experimentally tested because their couplings to the
mions are fixed@8,9#.
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